

PARALLEL 8 / DM and DS

(Ultra-)Light Dark Matter Cosmological and Astrophysical Aspects

Josef Pradler (University of Vienna and Austrian Academy of Sciences)

Indirect detection on behalf of Francesca Calore (CNRS-LAPTH)

23-27 JUNE 2025 Lido di Venezia

The BSM danger zone

New physics meets well tested grounds

(Ultra-)Light Dark Matter

Thermal Light Dark Matter

Early Universe Cosmology - TIMING

Hubble rate is the Universe's clock

=> few MeV is an absolute lower bound on thermal DM annihilating to SM particles only

Chu, Kuo, JP 2205.05714, Chu, JP 2310.06611

 m_{ϕ} [MeV]

30

S-wave thermal DM ann. into charged SM at CMB epoch with mass below 10 GeV excluded

- => p- or higher wave ann. (=velocity suppressed) perfectly viable (e.g. complex scalar with Z')
- => freeze-in avoids any energy-injection constraints from BBN, CMB, 21cm
- => DM mass-depletion in the hidden sector (e.g. SIMPs)

=> many possibilities for making viable LDM

Broader CMB sensitivity

Rich science program associated with (ultra-)light DM

CMB-S4 collaboration 1907.04473

Limits from CMB & structure formation

Elastic DM - proton or electron scattering

e.g. Rutherford-type scattering, realized through very light dark photon mediator

Buen-Abad+ 2107.12377

Limits from structure formation

Sterile neutrinos as warm dark matter

Astrophysical aspects I

15 years ago: stellar energy loss was the only game in town

Dark state production alters stellar evolution as soon as kinematically accessible

Supernova bound < O(100) MeV Stars < O(100) keV

Globular Cluster color-magnitude diagram

 $\bar{\chi}(p_{\bar{\chi}})$

 $\chi(p_{\chi})$

 $\gamma^*(k)$

Astrophysical aspects I

Today: laboratory tests beat stellar energy loss constraints

https://github.com/cajohare/AxionLimits

Astrophysical aspects II

Solar and cosmic ray boost

Probes unchartered territory between galactic direct detection and stellar constraints

Dark photons below the electron mass

Enormous parameter space to explore

https://github.com/cajohare/AxionLimits

INDIRECT DETECTION of DM

What dark matter does with/to the environment at low redshift

Alters expected energetic particle fluxes

Alters the dynamics of astrophysical objects through gravitational interaction

Capture/scattering/accretion in/onto astrophysical objects

INDIRECT DETECTION observables

EuCAPT White Paper, arXiv:2110.10074

A focus on multi-wavelength photons

EuCAPT White Paper, arXiv:2110.10074

Indirect searches for dark matter successfully **test different dark matter models** (WIMPs, ALPs, PBHs, etc), probing a large portion of their parameter space

Particle dark matter emission

 $(DM) DM \to SM SM$ $E_{\rm CM} = N m_{\rm DM}$, N = 1 (decay), 2 (annih) Centre of mass energy \simeq Signal energy $E_{\gamma} = \frac{Nm_{\rm DM}}{2}$ $m_{\rm DM} \lesssim {
m MeV}$ $\frac{dN_{\gamma}}{dE} = 2\delta\left(E - \frac{Nm_{\rm DM}}{2}\right)$ **Narrow line signal** $m_{\rm DM} \gtrsim {\rm MeV}$ **Broader energy distribution** $\frac{dN_{\gamma}}{dE} = \left(\frac{dN_{\gamma}}{dE}\right)_{\gamma\gamma} + \left(\frac{dN_{\gamma}}{dE}\right)_{\text{sec}} + \left(\frac{dN_{\gamma}}{dE}\right)_{\text{FSR.}}$

ALPs dark matter decay

ALPs can be viable DM candidates in some portions of the parameter space

 10^{0}

 10^{-1}

 10^{-2}

• If DM, ALPs distributed in galaxies according standard DM density distributions (e.g. NFW)

EuXFL

LEP

Light ALPs

- Light ALPs are strongly probed by astrophysical systems
- Production in stars and/or high-energy gamma-ray emitters and conversion in external magnetic fields
- Search for photon appearance/ disappearance in astrophysical observables
- Future Galactic SN can touch ALP DM parameter space

Sub-GeV dark matter: annihilation/decay XS

- Simple thermal freeze-out scenario for s-wave annihilation generically ruled out
- But p-wave models (many of the portals) still viable

Diffuse X and soft-gamma ray emission provide the strongest constraints today but MeV sensitivity gap

Cirelli+ 2406.01705

Aramaki+ Snowmass'21 CF

Future: Covering the MeV sensitivity gap

Decay

Annihilation

WIMP annihilation window

Cirelli+ 2406.01705

Future: The Cherenkov Telescope Array Observatory

Take away: Wino DM strongly in tension with current data & Higgsino DM in the reach of CTAO

Rodd+ PRD'24; Montanari+ PRD'22; Rinchiuso+ PRD'21; Abe+2506.08084

Dark matter at PeV energies

Challenges: 1. Production and propagation of UHE gamma rays; 2. DM spectra at production for E_{CM} >> E_{LHC}

Take away: Strong potential from VHE gamma rays

Conclusions

Cosmology and Astrophysics of (ultra-)light Dark Matter and Dark Sectors Indirect Detection of Dark Matter

- eV-keV scale is the dividing line between bosonic-only, wave-like and any-spin particle dark matter. "Light Dark Matter" = keV-GeV scale. Thermal relics at the low mass end are amply probed in cosmology (CMB, BBN, structure formation) and through astrophysics (stellar energy loss). Freeze-in Dark Matter make for good, challenging targets.
- Many orders of magnitude in mass-space for ``ultra-light" ALPs and dark photons to be probed. Stellar constraints provide a ``calibration lines" for laboratory searches: beat them!
- Indirect DM detection at low z is a multi-pronged approach: alters fluxes, dynamics, or nature of astrophysical objects
- Current ``blind spot" in the MeV energy range, but progress expected
- Thermal Wino DM already severely challenged, with CTA also Higgsino DM probed