

PARALLEL 8 / DARK MATTER/DARK SECTOR

Ultralight Dark Matter and Dark Sector

Julia K. Vogel (TU Dortmund), Aaron Chou (Fermilab) For the ESPP 2026 WG on Dark Matter and Dark Sector

Special thanks to Ciaran O'Hare (https://cajohare.github.io/AxionLimits/)

23-27 JUNE 2025 Lido di Venezia

Input documents relevant to ULDM ($m_{\chi} \lesssim 1 \text{ eV}$)

General submissions

#54 Grenoble Axion Haloscopes: From BabyGrAHal to GrAHal for axion DM search in the 1-150μeV mass range
#37 Long-Baseline Atom Interferometry
#146 The International Axion Observatory (IAXO): case, status and plans.
#198 Einstein Telescope - The future European Gravitational Wave Observatory
#204 R&D on quantum sensors for particle physics: the DRD5 collaboration
#228 Quantum Technologies in High Energy Physics. The CERN Quantum Technology Initiative input to the ESPP

#260 Quantum Sensing for Dark Matter and Gravitational Waves

Networks, Institutes and Committees

#13 Laboratori Nazionali di Frascati of INFN

#27 Exploring the Dark Universe: A European Strategy for Axions and other WISPs Discovery (COST Cosmic WISPers)

#112 Enhancing European Cooperation in the Search for Dark Matter (DMInfraNet)

#235 Summary Report of the Physics Beyond Colliders Study at CERN

+ National Inputs (see Friday session)

Julia Vogel | Ultralight Dark Matter and Dark Sector

Axions and Axion-Like Particles (ALPs)

- QCD axions strongly motivated from solving strong CP problem
- Simultaneously natural dark matter candidates
- Additionally interesting astrophysical hints exist
- Similar particles produced in many higher order theories (e.g. string theory)
 Axion-like particles (ALPs)

First Experiments have been entering highly motivated regions

Discovery potential for full QCD band at reach within the coming decades Multiple experiments running, more being developed

WISP – Dark Matter – Dark Sector

- Other candidates are theoretically interesting CDM
 - ALPs

. . .

- Dark photons/Hidden photons

Can mostly search for these particle in same experiments as axions (parallel mode)

Focus here on axions and ALPs with some DP

Similarly: focus first on axion-photon coupling here, but other couplings also of interest, while potentially more difficult to detect

Categories of Axion Search Experiments

- Light-Shining-Through-Wall-Searches (no DM assumption)
 - Laboratory-based experiments producing and detecting axions
- Helioscopes (no DM assumption)
 - Laboratory-based solar searches
- Haloscopes
 - Microwave cavities
 - Dish antennas/dielectric and plasma haloscopes (higher m_a)
 - Lumped element detectors (lower m_a)

Previous prospects

Julia Vogel | Ultralight Dark Matter and Dark Sector

Julia Vogel | Ultralight Dark Matter and Dark Sector

Julia Vogel | Ultralight Dark Matter and Dark Sector

Julia Vogel | Ultralight Dark Matter and Dark Sector

Previous prospects

- ESPP Update 2020
- Where are we now?
 - ALPS II taking data
 - MADMAX prototype tests
 - HAYSTAC entering phase III
 - BabyIAXO being constructed @ DESY

Previous prospects

- ESPP Update 2020
- ► Where are we now?
 - ALPS II taking data
 - MADMAX prototype tests
 - HAYSTAC entering phase III
 - BabyIAXO being constructed @ DESY
- Existing experiments progressing
- Since 2020 more experiments proposed, especially to access still unexplored regions of QCD band

- Setups fully controlled: produce axions, detect axions
- Running experiments/under construction: ALPS II

(on the way to its design sensitivity)

- Expected to explore untested regions

- Setups fully controlled: produce axions, detect axions
- Running experiments/under construction: ALPS II (on the way to its design sensitivity)
 - Expected to explore untested regions
- Newly proposed laboratory variation of LSW (meV-100 meV): WISPFI (fiber interferometer)

- Setups fully controlled: produce axions, detect axions
- Running experiments/under construction: ALPS II

(on the way to its design sensitivity)

- Expected to explore untested regions
- Newly proposed laboratory variation of LSW (meV-100 meV): WISPFI (fiber interferometer)
- Other couplings can be searched for in lab as well, e.g.: CASPEr (a-N)

Laser

Magnet

B₹

Wal

Magnet

Detector

- Setups fully controlled: produce axions, detect axions
- Running experiments/under construction: ALPS II

(on the way to its design sensitivity)

- Expected to explore untested regions
- Newly proposed laboratory variation of LSW (meV-100 meV): WISPFI (fiber interferometer)
- Other couplings can be searched for in lab as well, e.g.: CASPEr (a-N)

Magnet

B₹

Wal

Longer-term: e.g. HyperLSW (in case of a haloscope detection)

Magnet

Detector

- Major international effort: International Axion
 Observatory (IAXO)
- Intermediate stage BabyIAXO (helioscope in its own right)
- Goal: Probe QCD axions at high mass end (meV-eV)
 - → Complementary to low mass searches +ALPs+test astrophysical hints+dark photons+...

- Major international effort: International Axion
 Observatory (IAXO)
- Intermediate stage BabyIAXO (helioscope in its own right)
- Goal: Probe QCD axions at high mass end (meV-eV)
 Complementary to low mass searches +ALPs+test astrophysical hints+dark photons+...
- Mature design: upscaling technology
- BabyIAXO@DESY in construction phase
- Axion-photon, but can also study other couplings (a-e, a-N), also post-discovery capabilities

- Major international effort: International Axion
 Observatory (IAXO)
- Intermediate stage BabyIAXO (helioscope in its own right)
- Goal: Probe QCD axions at high mass end (meV-eV)
 Complementary to low mass searches +ALPs+test astrophysical hints+dark photons+...
- Mature design: upscaling technology
- BabyIAXO@DESY in construction phase
- Axion-photon, but can also study other couplings (a-e, a-N), also post-discovery capabilities
- Includes haloscope setup for DM searches and highfrequency GW studies (BabyIAXO-RADES)

- Resonant cavity haloscopes
 - Pioneered by ADMX, running and probing QCD band: ADMX, HAYSTAC, CAPP, QUAX
 - New setup being developed: RADES, GrAHal, SUPAX, CADEX, ORGAN, TASEH, PXS...

- Resonant cavity haloscopes
 - Pioneered by ADMX, running and probing QCD band: ADMX, HAYSTAC, CAPP, QUAX
 - New setup being developed: RADES, GrAHal, SUPAX, CADEX, ORGAN, TASEH, PXS...
- Expansion to higher masses:
 - Dielectric Haloscopes (MADMAX, DALI, LAMPOST, EQC...)
 - Dish Antennae (BRASS, BREAD)
 - Plasma Haloscopes (ALPHA/HAYSTAC)
 - Antiferromagnetic resonance (TOORAD) (Uses magnetic topological insulators to detect axion DM)

- Resonant cavity haloscopes
 - Pioneered by ADMX, running and probing QCD band: ADMX, HAYSTAC, CAPP, QUAX
 - New setup being developed: RADES, GrAHal, SUPAX, CADEX, ORGAN, TASEH, PXS...
- Expansion to higher masses:
 - Dielectric Haloscopes (MADMAX, DALI, LAMPOST, EQC...)
 - Dish Antennae (BRASS, BREAD)
 - Plasma Haloscopes (ALPHA/HAYSTAC)
 - Antiferromagnetic resonance (TOORAD) (Uses magnetic topological insulators to detect axion DM)
- Expansion to lower masses:
 - FLASH, BabyIAXO-RADES
 - Lumped element detectors (DMRadio, WISPLC,...)

Axion Searches

GHz THz 10^{-9} CAST 10^{-10} . Large parts of QCD band **RBF+UF+CAPP** 10^{-11} Astrophysics can be IAXO $g_{a\gamma}$ studied in 10^{-12} LAMPOST coming ADMIX Photon coupling, 10⁻¹³ decades 10⁻¹⁴ -Significant **European** / non-European 10^{-15} European-Cavities leadership Lumped element, plasma haloscope 10^{-16} Dish antennae, dielectrics, other and/or LSW, helioscope involvement 10^{-17} 10^{-5} 10^{-6} 10^{-4} 10^{-3} 10^{-2} 10^{-7} 10^{-1} 10^{0} Axion mass, m_a [eV]

Complementary experimental approaches are crucial to cover full viable axion parameter space

- Mixture of largescale and smaller-scale experiments
- ALP searches in parallel

Beyond axion-photon searches

- Novel searches for other couplings
 - Axion-gluon, axion-electron, axion-nucleon
- Significant European engagement
 - QUAX (axion-induced spin precession in a ferromagnetic crystal (YIG))
 - CASPEr (NMR-based precision magnetometry)
 - Ariadne (axion-mediated spin-dependent forces)
 - SRF Heterodyne (superconducting resonators or hybrid NMR/quantum sensors, proposed)

•••

Beyond axion-photon searches: g_{ae}

Beyond axion-photon searches: g_{aN}

Other searches: Dark photon (DM & DS)

- Furthermore, dedicated efforts ongoing
- Light dark photons could be DM

Many axion experiments can also search for dark photons

Other searches: Dark photon (DM & DS)

Technologies that need to be (further) developed

- Magnets (large volume, high B-field)
- Detectors (low bgrd)
- Optics (different energies, couple large magnets to small detectors)
- Cryogenics and Vacuum technology
- Improved cavities
- Quantum sensing (interesting for all types of searches)

Technologies that need to be (further) developed

- Magnets (large volume, high B-field)
- Detectors (low bgrd)
- Optics (different energies, couple large magnets to small detectors)
- Cryogenics and Vacuum technology
- Improved cavities
- Quantum sensing (interesting for all types of searches)
 Most crucial for
 - Haloscope approaches (e.g. RADES, SRF Heterodyne, Madmax,...)
 - Spin precession / NMR (e.g. CASPEr, Quax, GNOME,...)
 - Atomic Interferometer approaches (MAGIS, AION,...)
 - Close connection to GW searches (Mago, GravNet,...)
 - \rightarrow Lots of activity in this field (see e.g. #204,#228,#260)

New developments

- ► Atom interferometry (MAGIS/AION/MIGA/VLBAI/..., AEDGE in space) and similar techniques can search for ultralight scalar DM ← → gravitational wave detection (intermediate frequencies ~ 10⁻¹ – 1 Hz)
 - → TVLBAI Proto-Collaboration: coordinated programme of IF with increasing baselines 10^{-3} $Frequency (f_{\phi})$ [Hz]

New developments

- ► Atom interferometry (MAGIS/AION/MIGA/VLBAI/..., AEDGE in space) and similar techniques can search for ultralight scalar DM ← → gravitational wave detection (intermediate frequencies ~ 10⁻¹ – 1 Hz)
 - → TVLBAI Proto-Collaboration: coordinated programme of IF with increasing baselines 10^{-3}
- Solid-State / Low-Temperature
 "Absorption" Detectors (e.g. QUAX-ae, SPHERES, HeLIUM)
- Oscillating EDMs at Storage Rings (e.g. JEDI)
- Electron Recoil Signals in Large-Scale Detectors like XLZD (Xenon/LZ/Darwin)

Julia Vogel | Ultralight Dark Matter and Dark Sector

17

Cross-cutting topics

- X-ray Astronomy (IAXO, NuSTAR,...)
- Radio Astronomy (MADMAX, RADES,...)
- Gravitational waves (GravNet/SUPAX,...)
- NMR (CASPEr experiments)
- Condensed matter (QUAX)
- Quantum sensing (most experiments)
- ► EXP TH PHENO

Post discovery aspects/Outlook

HyperLSW in case of haloscope detection

- Alternating-magnet design can resonantly enhance LSW sensitivity
- Thus can potentially reach QCD axion band
- Study on how to achieve optimal sensitivity for given axion mass

Summary

- Large parameter space to cover for axions and ALPs
 - → need for complementary approaches
 - \rightarrow QCD band coverage in reach
- Many small-scale experiment, but now need to scale-up to mid/large searches (MADMAX, IAXO,...)
- Study of other axioncouplings/DPs pursued
- Quantum sensing to push beyond SQL

Backup

Input documents including national input mentioning ULDM

General submissions

#54 Grenoble Axion Haloscopes: From BabyGrAHal to GrAHal for axion DM search in the 1-150 micro-eV mass range
#146 The International Axion Observatory (IAXO): case, status and plans.
#198 Einstein Telescope - The future European Gravitational Wave Observatory
#204 R&D on quantum sensors for particle physics: the DRD5 collaboration
#228 Quantum Technologies in High Energy Physics. The CERN Quantum Technology Initiative input to the ESPP
#260 Quantum Sensing for Dark Matter and Gravitational Waves

Networks and Committees

#27 Exploring the Dark Universe: A European Strategy for Axions and other WISPs Discovery (COST Cosmic WISPers)
 #112 Enhancing European Cooperation in the Search for Dark Matter (DMInfraNet)
 #235 Summary Report of the Physics Beyond Colliders Study at CERN

National input

#13 Laboratori Nazionali di Frascati of INFN (INAF)
#15 French HEP community input to the European Strategy for Particle Physics
#22 Statement by the German Particle Physics Community as Input to the Update of the ESPP
#126 Input to ESPPU by the German Astroparticle Community
#147 Spanish national input to the European Strategy for Particle Physics

Julia Vogel | Ultralight Dark Matter and Dark Sector

New Haloscopes

TOORAD (TOpolOgical Resonant Axion Detection) Nature 641, 62–69 (2025)

- Uses magnetic topological insulators to detect axion DM
- Dynamical Axion quasiparticles (DAQ) in materials like Fe-doped Bi₂Se₃ or MnBi₂Te₄ can convert into THz photons in B-field
- Targets ~1 meV axion masses
- Volume-independent sensitivity and tunable resonance via magnetic field
- Requires efficient THz photon detectors for readout

Julia Vogel | Ultralight Dark Matter and Dark Sector

SRF Heterodyne

#228 Quantum Technologies in HEP. The CERN QTI input to the ESPP (JHEP 07 (2020) 088, PRD 104 (2021),11, L111701) #260 Quantum Sensing for DM and Gravitational Waves

- New axion detection concept using SC RF cavities
- Like haloscopes, relies on $a-\gamma$ conversion in a bgrd EM field, but here **oscillating (AC)** field at frequency f_0 .
- Axion signal appears at $f_0 \pm m_a/2\pi$, enabling detection independent of cavity size
- Decoupling of cavity geometry and m_a

Axion-electron: experiments

Future comagnetometers:

JHEP01(2020)167

Electron storage rings:

arXiv:2211.08439

Nitrogen-Vacancy Centers:

J. High Energ. Phys. 2025 (2025), 83 Torsion pendulum

Phys. Rev. Lett 115 (2015) 201801

Axion wind multilayer (SQL/single photon)

J. High Energ. Phys. 2024, 314 (2024)

MOSAIC

arXiv:2504.16160

YIG

Phys. Rev. D 101, 096013

Axion-nucleon: experiments

CASPEr-ZULF (Zero to Ultra-Low Field) (gap, gan)

- Uses ultra-low magnetic fields to detect axion-induced nuclear spin precession
- Sensitive to **oscillating EDMs** of nuclei caused by axion DM
- Searching for axions in the neV to peV range

CASPEr-gradient (g_{ap}, g_{an})

- Applies a magnetic field gradient across sample
- Designed to detect axion wind effects (spin precession from axion field gradient due to Earth's motion in DM halo)
- Targets higher-mass axions compared to ZULF, with complementary sensitivity

MnCO3 (g_{ap})

- Magnetically ordered material, well-aligned nucl./ electron spins, highly sensitive to axion-induced torques/precession signals
- Similar setups to CASPEr, enhanced coherence and magnetic response properties; axion wind or axion-induced EDM effects.

Dark Photon

STAX

arXiv: 2212.01139

LSW experiment operating in millimeter-wave (\sim 30 GHz) range instead of optical or infrared frequencies

- Uses coherent wave detection rather than mainly photon counting
- Targets axion/dark photon mass range $\sim 10^{-4}$ to 10^{-3} eV
- Employs advanced noise filtering and high temporal coherence techniques
- Plans to use high-power sources like phased-locked gyrotrons for improved sensitivity.

Julia Vogel | Ultralight Dark Matter and Dark Sector

Dandelion

Dish antenna experiment searching for meV-mass dark photons

- Uses a spherical mirror and 418 cooled Kinetic
 Inductance Detectors to detect converted photons
- Mirror tilt moves the signal for continuous background monitoring
- Detects spatial (direction) and intensity (polarization) modulations of the signal.

Atomic interferometers

Julia Vogel | Ultralight Dark Matter and Dark Sector