

PARALLEL 8 / DARK MATTER AND DARK SECTOR

Overview and Methodology of Working Group

Yohei Ema (CERN)

Submission summary

114 submissions found to be relevant to the Dark Matter and Dark Sector area.

If yes, which benchmark models?	If yes, which benchmark models?	If yes, which benchmark models?	If yes, which benchmark models?
antimatter dark matter coupling, millicharged	antimatter dark matter coupling, millicharged	antimatter dark matter coupling, millicharged	antimatter dark matter coupling, millicharg
light DM, sterile neutrinos (categorization was yes (more in 112)	YES (but just mentioned as general science case and for FCC)	indirect detection from annihilation in sun	LDM (inelastic DM) Portals
sexaquark via pbar-He3 annihilation QCD axion QCD axion, sub-GeV indirect detection in MeV	YES (as national priority, generic) YES (as national priority, generic) YES (as national priority, generic)	no models, focus is complementarity no models, focus is compementarity	Portals LDM (inelastic DM) Dark Higgs
QCD axion via FLASH QCD axion with GRAHAL and MADMAX, WIMPs	YES (as consortium priority, generic) heavy (WIMP),	LDM and ULDM (no models) ALPs, hidden sector (LDM, ULDM)	Minimal DM, Portals, Alps Minimal DM, Alps
and sub-GeV with DarkSide, XLZD, TESSERACT WIMPs with XENONnT, XLZD	light DM VES (as national priority, generic)	LDM (no details) national input, generic (no models)	Alps, UL DM ????
WIMPs with XL2D WIMPs with colliders, indirect with CTAO, dark bosons with antimatter expts???	super-heavy (exotic compact objects, PBHs), heavy, ULDM	UDM (ALPs)	Yes, but superficial discussion. Alps, light scalars
Heavy DM (CTA) - generic ULDM, PBH, stochastic bkg	YES (as consortium priority, generic) no models, focus is complementarity/interplay	collider technology (categorization was yes (?))	Alps, dark photons (categorization was yes, superficial)
Phase transitions, w/ (heavy) and w/o portal. PBH, stochastic bkg	sub-GeV dark matter scalar dark matter and heavy neutral leptons via axion-like	Lattice QCD calulations QCD axion/ALPs	HNLs, light DM. (categorization was yes, bu superficial)
Alps	particle refers to SBND publications on sensitivity to	axion/ALP/dark photon ULDM, WIMPs, sterile neutrino, FIPs, DP,	Axion DM Dark photons, ALPs
Light DM, sterile neutrinos	dark sector particles such as a Higgs-Portal scalar [15], heavy axion-like particles [16, 17] or	Beamdump Portals	Yes, but summary of P5. Yes, in supplementary material. See
heavy, ULDM, sub-GeV heavy, ULDM, sub-GeV	dark photons that mediate interactions with light dark matter [18, 19]	LDM (BC2)	2205.08553. WIMPs, scalar and lepton por simplified models.
YES (but just mentioned as science case for FCC)	no models, focus is describing scope of DRDs		Same models as 10 TeV COM lepton collide

Relevant mass ranges and benchmark models identified.

Goal of my talk

<u>Goal of my talk</u>

To set up the stage for the subsequent talks.

Summarize the basics and define the terminology.

More details, with actual plots, covered later.

Dark matter and dark sector

• Evidence of Dark matter (DM) in different scales:

• We know its energy density, but not its mass and interaction,

$$\rho_{\chi} = m_{\chi} n_{\chi} \simeq 0.4 \, \mathrm{GeV/cm^3}$$

though theory-driven representative models exist.

Diverse/complementary efforts to cover diverse mass ranges.

Unknown new physics needs not be simple = "Dark sector"

Classification

We classify models and methods by mass ranges.

- 1. Ultralight mass range $m_{\chi} \lesssim eV$.
- 2. Light mass range keV $\lesssim m_{\chi} \lesssim \text{GeV}$.
- 3. Heavy mass range GeV $\lesssim m_{\chi} \lesssim 10 \,\text{TeV}$.
- 4. Ultraheavy mass range TeV $\ll m_{\chi}$

Ultralight mass range: theory

• Ultralight mass $m_{\gamma} \lesssim \text{eV}$:

"Occupation number" ~
$$n_{\chi} \times (m_{\chi} v)^{-3} \sim \left(\frac{10 \,\mathrm{eV}}{m_{\chi}}\right)^4$$

Must be a boson, appropriate to think it as "classical waves"

with frequency ~ GHz
$$\left(\frac{10^{-6} \,\mathrm{eV}}{m_{\chi}}\right)$$

• Representative example : QCD axion.

Explain why neutron EDM is small = strong CP problem. Naturally light due to Pseudo-Goldstone nature. Well-defined relic abundance target.

Ultralight mass range: experiment

• Dark matter as a classical wave.

Affect e.g. electromagnetic response.

$$\dot{\vec{E}} - \vec{\nabla} \times \vec{B} = g_{a\gamma\gamma} \left(\dot{a} \vec{B} + \vec{\nabla} a \times \vec{E} \right)$$

$$a - - - \cancel{\gamma} \quad \text{``haloscope''}$$

$$B$$

• Astrophysical/cosmological production also important.

• Can be produced in the laboratory.

Ultralight mass range: experiment

• Dark matter as a classical wave.

Affect e.g. electromagnetic response.

B

Disclaimer: showing only non-exhaustive lists.

 \bullet B

Light mass range: theory

smological thermal "freeze-out" abundance: $\Omega_{\chi}h^{2} \sim \frac{10^{-26} \text{ cm}^{3}/\text{sec}}{\langle \sigma v \rangle} \sim 0.1 \left(\frac{0.01}{g_{\chi}^{2}}\right)^{2} \left(\frac{m_{\chi}}{100 \text{ GeV}}\right)^{2} \xrightarrow[\text{for } \langle \sigma v \rangle = g_{\chi}^{4}/m_{\chi}^{2}.$ Cosmological thermal "freeze-out" abundance: For $m_{\gamma} \ll 100 \,\text{GeV}, \ g_{\chi}^2 \ll 0.01$: new small coupling. • Thermal "freeze-in" at tiny g_{χ} : • Thermal "freeze-in" g_{χ} : • freeze-in freeze-out g_{χ} • Dark sector can couple to SM via "portals": SM m $\mathscr{L} = \mathscr{O}_{\rm SM} \times \mathscr{O}_{\rm dark} = \begin{cases} \epsilon B_{\mu\nu} F^{\prime\mu\nu} & : \text{ dark photon portal,} \\ |H|^2 S, |H|^2 S^2 & : \text{Higgs portal,} \\ LHN_R & : \text{ neutrino (HNL) portal,} \\ aF\tilde{F} & : \text{ axion-like particle (ALP) portal.} \end{cases}$

• DM direct detection (DD) with lower threshold/lighter target:

• Astrophysics/cosmology relevant, especially for $m_{\chi} \lesssim 10 \,\mathrm{MeV}$.

Disclaimer: showing only non-exhaustive lists.

• DM direct detection (DD) with lower threshold/lighter target:

• Astrophysics/cosmology relevant, especially for $m_{\chi} \lesssim 10 \,\mathrm{MeV}$.

Disclaimer: showing only non-exhaustive lists.

• DM direct detection (DD) with lower threshold/lighter target:

$$E_{\text{recoil}} \sim \frac{m_{\chi}^2}{m_{\text{target}}}$$
 Covered by Paolo Agnes
for $m_{\chi} \ll m_{\text{target}}$.

• Astrophysics/cosmology relevant, especially for $m_{\chi} \lesssim 10 \,\mathrm{MeV}$.

Disclaimer: showing only non-exhaustive lists.

• DM direct detection (DD) with lower threshold/lighter target:

Heavy mass range: theory

• Thermal relic abundance:

$$\Omega_{\chi}h^2 \sim \frac{10^{-26} \,\mathrm{cm}^3/\mathrm{sec}}{\langle \sigma v \rangle} \sim 0.1 \left(\frac{0.01}{g_{\chi}^2}\right)^2 \left(\frac{m_{\chi}}{100 \,\mathrm{GeV}}\right)^2$$

For $m_{\chi} \gtrsim 100 \,\text{GeV}, \ g_{\chi}^2 \gtrsim 0.01$: sizable coupling.

• May have strong connection to EW physics $g_{\chi}^2 = g_{\rm SM}^2$, $m_{\chi} \sim m_{\rm EW}$.

Weakly interacting massive particles (WIMPs): Higgsino, Wino, ...

• Even if not, natural to have "portals" to EW physics.

 $|H|^2 S$, $|H|^2 S^2$: Higgs portal, Z'-portal, ...

• DM direct detection most sensitive here.

$$E_{\text{recoil}} \sim m_{\text{target}} v^2 \sim 10 \,\text{keV}\left(\frac{m_{\text{target}}}{10 \,\text{GeV}}\right) \,\text{for } m_{\chi} \gtrsim m_{\text{target}} \,.$$

• Indirect detection provides another strong probe.

Indirect detection provides another strong probe.

Indirect detection provides another strong probe.
 SM
 Covered by Josef Pradler
 SM
 DM

Ultraheavy mass range

• Simple (perturbative) thermal production does not work

$$\Omega_{\chi}h^2 \sim \frac{10^{-26} \,\mathrm{cm}^3/\mathrm{sec}}{\langle \sigma v \rangle} \sim 0.1 \left(\frac{1}{g_{\chi}^2}\right)^2 \left(\frac{m_{\chi}}{10 \,\mathrm{TeV}}\right)^2$$

Coupling becomes non-perturbative for $m_{\chi} \gg 1 \,\mathrm{TeV}$.

• Can be composite and/or non-thermally produced.

• DM direct detection, astrophysics, ..., can probe these models.

Summary

- Diverse techniques necessary to cover diverse mass range.
- Classified according to mass ranges.

 - Ultralight mass range m_χ ≤ eV.
 Light mass range keV ≤ m_χ ≤ GeV.
 Heavy mass range GeV ≤ m_χ ≤ 10 TeV.
 Ultraheavy mass range TeV ≪ m_χ
- More details on each mass range to be covered in the following.