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2 TODAY

- triggerless (25 TB/s)

A. Cerri (U. of Sussex)

- triggerless streaming

- FCC-ee triggerless ?
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• FCC-ee at Z-pole:

• highest instantaneous luminosities 

ever achieved 

• each sub-detector must be 

capable of read-out at 50 MHz 
• physics rate ~100 kHz, large 

background rate in innermost 
layers  

• Aim is “trigger-less” design:   
software -based online selection

2.3 × 1036 cm−2 s−1 at Z-pole!

M. Koeppel

FCC-ee TDAQ challenges
2.3 × 1036 cm−2 s−1 at Z-pole!

#241 #95

https://gist.github.com/makoeppel/da731ce3afb2022a0fa32aa041d98e0c
https://indico.cern.ch/event/1439855/contributions/6461657/attachments/3046036/5382016/FCC_FSR-Vol1-EPPSU-01042025.pdf
https://indico.cern.ch/event/1439855/contributions/6461493/attachments/3045866/5381793/FCC_PED_ESPPU_DetectorEoI_Backup.pdf


• TDAQ requirements highly dependent on 
detector technology. Potential challenges: 

• TPC cannot read out every  
20 ns, hardware-based first filtering 
might be necessary 

• Noise from increasingly granular 

• Limited by single read-out ASIC data 
transmission capacity

4

FCC-ee TDAQ challenges

Rate estimates, FCC-ee Z-pole (F. Bedeschi)

#241 #95

Subdetector Untriggered
Idea vertex ~1 TB/s
Idea DCH ~500 GB/s
Idea DR Calorimeter ~10 TB/s
Idea Luminometer ~20 GB/s
Idea Muon System ~400 MB/s
Total 11.7 TB/s

1) Extreme hit rates in inner layers

2) Fine granularity, but noisy

https://indico.cern.ch/event/1307378/contributions/5727164/attachments/2791569/4869322/Bedeschi_Annecy_2024.pdf
https://indico.cern.ch/event/1439855/contributions/6461657/attachments/3046036/5382016/FCC_FSR-Vol1-EPPSU-01042025.pdf
https://indico.cern.ch/event/1439855/contributions/6461493/attachments/3045866/5381793/FCC_PED_ESPPU_DetectorEoI_Backup.pdf


• Large background from incoherent pairs creation (mostly forward, 
but substantial fraction within vertex detector acceptance)


• For vertex detector → 200 MHz/cm² for innermost layer 


• Untriggered: 24.4 Gbit/s / 2-chip module


• 2.2 Tb/s for Layer 1 (x10 less in Layer 2)


• Current MAPS technology cannot match this rate,  
all FCC-ee detector concepts foresee MAPS


• Max readout speed achievable on chip 3.2 - 6.4 Gbit/s 
(current ARCADIA)


• Trigger-less readout seems extremely challenging  
(also: can we even handle this output?)


• Need on-detector compression!

Read-out of vertex detectors
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Fig. 90: Number of IPC particles produced for each FCC-ee bunch crossing, as a function of their transverse
momentum and polar angle, for the Z (left) and tt (right) working points. The area limited by the red lines
represents the acceptance of the vertex detector.

FCC-ee programme. In the innermost layer of the IDEA vertex detector, the hit rate reaches about
70 MHz/cm2, for an average of 5 pixels per cluster, which imposes a rather stringent requirement on the
readout electronics of the order of 200 MHz/cm2 with, conservatively, a safety factor of 3. In the IDEA
drift chamber, where the pairs created by several successive bunch crossings need to be integrated during
the drift time (400 ns), the occupancy is about 7%. Incoherent pairs may also reach larger radii and their
effects have been studied for the ALLEGRO liquid Argon electromagnetic calorimeter. The first layers
of the calorimeter are the most affected, but the effect can be largely mitigated by setting a minimum
readout energy threshold of 20% of the energy released by a minimum ionising particle, resulting in an
occupancy of 0.03% in the barrel and 0.2% in the endcaps.

Radiative Bhabha (RB) scattering, e
+
e
→ → e

+
e
→! , is another important luminosity background

that may severely affect the superconducting FFQs. Radiative Bhabha events were generated with BB-
BREM [688] and GUINEAPIG, and processed by FLUKA [689–691]. Their study shows that a substantial
annual dose of power is deposited in QC1, which necessitates a tungsten shielding of approximately
2 mm around the beam pipe to protect the superconducting magnets. This shielding decreases the annual
dose power deposition peak value to about 3 MGy (a reduction by an order of magnitude) and the de-
posited power density to about 1.5 mW/cm3. These values are compatible with the design dose limit of
30 MGy for the full magnet lifetime and the quench limit of 10–20 mW/cm3 adopted at the LHC. Other
radiation sources contributing to the energy deposition in QC1, like beam-gas scattering, incoherent pair
creation or synchrotron radiation, still need to be carefully evaluated at the FFQs. They are expected,
however, to be much more benign than radiative Bhabha events. The integration of this shielding with
the design of QC1 will be performed in the next phase of the study.

The total ionisation dose (TID) and the 1 MeV neutron-equivalent (neq) fluence from the main
radiation sources in the Z-pole operational mode (i.e., RB and IPC) have been estimated in the IDEA
interaction region with FLUKA, and are displayed in Fig. 91. The peak annual dose and fluence in
the inner vertex detector are at the level of a few tens of kGy and a few 1013 cm→2, respectively, for
the innermost layers. These numbers are compatible with most of the technologies currently under
consideration for the monolithic active pixel sensors. At higher centre-of-mass energies, the TID and
fluence are expected to be smaller, given the reduced instantaneous luminosity.
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#241

See Fabrizio’s and Daniela’s talk 

https://indico.cern.ch/event/1439855/contributions/6461657/attachments/3046036/5382016/FCC_FSR-Vol1-EPPSU-01042025.pdf
https://agenda.infn.it/event/44943/contributions/265977/
https://agenda.infn.it/event/44943/contributions/265978/


• Increased granularity and acceptance:


• 130 1000 pile-up, x6 increase in peak luminosity 


• 250 TB/s for calorimetry + muon systems  
( x10 HL-LHC ATLAS/CMS). 


• O(1) PB/s of tracker data.


• Full read-out of calo/muon systems ~possible 


• Tracker readout impossible at full rate (even with 
readout technology available, radiation hardness and 
infrastructure constraints)


• To keep trigger rates at acceptable levels, offline 
algorithms must be migrated to trigger!


• Track readout+hardware trigger for outer layers 
(>20 cm)

→

FCC-hh TDAQ challenges

6Abada, A., Abbrescia, M., AbdusSalam, S.S. et al. FCC-hh: The Hadron Collider 

Trigger 
Type

Threshold at 14 TeV 
(GeV)

Threshold at 100 TeV 
(GeV)

Single 
Muon 25 78

Photon/
Electron 30 150

Jet 120 300

FCC-hh: The Hadron Collider 973
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Fig. 7.21. (a) Muon momentum resolution at ⌘ = 0. (b) Muon stand-alone momentum
resolution as a function ⌘ for di↵erent muon momenta.
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Fig. 7.22. (a) Cross-sections for key SM processes. (b) Muon trigger rates at 100TeV for
L = 5⇥ 1034 assuming the CMS Phase-I calorimeter and muon triggers.

regions, technologies planned to be used at the HL-LHC, like the sMDTs from the
ATLAS experiment with a diameter of 15mm, are suitable. An arrangement of 2⇥ 4
layers of sMDTs at a distance of 1.4 m, constructed as one mechanical object, can
provide an angular resolution of 60µm and spatial resolution of 40µm and therefore
fulfil the requirements. A total area of 1150m2 with about 250MDT chambers would
consist of 260 k tubes and would therefore be an e�cient implementation of the
muon system. The points in Figure 7.21b show a GEANT simulation of the reference
detector with such an arrangement. An additional layer of thin-gap RPCs with 1 mm
gas gap could provide 0.5 ns time resolution if needed.

7.5.4 Trigger and data acquisition

Figure 7.22a shows how the cross-sections for typical SM processes increase from
14 TeV at the LHC to 100 TeV at the FCC-hh [362]. In addition the factor 6 increase

FCC-hh Single muon rate > 1 MHz w/HL-LHC thresholds

https://link.springer.com/article/10.1140/epjst/e2019-900087-0


How do we address these?
Opportunities for novel designs

• FCC-ee in streaming trigger less mode faces significant challenges


• ~ 160 Pb/year for FCC-ee detectors


• Must reduce data directly at source, aggregate and stream to offline, while staying within tight 
material and power budgets


• Can learn from HL-LHC LHCb & ALICE, EIC ePIC how to do real time physics extraction with 
offline-like resolution, requiring real-time calibration and alignment


• FCC-hh can read out calorimeter and muon systems at full rate with tomorrows technology


• Tracker (probably) not! Will need compression/reconstruction at-source and/or track trigger for a 
PU=1,000 scenario


• Must invest in the current and upcoming experiments to develop workflows that harness 
emerging hardware technologies!
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experiment. In that study, a Convolutional Neural Network (CNN) -based autoencoder was real-
ized using automatic layout design (i.e., place and route) tools with more than half a million digital
logic gates dissipating few 100’s of mW of power and consuming significant real-estate. Area
and power metrics are critical design parameters, which define the boundaries for the design and
usable implementation of ASICs.

Figure 1. Introducing a neural processor for real-time data processing on the readout integrated circuit.

2 Signal modeling and data preparation

Ground truth training data, of which the generation process is shown in figure 2, was prepared as
sampled waveform snippets resulting from simulating the readout analog circuitry and modelling
the sensor as a 50 μm thick low-gain avalanche diode sensor. Charge pulses are simulated using a
model based on straggling functions [4] for energy loss of minimum ionizing particles traversing
a silicon sensor and generation of charge due to drift and multiplication. The charge pulses are
represented as 25-point piece-wise linear functions and converted into the s-domain. The sensor
currents and distribution of charge pulses are shown in figures 2(a) and (b). The analog processing
chain, described as a CR-RC3 filter, is characterized by the peaking time of the impulse response
chosen to be approximately two times longer than the duration of the charge pulses and is shown
in figure 2(c). The time domain response of the analog chain stimulated by the charge signals is
calculated as an inverse Laplace transform of the product of s-domain representation of the sensor
charge pulses and the transfer function of the filter. Examples of these operations are shown in
figure 2(d). The time domain response of the analog chain are recorded as waveform snippets
allowing some padding before each pulse. Then, noise is added in time domain, by generation
noise sequences, chopping their length to match the lengths of the waveform snippets and adding
both as shown in figure 2(e). Noise is generating as bandwidth limited time sequences obtained
by a superposition of individual impulse responses to a sequence of delta pulses of randomized
polarity and amplitude. A typical noise power frequency spectrum, for which the dominating
noise source is the first stage of the processing chain is modeled. The variance of the noise time
sequence is calculated and the noise process is scaled to result in the planned signal-to-noise ratio,
for example, 30 or 15. A total of about 10k waveform snippets, such as the one shown in figure 2(f),
with noise have been generated. The original values of charge magnitude and time of arrival have
been written together with each waveform snippet to allow testing of the investigated processing
methods. The subsampling, used in the later experiments, is depicted figure 2(f) by red circles.

The original simulation waveform timing window of 8 ns is sampled at the rate of ∼3 ps,
containing 3401 samples. To reflect waveform digitization in real applications, all waveforms are

– 2 –

Data readout bottleneck

8

Gbps bottleneck

Example vertex detector inner layer from before (#241 FCC-ee):  
 

32 bits pixel data in inner layer @ 200 MHz/cm2


24.4 Gbit/s
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experiment. In that study, a Convolutional Neural Network (CNN) -based autoencoder was real-
ized using automatic layout design (i.e., place and route) tools with more than half a million digital
logic gates dissipating few 100’s of mW of power and consuming significant real-estate. Area
and power metrics are critical design parameters, which define the boundaries for the design and
usable implementation of ASICs.

Figure 1. Introducing a neural processor for real-time data processing on the readout integrated circuit.

2 Signal modeling and data preparation

Ground truth training data, of which the generation process is shown in figure 2, was prepared as
sampled waveform snippets resulting from simulating the readout analog circuitry and modelling
the sensor as a 50 μm thick low-gain avalanche diode sensor. Charge pulses are simulated using a
model based on straggling functions [4] for energy loss of minimum ionizing particles traversing
a silicon sensor and generation of charge due to drift and multiplication. The charge pulses are
represented as 25-point piece-wise linear functions and converted into the s-domain. The sensor
currents and distribution of charge pulses are shown in figures 2(a) and (b). The analog processing
chain, described as a CR-RC3 filter, is characterized by the peaking time of the impulse response
chosen to be approximately two times longer than the duration of the charge pulses and is shown
in figure 2(c). The time domain response of the analog chain stimulated by the charge signals is
calculated as an inverse Laplace transform of the product of s-domain representation of the sensor
charge pulses and the transfer function of the filter. Examples of these operations are shown in
figure 2(d). The time domain response of the analog chain are recorded as waveform snippets
allowing some padding before each pulse. Then, noise is added in time domain, by generation
noise sequences, chopping their length to match the lengths of the waveform snippets and adding
both as shown in figure 2(e). Noise is generating as bandwidth limited time sequences obtained
by a superposition of individual impulse responses to a sequence of delta pulses of randomized
polarity and amplitude. A typical noise power frequency spectrum, for which the dominating
noise source is the first stage of the processing chain is modeled. The variance of the noise time
sequence is calculated and the noise process is scaled to result in the planned signal-to-noise ratio,
for example, 30 or 15. A total of about 10k waveform snippets, such as the one shown in figure 2(f),
with noise have been generated. The original values of charge magnitude and time of arrival have
been written together with each waveform snippet to allow testing of the investigated processing
methods. The subsampling, used in the later experiments, is depicted figure 2(f) by red circles.

The original simulation waveform timing window of 8 ns is sampled at the rate of ∼3 ps,
containing 3401 samples. To reflect waveform digitization in real applications, all waveforms are

– 2 –

Two options:

9
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experiment. In that study, a Convolutional Neural Network (CNN) -based autoencoder was real-
ized using automatic layout design (i.e., place and route) tools with more than half a million digital
logic gates dissipating few 100’s of mW of power and consuming significant real-estate. Area
and power metrics are critical design parameters, which define the boundaries for the design and
usable implementation of ASICs.

Figure 1. Introducing a neural processor for real-time data processing on the readout integrated circuit.

2 Signal modeling and data preparation

Ground truth training data, of which the generation process is shown in figure 2, was prepared as
sampled waveform snippets resulting from simulating the readout analog circuitry and modelling
the sensor as a 50 μm thick low-gain avalanche diode sensor. Charge pulses are simulated using a
model based on straggling functions [4] for energy loss of minimum ionizing particles traversing
a silicon sensor and generation of charge due to drift and multiplication. The charge pulses are
represented as 25-point piece-wise linear functions and converted into the s-domain. The sensor
currents and distribution of charge pulses are shown in figures 2(a) and (b). The analog processing
chain, described as a CR-RC3 filter, is characterized by the peaking time of the impulse response
chosen to be approximately two times longer than the duration of the charge pulses and is shown
in figure 2(c). The time domain response of the analog chain stimulated by the charge signals is
calculated as an inverse Laplace transform of the product of s-domain representation of the sensor
charge pulses and the transfer function of the filter. Examples of these operations are shown in
figure 2(d). The time domain response of the analog chain are recorded as waveform snippets
allowing some padding before each pulse. Then, noise is added in time domain, by generation
noise sequences, chopping their length to match the lengths of the waveform snippets and adding
both as shown in figure 2(e). Noise is generating as bandwidth limited time sequences obtained
by a superposition of individual impulse responses to a sequence of delta pulses of randomized
polarity and amplitude. A typical noise power frequency spectrum, for which the dominating
noise source is the first stage of the processing chain is modeled. The variance of the noise time
sequence is calculated and the noise process is scaled to result in the planned signal-to-noise ratio,
for example, 30 or 15. A total of about 10k waveform snippets, such as the one shown in figure 2(f),
with noise have been generated. The original values of charge magnitude and time of arrival have
been written together with each waveform snippet to allow testing of the investigated processing
methods. The subsampling, used in the later experiments, is depicted figure 2(f) by red circles.

The original simulation waveform timing window of 8 ns is sampled at the rate of ∼3 ps,
containing 3401 samples. To reflect waveform digitization in real applications, all waveforms are
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ML on specialised hardware 
(ASICs, FPGAs) could help us 
address our data processing 
challenges 

HEP tasks not well-represented 
by industry-driven tools 

Have developed our own tools!

O(100) TB/s

O(1) μs

Fast Machine Learning for HEP



 

HEP Tools and Communities

Model 
(quantized/pruned)

Co-processing kernel  
(Xilinx accelerators/SoCs) 

FPGA custom designs 
 (eg trigger algorithms) 

ASICs 

HEP quantization libraries:

Q

Q ERAS

ML inference at low latency

12

HGQ

HEP hardware ML libraries:
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2024
ATLAS Experiment:

• BDT selecting candidate 𝛕 

lepton events in <100 ns


L1CaloTriggerPublicResults 

CMS Experiment:

• Anomaly detection in 50 ns

• 300 events/second


CMS DP2023_079

2024:  Neural  hardware tr iggers  
making decis ions in LHC exper iments!

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/L1CaloTriggerPublicResults#ATLAS_Level_1_calorimeter_eFEX_t
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/L1CaloTriggerPublicResults#ATLAS_Level_1_calorimeter_eFEX_t
https://cds.cern.ch/record/2876546/files/DP2023_079.pdf
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2024
ATLAS Experiment:

• BDT selecting candidate 𝛕 

lepton events in <100 ns


L1CaloTriggerPublicResults 

CMS Experiment:

• Anomaly detection in 50 ns

• 300 events/second


CMS DP2023_079

2024:  Neural  hardware tr iggers  
making decis ions in LHC exper iments!

2031: ~20 billion inferences/s during HL-LHC

266 Chapter 5. Conceptual design of the Phase-2 L1 Trigger

a global processing step which merges or sums the regional outputs. Given the rather simple
calorimeter-only object reconstruction algorithms and the available processing power to per-
form them, the performance achieved is not directly impacted by this choice. For example,
the GCT design remains completely convertible to a fully time-multiplexed approach where
all the data from barrel and endcap can be processed by the same board while offering a more
adaptive interface to the track finder, should future requirement changes result in preferring
it. In the case of the GMT, the choice to align the TMUX period with that of the track finder is
motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 trigger design. The calorimeter trigger is repre-
sented on the left and composed of a barrel calorimeter trigger (BCT) and a global calorimeter
trigger (GCT). The track finder in the center transmits tracking information to the correlator
trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT). The muon trig-
ger architecture is represented on the right and composed of three muon track finders: EMTF,
OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable

Trigger 
accept/reject

5 µs

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/L1CaloTriggerPublicResults#ATLAS_Level_1_calorimeter_eFEX_t
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/L1CaloTriggerPublicResults#ATLAS_Level_1_calorimeter_eFEX_t
https://cds.cern.ch/record/2876546/files/DP2023_079.pdf


• highly granular detectors, background  high data transfer rate


• limited by available bandwidth of electrical and optical links


• 2 solutions: frontend reduction or higher capacity transfer

→

Frontend reduction

15

C. HerwigMay 19, 2025

A typical readout chain
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experiment. In that study, a Convolutional Neural Network (CNN) -based autoencoder was real-
ized using automatic layout design (i.e., place and route) tools with more than half a million digital
logic gates dissipating few 100’s of mW of power and consuming significant real-estate. Area
and power metrics are critical design parameters, which define the boundaries for the design and
usable implementation of ASICs.

Figure 1. Introducing a neural processor for real-time data processing on the readout integrated circuit.

2 Signal modeling and data preparation

Ground truth training data, of which the generation process is shown in figure 2, was prepared as
sampled waveform snippets resulting from simulating the readout analog circuitry and modelling
the sensor as a 50 μm thick low-gain avalanche diode sensor. Charge pulses are simulated using a
model based on straggling functions [4] for energy loss of minimum ionizing particles traversing
a silicon sensor and generation of charge due to drift and multiplication. The charge pulses are
represented as 25-point piece-wise linear functions and converted into the s-domain. The sensor
currents and distribution of charge pulses are shown in figures 2(a) and (b). The analog processing
chain, described as a CR-RC3 filter, is characterized by the peaking time of the impulse response
chosen to be approximately two times longer than the duration of the charge pulses and is shown
in figure 2(c). The time domain response of the analog chain stimulated by the charge signals is
calculated as an inverse Laplace transform of the product of s-domain representation of the sensor
charge pulses and the transfer function of the filter. Examples of these operations are shown in
figure 2(d). The time domain response of the analog chain are recorded as waveform snippets
allowing some padding before each pulse. Then, noise is added in time domain, by generation
noise sequences, chopping their length to match the lengths of the waveform snippets and adding
both as shown in figure 2(e). Noise is generating as bandwidth limited time sequences obtained
by a superposition of individual impulse responses to a sequence of delta pulses of randomized
polarity and amplitude. A typical noise power frequency spectrum, for which the dominating
noise source is the first stage of the processing chain is modeled. The variance of the noise time
sequence is calculated and the noise process is scaled to result in the planned signal-to-noise ratio,
for example, 30 or 15. A total of about 10k waveform snippets, such as the one shown in figure 2(f),
with noise have been generated. The original values of charge magnitude and time of arrival have
been written together with each waveform snippet to allow testing of the investigated processing
methods. The subsampling, used in the later experiments, is depicted figure 2(f) by red circles.

The original simulation waveform timing window of 8 ns is sampled at the rate of ∼3 ps,
containing 3401 samples. To reflect waveform digitization in real applications, all waveforms are
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Up to multi-GHz Gbps ‘bottleneck’

For complex sensor data, limited output bandwidth implies

1. Compromise on the data ‘quality’ or transmission rate (ext trigger), 

A modest 
example:

1002 array of 
10b pixel data 
@MHz readout

100 Gbps

Adapted from JINST 17 C01039

On-device 
data 

reduction



https://fastmachinelearning.org/smart-pixels/

• Reduce silicon data via in-pixel intelligence


• frontend filtering: discard low-pT track 
data (< 2 GeV)


• feature extraction: Extract particle 
position and angle in pixel front-end 
ASICs from charge in single pixel layer


• Bandwidth savings of 57-75%! 

Smart Pixels

16

ESPPU26 #11 #95 #247 #233 #93 #211 #272

C. HerwigMay 19, 2025

In-pixel data filtering

19

A core HL-LHC motivation is (di-)Higgs production. Main decay: h→bb.
• Pixel tracker critical to identify B decays with O(mm) displacements.

4

40 
MHz

credit: J. Dickinson 

SmartPixels concept could (e.g.) upgrade 
inner CMS layers for 50x readout rate.

Demonstrator: 50 x 12.5 x 100 μm pixels
Consider size, shape, + time structures to 
remove sub-2 GeV track data (95% hits).

QKeras  +

http://www.apple.com/uk
https://nips.cc/media/PosterPDFs/NeurIPS%202023/76175.png
https://iopscience.iop.org/article/10.1088/2632-2153/ad6a00/pdf
https://indico.cern.ch/event/1439855/contributions/6461413/attachments/3045779/5381683/Fermilab-EOI-HF-FCC-March2025.pdf
https://indico.cern.ch/event/1439855/contributions/6461493/attachments/3045866/5381793/FCC_PED_ESPPU_DetectorEoI_Backup.pdf
https://indico.cern.ch/event/1439855/contributions/6461658/attachments/3046037/5382018/#247_FCC_FinalReport_Vol2-02042025-EPPSU-FCChh.pdf
https://indico.cern.ch/event/1439855/contributions/6461636/attachments/3046014/5381987/#233_FCC_FinalReport_Vol2-02042025-EPPSU-FCCee.pdf
https://indico.cern.ch/event/1439855/contributions/6461497/attachments/3045870/5381798/EPPSU_Instrumentation_CPAD.pdf
https://indico.cern.ch/event/1439855/contributions/6461614/attachments/3045992/5381959/ALLEGRO_Full_Detector_Concept_EoI-ESU-Mar27-2025.pdf
https://indico.cern.ch/event/1439855/contributions/6461662/attachments/3046042/5382026/European_Strategy_Input_2024-3.pdf


Reconfigurable logic in ASIC design
The Embedded FPGA framework

• Pathway to implementing ML "at source”


• Fully reconfigurable logic on detector frontend


• Open source (FABulous, OpenFPGA)


• potential to apply to variety of subsystems/
fields (SuperKEKB, FCC-ee, DUNE, free-
electron lasers)
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Figure 7. Block diagram of the 28nm CMOS ASIC design.

Figure 8. (Left) Photograph of the KCU105 development board with the custom FMC ASIC carrier with
ASIC wire bonded to it. (Right) Zoomed in photograph of the 28nm CMOS ASIC (1mm x 1mm).

4.3 Fabrication

The submission of this ASIC design to the TSMC 28nm MPW was completed in July 2023, and the
design was received in January 2024. Although the custom PCB carrier for the 28nm ASIC di!ers
from that of the 130nm ASIC, the majority of the firmware and software was adapted from the
previous project with minor modifications to incorporate streaming PGPv4 support, utilizing the
same KCU105 development board. A photograph showing the 28nm CMOS ASIC wire-bonded
to a custom PCB carrier, and the ASIC on the FMC card alongside the KCU105, can be seen in
Figure 8. The dimensions of the custom PCB carrier are 6.90 cm x 7.65 cm.

– 8 –

28nm CMOS ASIC (1x1mm)

Gonski et. Al 

https://indico.cern.ch/event/1439855/contributions/6461493/attachments/3045866/5381793/FCC_PED_ESPPU_DetectorEoI_Backup.pdf
https://arxiv.org/pdf/2404.17701


ML compression: Calorimeter data concentrator

18

ASIC compression with autoencoders

#11

Transmit encoded data!

Encoded data

Encoder architecture

4

Encoded data

Encoder architecture

4

On ASIC On FPGA

Di Guglielmo et Al, IEEE TNS 68.8 (2021)

10,000 ECONs with ML inside going live in HL-LHC

https://indico.cern.ch/event/1439855/contributions/6461413/attachments/3045779/5381683/Fermilab-EOI-HF-FCC-March2025.pdf
https://par.nsf.gov/biblio/10291444-reconfigurable-neural-network-asic-detector-front-end-data-compression-hl-lhc


• 2 solutions: frontend reduction or higher capacity transfer

Data transfer bottlenecks
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C. HerwigMay 19, 2025

A typical readout chain
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experiment. In that study, a Convolutional Neural Network (CNN) -based autoencoder was real-
ized using automatic layout design (i.e., place and route) tools with more than half a million digital
logic gates dissipating few 100’s of mW of power and consuming significant real-estate. Area
and power metrics are critical design parameters, which define the boundaries for the design and
usable implementation of ASICs.

Figure 1. Introducing a neural processor for real-time data processing on the readout integrated circuit.

2 Signal modeling and data preparation

Ground truth training data, of which the generation process is shown in figure 2, was prepared as
sampled waveform snippets resulting from simulating the readout analog circuitry and modelling
the sensor as a 50 μm thick low-gain avalanche diode sensor. Charge pulses are simulated using a
model based on straggling functions [4] for energy loss of minimum ionizing particles traversing
a silicon sensor and generation of charge due to drift and multiplication. The charge pulses are
represented as 25-point piece-wise linear functions and converted into the s-domain. The sensor
currents and distribution of charge pulses are shown in figures 2(a) and (b). The analog processing
chain, described as a CR-RC3 filter, is characterized by the peaking time of the impulse response
chosen to be approximately two times longer than the duration of the charge pulses and is shown
in figure 2(c). The time domain response of the analog chain stimulated by the charge signals is
calculated as an inverse Laplace transform of the product of s-domain representation of the sensor
charge pulses and the transfer function of the filter. Examples of these operations are shown in
figure 2(d). The time domain response of the analog chain are recorded as waveform snippets
allowing some padding before each pulse. Then, noise is added in time domain, by generation
noise sequences, chopping their length to match the lengths of the waveform snippets and adding
both as shown in figure 2(e). Noise is generating as bandwidth limited time sequences obtained
by a superposition of individual impulse responses to a sequence of delta pulses of randomized
polarity and amplitude. A typical noise power frequency spectrum, for which the dominating
noise source is the first stage of the processing chain is modeled. The variance of the noise time
sequence is calculated and the noise process is scaled to result in the planned signal-to-noise ratio,
for example, 30 or 15. A total of about 10k waveform snippets, such as the one shown in figure 2(f),
with noise have been generated. The original values of charge magnitude and time of arrival have
been written together with each waveform snippet to allow testing of the investigated processing
methods. The subsampling, used in the later experiments, is depicted figure 2(f) by red circles.

The original simulation waveform timing window of 8 ns is sampled at the rate of ∼3 ps,
containing 3401 samples. To reflect waveform digitization in real applications, all waveforms are
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Up to multi-GHz Gbps ‘bottleneck’

For complex sensor data, limited output bandwidth implies

1. Compromise on the data ‘quality’ or transmission rate (ext trigger), 

A modest 
example:

1002 array of 
10b pixel data 
@MHz readout

100 Gbps

Adapted from JINST 17 C01039

Higher 
capacity 
transfer



Wireless data transmission 
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Wireless Allowing Data And Power Transmission (DRD-7.1c)

 10 

Layer A

Layer C

Layer B

Outer enclosure

~10 cm

 
Figure 4: Proposal of a radial readout for the tracker detector of the ATLAS experiment 
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Figure 5: Block diagram of the transceiver. The transmitter is shown at the top and the 
receiver at the bottom. 

 
The first prototype is designed to handle a data rate of 4.5 Gbps over a link distance of 
1 m. Estimated power consumption for a first full prototype readout is less than 240 
mW. The chosen technology must be able to fulfil requirements such as noise and 
linearity, radiation hardness, and at the same time have a high production yield at a 
reasonable cost. The 130 nm SiGe Bi-CMOS HBT 8HP technology has been chosen 
for the first prototype. Radiation hardness at increased radiation level as expected for 
the ATLAS upgrade, for instance, needs to be tested, and some radiation hard layout 
for such conditions may be necessary. 
The for the first prototype chosen On-Off Keying (OOK) modulation has the benefit 
of simplicity but the drawback of low spectral efficiency (0.5 bps/Hz) and high noise 
sensitivity. More advanced modulation and transmission techniques like OFDM and 
MIMO could be investigated. For example, the spectral efficiency of 802.11ad 
wireless standard is about 3 bps/Hz for the highest modulation (OFDM 64QAM 
13/16). The throughput at the hardware layer would be increased by a factor six. In 
addition, the use of antenna diversity or MIMO techniques could also enhance the link 
reliability. These techniques are commonly used in wireless communication to 

• Increase Gbps w/o increasing material


• Send single signal to several receivers, 
saves cabling


• Cost reduction, simplified installation/
repair, reduction in dead material


• Especially important for future 
tracking detectors


Few Gbps possible with 802.11ac/ad WiFi!

Reducing material budget for detector readout

https://indico.cern.ch/event/1439855/contributions/6461493/attachments/3045866/5381793/FCC_PED_ESPPU_DetectorEoI_Backup.pdf
https://indico.cern.ch/event/1439855/contributions/6461658/attachments/3046037/5382018/#247_FCC_FinalReport_Vol2-02042025-EPPSU-FCChh.pdf
https://indico.cern.ch/event/1439855/contributions/6461636/attachments/3046014/5381987/#233_FCC_FinalReport_Vol2-02042025-EPPSU-FCCee.pdf
https://indico.cern.ch/event/1439855/contributions/6461497/attachments/3045870/5381798/EPPSU_Instrumentation_CPAD.pdf
https://indico.cern.ch/event/1439855/contributions/6461614/attachments/3045992/5381959/ALLEGRO_Full_Detector_Concept_EoI-ESU-Mar27-2025.pdf
https://indico.cern.ch/event/1439855/contributions/6461662/attachments/3046042/5382026/European_Strategy_Input_2024-3.pdf
https://arxiv.org/abs/1511.05807
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ized using automatic layout design (i.e., place and route) tools with more than half a million digital
logic gates dissipating few 100’s of mW of power and consuming significant real-estate. Area
and power metrics are critical design parameters, which define the boundaries for the design and
usable implementation of ASICs.

Figure 1. Introducing a neural processor for real-time data processing on the readout integrated circuit.

2 Signal modeling and data preparation

Ground truth training data, of which the generation process is shown in figure 2, was prepared as
sampled waveform snippets resulting from simulating the readout analog circuitry and modelling
the sensor as a 50 μm thick low-gain avalanche diode sensor. Charge pulses are simulated using a
model based on straggling functions [4] for energy loss of minimum ionizing particles traversing
a silicon sensor and generation of charge due to drift and multiplication. The charge pulses are
represented as 25-point piece-wise linear functions and converted into the s-domain. The sensor
currents and distribution of charge pulses are shown in figures 2(a) and (b). The analog processing
chain, described as a CR-RC3 filter, is characterized by the peaking time of the impulse response
chosen to be approximately two times longer than the duration of the charge pulses and is shown
in figure 2(c). The time domain response of the analog chain stimulated by the charge signals is
calculated as an inverse Laplace transform of the product of s-domain representation of the sensor
charge pulses and the transfer function of the filter. Examples of these operations are shown in
figure 2(d). The time domain response of the analog chain are recorded as waveform snippets
allowing some padding before each pulse. Then, noise is added in time domain, by generation
noise sequences, chopping their length to match the lengths of the waveform snippets and adding
both as shown in figure 2(e). Noise is generating as bandwidth limited time sequences obtained
by a superposition of individual impulse responses to a sequence of delta pulses of randomized
polarity and amplitude. A typical noise power frequency spectrum, for which the dominating
noise source is the first stage of the processing chain is modeled. The variance of the noise time
sequence is calculated and the noise process is scaled to result in the planned signal-to-noise ratio,
for example, 30 or 15. A total of about 10k waveform snippets, such as the one shown in figure 2(f),
with noise have been generated. The original values of charge magnitude and time of arrival have
been written together with each waveform snippet to allow testing of the investigated processing
methods. The subsampling, used in the later experiments, is depicted figure 2(f) by red circles.

The original simulation waveform timing window of 8 ns is sampled at the rate of ∼3 ps,
containing 3401 samples. To reflect waveform digitization in real applications, all waveforms are
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• HL-LHC CMS will read out tracks with pT>2 GeV and run L1 track reconstruction


• reduce rate by x10 by filtering low momentum hits


• Offline like reconstruction: track seeding, building and Kalman Filter to identify 
final track candidates and determine track parameters


• Track quality with BDT implemented with 
 
 
 
 
 
 

• ….. in 3.4 μs!

Real-time tracking

22

C. Brown, Vertex2023 

CMS Level-1 Track Finder for the Phase-2 Upgrade Christopher Brown

Figure 2: The tracklet stage of track reconstruction. Step 1 shows the initial seeding stubs and their tracklet.
Step 2 shows the projection of this tracklet’s parameters out to the other layers. Step 3 shows the selection of
stubs (now highlighted green) based on their position in the window. Step 4 shows the final track for sending
to the KF.

The second step of the algorithm (step 2 in Fig. 2) is to project track candidates both outwards
and inwards from the tracklet with a beam spot constraint (𝐿, 𝑀 = 0) to form a search window in
each layer.

Step 3 adds stubs to the track candidate and in cases with multiple matches takes the stub with
the smallest residual. This process adds a minimum of four stubs but a maximum of six stubs. At
this stage any track candidates with shared stubs are merged to avoid additional processing for the
KF and to reduce the duplication rate of the algorithm.

Step 4 sees the final track candidate with its associated stubs being passed downstream to the KF
after some reparameterisation.

3.1.1 Firmware Implementation

The tracklet algorithm is implemented in Vivado HLS due to the flexibility of using the C++
interface to develop the firmware. The algorithm is split into 16 alternating processing and memory
modules which allows tracks from multiple events to be processed simultaneously with di!erent
events being processed at di!erent stages of the chain at any given moment. Individual processing
modules are duplicated so that track candidates can be processed in parallel, for example, all eight
stub seeding pairs are processed simultaneously and while this does create duplicates due to the
overlap between certain stub seeding combinations it ensures no loss of tracks due to truncation.

In order to reduce the overall latency and resource usage of the tracklet firmware some modules
are combined allowing 450 ns to be saved for every merged module as one fewer intermediate
memory is implemented. This also reduces the number of BRAMs needed by the algorithm.

3.2 Kalman Filter Track Fit

The Kalman Filter receives the track candidates to form a KF state and covariance matrix.
Associated stubs are also sent and used to iteratively update the KF state. There are two steps to the
KF; the prediction step and the filter step. The prediction step multiplies the state and covariance
matrix by a state transition matrix to produce an estimate of the track parameters in the next layer.
The filter step then uses the stub information to update the state and reduces the errors of the state
in the covariance matrix so that the next step update will be a better estimate of the track parameters
in the next layer. From the covariance matrix goodness-of-fit 𝑁2 values in the 𝑂—𝑃 and 𝑂—𝑄 planes
can be derived. An advantage of the KF is that if these 𝑁

2 values become too large a track can be

4

https://cds.cern.ch/record/2883047/files/CR2023_286.pdf?version=1


Hardware jet building and flavour tagging

23

HL-LHC CMS will run with  
FPGA track finding, particle flow, jet clustering and flavour tagging in < 12 μs  

Object tagging for Phase-2 CMS  

https://twiki.cern.ch/twiki/bin/view/CMSPublic/L1TNGJetDPSNote2025
https://twiki.cern.ch/twiki/bin/view/CMSPublic/L1TNGJetDPSNote2025


Real-time track triggers
BELLE-II

24

arxiv:411.13596 

(a) Example event display in the x → y-plane. Filled
colored circular markers show signal hits, filled gray
triangular markers show background hits (see Fig. 1
for details). Markers with colored outlines are found
by the GNN to belong to the same track object. The
GNN predictions (colored lines) are drawn using the
predicted starting point and three momentum for the
predicted particle charge, and the corresponding con-
densation point is marked by a colored cross.

(b) Cluster space representation (top) in 3D with con-
densation points marked by a cross, and (bottom)
2D projections. The colors are identical to those in
Fig. 4a.

Fig. 4: (Fig. 4a) Event display and (Fig. 4b)
cluster space representation of one example event
from category 11 (Tab. 1) for high data beam back-

grounds.

(a) Category 2.

(b) K0
S ↑ ω+ω→ (barrel).

Fig. 5: Combined track finding and fitting
charge e!ciency as function of purity for the
CAT Finder , and the respective value for the
Baseline Finder for (a) category 2 and (b) K0

S →
ω+ω→ for high data beam backgrounds. See text for
details.

14

•Belle-2 uses neural track hardware 
trigger for reconstruction of vertex, 
and azimuthal and polar angles of  
single particle track


•ML for GNN-based offline tracking


•Work ongoing on bringing this to the 
hardware trigger

#205

https://arxiv.org/pdf/2411.13596
https://indico.cern.ch/event/1439855/contributions/6461621/attachments/3045999/5381969/Belle_II_Input_ESPP_2025.pdf


• Run 3 event selection entirely in software, heterogeneous platform

• FPGA-based DAQ cards (low-level bit manipulations)

• high-speed dedicated network cards (memory ops for transfer)

• GPUs for data processing (large-scale parallel problems)


• Lessons learned in Run3:

• Expertise in Low-level network simulations 

• Architecture that supports fast adaptation to emerging tech


• Full read-out, track reconstruction and lepton PID at 30 MHz


• Run-4 R&D: 

• Early track reconstruction on FPGA boards (RETINA)

• Investigating emerging processors as GPU alternative (ALLEN)

Trigger-less design: LHCb Run-3
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Fig. 3: In the GPU-enhanced proposal for the upgraded
LHCb data acquisition system x86 event building units
receive data from the subdetectors and build events by
sending and receiving event fragments over a 100G In-
finiband (IB) network. The same x86 servers also host
GPUs which process HLT1. Only events selected by
HLT1 are sent to the x86 servers processing HLT2. The
data rate between the two x86 server farms is therefore
reduced by a factor 30 - 60.

The project is implemented in CUDA, Nvidia’s API
for programming its GPUs [14]. Allen1 includes a cus-
tom scheduler and GPU memory manager, which will
be described in a companion publication.

2.3 Main algorithms of the first trigger stage

A schematic of the upgraded LHCb forward spectrome-
ter is shown in Fig 4. The information from the tracking
detectors and the muon system is required for HLT1 de-
cisions, as described in section 1. The tracking system
consists of the vertex detector (Velo) [15] and the up-
stream tracker (UT) [16] before the magnet and track-
ing stations behind the magnet which are made of scin-
tillating fibres (SciFi) [16]. The measurements from the
muon detector are used to perform muon identification.
The LHCb coordinate system is such that z is along the
beamline, y vertical and x horizonal. The dipole mag-
net bends charged particle trajectories along x. Fig 4

1 https://gitlab.cern.ch/lhcb/Allen Version 0.8 was used
for the results in this publication.

indicates the magnitude of the y-component of the mag-
netic field, which extends into the UT and SciFi re-
gions. As a consequence, tracks in the Velo detector
form straight lines, while those in the UT and SciFi
detectors are slightly bent.

The following recurrent tasks are performed at var-
ious stages of the HLT1 sequence:

– Decoding the raw input into coordinates in the
LHCb global coordinate system.

– Clustering of measurements caused by the passage
of the same particle into single coordinates (“hits”),
depending on the detector type.

– Finding combinations of hits originating from the
same particle trajectory (pattern recognition).

– Describing the track candidates from the pattern
recognition step with a track model (track fitting).

– Reconstructing primary and secondary vertices
from the fitted tracks (vertex finding).

Fig 5 shows the full HLT1 sequence. In most cases,
a single event is assigned to one block, while intra-event
parallelism is mapped to the threads within one block.
This ensures that communication is possible among
threads processing the same event. Typically, the raw
input is segmented by readout unit (for example a mod-
ule of the vertex detector), so naturally the decoding
can be parallelized among the readout units. During
the pattern recognition step, many combinations of hits
are tested and those are processed in parallel. The track
fit is applied to every track and therefore parallelizable
across tracks. Similarly, extrapolating tracks from one
subdetector to the next is executed in parallel for all
tracks. Finally, combinations of tracks are built when
finding vertices and those can be treated in parallel.

Initially, events are preselected by a Global Event
Cut (GEC) based on the size of the UT and SciFi raw
data, removing the 10 % busiest events. This selec-
tion is not essential for the viability of the proposed
GPU architecture. It is also performed in the base-
line x86 processing [7], because very busy events have
a less e�cient detector reconstruction and their addi-
tional physics value to LHCb is not proportionate to
the computing cost of reconstructing them. The subse-
quent elements of the HLT1 sequence are now described
in turn.

2.3.1 Velo detector

The Velo detector consists of 26 planes of silicon pixel
sensors placed around the interaction region. Its main
purpose lies in reconstructing the pp collisions (pri-
mary vertices or PVs) and in creating seed tracks to

Aaij, R., Albrecht, J., Belous, M. et al. Allen: A High-Level Trigger on GPUs for LHCb.  

https://indico.cern.ch/event/1439855/contributions/6461535/
https://indico.cern.ch/event/1439855/contributions/6461531/attachments/3045904/5381846/ESPPU_Technology_development-V6.pdf
https://link.springer.com/article/10.1007/s41781-020-00039-7


• ALICE, CMS & LHCb deploy heterogeneous 
software triggers with CPU and GPU 
architectures since LHC-Run 3 

• independently developed software 
frameworks, integrated with experiment 
software


• Collaboration crucial to share common tools 
and experience with emerging processors

Heterogeneous TDAQ architecture

26

ESPPU26 #127 #148 #64

4 R. Aaij* et al.

pp collisions

O(1000) x86 servers

HLT2

storage

HLT1

event buildingO(250) 
x86 servers

buffer on disk
calibration and alignment

O(500)
GPUs

40 Tbit/s

1-2 Tbit/s

80 Gbit/s

Fig. 3: In the GPU-enhanced proposal for the upgraded
LHCb data acquisition system x86 event building units
receive data from the subdetectors and build events by
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GPUs which process HLT1. Only events selected by
HLT1 are sent to the x86 servers processing HLT2. The
data rate between the two x86 server farms is therefore
reduced by a factor 30 - 60.

The project is implemented in CUDA, Nvidia’s API
for programming its GPUs [14]. Allen1 includes a cus-
tom scheduler and GPU memory manager, which will
be described in a companion publication.

2.3 Main algorithms of the first trigger stage

A schematic of the upgraded LHCb forward spectrome-
ter is shown in Fig 4. The information from the tracking
detectors and the muon system is required for HLT1 de-
cisions, as described in section 1. The tracking system
consists of the vertex detector (Velo) [15] and the up-
stream tracker (UT) [16] before the magnet and track-
ing stations behind the magnet which are made of scin-
tillating fibres (SciFi) [16]. The measurements from the
muon detector are used to perform muon identification.
The LHCb coordinate system is such that z is along the
beamline, y vertical and x horizonal. The dipole mag-
net bends charged particle trajectories along x. Fig 4

1 https://gitlab.cern.ch/lhcb/Allen Version 0.8 was used
for the results in this publication.

indicates the magnitude of the y-component of the mag-
netic field, which extends into the UT and SciFi re-
gions. As a consequence, tracks in the Velo detector
form straight lines, while those in the UT and SciFi
detectors are slightly bent.

The following recurrent tasks are performed at var-
ious stages of the HLT1 sequence:

– Decoding the raw input into coordinates in the
LHCb global coordinate system.

– Clustering of measurements caused by the passage
of the same particle into single coordinates (“hits”),
depending on the detector type.

– Finding combinations of hits originating from the
same particle trajectory (pattern recognition).

– Describing the track candidates from the pattern
recognition step with a track model (track fitting).

– Reconstructing primary and secondary vertices
from the fitted tracks (vertex finding).

Fig 5 shows the full HLT1 sequence. In most cases,
a single event is assigned to one block, while intra-event
parallelism is mapped to the threads within one block.
This ensures that communication is possible among
threads processing the same event. Typically, the raw
input is segmented by readout unit (for example a mod-
ule of the vertex detector), so naturally the decoding
can be parallelized among the readout units. During
the pattern recognition step, many combinations of hits
are tested and those are processed in parallel. The track
fit is applied to every track and therefore parallelizable
across tracks. Similarly, extrapolating tracks from one
subdetector to the next is executed in parallel for all
tracks. Finally, combinations of tracks are built when
finding vertices and those can be treated in parallel.

Initially, events are preselected by a Global Event
Cut (GEC) based on the size of the UT and SciFi raw
data, removing the 10 % busiest events. This selec-
tion is not essential for the viability of the proposed
GPU architecture. It is also performed in the base-
line x86 processing [7], because very busy events have
a less e�cient detector reconstruction and their addi-
tional physics value to LHCb is not proportionate to
the computing cost of reconstructing them. The subse-
quent elements of the HLT1 sequence are now described
in turn.

2.3.1 Velo detector

The Velo detector consists of 26 planes of silicon pixel
sensors placed around the interaction region. Its main
purpose lies in reconstructing the pp collisions (pri-
mary vertices or PVs) and in creating seed tracks to

LHCb CMS

ALICE

https://indico.cern.ch/event/1439855/contributions/6461535/
https://indico.cern.ch/event/1439855/contributions/6461531/attachments/3045904/5381846/ESPPU_Technology_development-V6.pdf
https://indico.cern.ch/event/1439855/contributions/6461468/


Reaching the FCC-ee precision needs
Real-time alignment & calibration

ESPPU26 #127 #17 

LHCb’s real-time alignment & calibration

system deployed in 2018

CMS automated alignment calibration

deployed since 2022

https://cds.cern.ch/record/2879304/files/CR2023_225.pdf

https://iopscience.iop.org/article/10.1088/1748-0221/14/04/P04013

• High quality alignment & calibration crucial to minimise 
systematic uncertainties at future colliders and experiments


• Will need to cope with 


• high channel counts


• timing-based reconstruction for 4D alignment


• test case in ePIC and LHCb Run5


• Need fast calibration (limited buffering)


• heterogeneous software frameworks developed for HLTs 
and advanced distributed computing techniques

https://indico.cern.ch/event/1439855/contributions/6461535/
https://indico.cern.ch/event/1439855/contributions/6461416/attachments/3045781/5381686/EPPSU_2025_ePIC_Detector_20250322_submission.pdf


WP7.1: Data density and power efficiency

WP7.2: Intelligence on the detector

WP7.3: 4D and 5D techniques

WP7.4: Extreme environments

WP7.5: Backend systems and COTS components

WP7.6: Complex imaging ASICs and technologies

WG7.7: Tools and Technologies 

Extend to include:

•Real-time inference on specialized hardware. 
•Heterogeneous real-time software tools 
in close collaboration with the Fast Machine Learning 
Foundation , CERN NGT and EuCAIF AI-RDs

28

DRD7: R&D Collaboration on Electronics and On-Detector Processing

https://fastmachinelearning.org/
https://fastmachinelearning.org/
https://nextgentriggers.web.cern.ch/
https://eucaif.org/


AI R&D collaborations
EuCAIF proposal for scalable, robust AI through cross-domain collaboration 

• AI for Data Processing: Front-end electronics, trigger

• AI for Detector and Accelerator Control: Accelerator performance, 
calibration, system monitoring.

• AI for Detector Optimization: Differentiable programming, 
reinforcement learning to maximize detector performance 

• AI for Event Reconstruction: Tracking, calorimetry, end-to-end 
foundation models.
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https://indico.cern.ch/event/1439855/contributions/6461566/attachments/3045939/5381892/AI_DRD_initiativepaper.pdf


• Exciting challenges ahead to make sure TDAQ is not the precision bottleneck


• read-out of increasingly granular detectors within tight material, power budgets 


• high fidelity on-detector compression for high-precision triggers or to reduce 
steaming data load for processing and storage 


• AI/ML tools are essential to meeting these challenges


• Must develop and maintain versatile heterogeneous frameworks and platforms


• Cross-experiment organisational support for frontend/backend ML developments 
represented in DRD collaborations/AI-RDs

Conclusion
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