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HEP physics drivers

“Higgs Factories” (in particular FCC-ee) among the main drivers for
current calorimeter development
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HEP physics drivers )

“Higgs Factories” (in particular FCC-ee) among the main drivers for
current calorimeter development J distance (cm) at 2 m

Entnesh gd_'?m-

Mean 6.706
RMS 4448

A~y @ 2m

e*e HZ physics constraints oo -
H— yy = ECAL resolution :
As good as possible — at least 20%/VE + 1%

For HF physics 3%/E is required Bl

High granularity / Pre-shower is needed Z —Ttr™
for ° identifications ™ = ptv =t
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SD-calorimeter paradigm )

4 4

High Energy Resolution High granularity Fast timing information
* Reduce fluctuations by * mechanical * fast detector
construction integration * fast electronics
* Improved by algorithm * cooling for embedded * larger data size
(e.g. Particle Flow electronics
approach) and Machine * increased number of

Learning approach channels
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DRD6 — DRD on Calorimetry Eurceeel

* Addressing three main categories of Calorimeters
* Sandwich calorimeters with fully embedded electronics
* Liquified Noble Gas calorimeter
* Optical calorimeters

* Addressing transversal needs

* Electronics

* Software

* Mechanics and cooling =
Photodetectors (no development) |
* Material

aaaaaaaaaaaaaaaa
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Sandwich calo with fully embedded elx ‘)

* Optimized for particle flow approach
* integrated ECAL & HCAL (+ tracking)

* Sensor aspect and system aspect closely related

* Front-end electronics embedded in the calorimeter (including ASIC)

Silicon or GaAs Detectors Scintillator Strips RPC (semi-digital with Timing)
MAPS Scintillator Tiles MPGD

Glass Scintillator Tiles

Lead Glass (Cherenkov)




Sandwich calo with fully embedde

Solid State

d eIx

Silicon or GaAs Detectors Solid State sensors
MAPS (see Daniela’s talk for more details)

connection with DRD3

. Unwrapped and-wrapped tiles .

Scintillator Strips R&D on optical material
Scintillator Tiles Connection with DRD4 for

Glass Scintillator Tiles photodetectors

Lead Glass (Cherenkov)
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RPC (Seml-dlgltal with Tlmlng) Connection with DRD1 for

MPGD gaseous detector (see
Maksym’s talk for more details)
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Liquified NObIe Gas Calorimeters European Strategy.

* Long and successful tradition in HEP

* Low systematics

* High granularity achievable => can o
be optimized for particle flow

z (mm)

* Cold electronics option under study

* Mechanical design optimization for
energy resolution

w=  Absorber

Readout
electrode
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Optical calorimeters ‘)

Calorimeters based on optical media

Photodetectors with large dynamic range and good linearity
Enhanced granularity

R&D to develop faster and more rad-hard materials

Homogeneous Sampling Sampling
ECAL ECAL HCAL

High granular crystal SpaCal with rad-hard * Hadron tile calorimeter
optimized for PF scintillating fibres * Dual-Readout fibre

* Dual Readout segmented * Shashlik rad-hard with calorimeter
crystals shower max measurement

* Rad-hard segmented crystals ¢ Crystal grain innovative calo
* Oriented crystals

11




Optical calorimeters

Homogeneous Sampling Sampling
ECAL ECAL HCAL

High granular crystal .
optimized for PF

Dual Readout segmented .
crystals

Rad-hard segmented crystals
Oriented crystals

" Homogeneous EM

HGCCAL Design 1

Crystal bars SiPM  FE+PCB

1

—_—

Incident |
particles |

MAXICC e

CRILIN

- > =X . LY.
ixixdlcm ’
hotedetectors (eg. FPMT, SPM.
i
E2 A
Saey

Design 2
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Hadron tile calorimeter
Dual-Readout fibre
calorimeter

SpaCal with rad-hard .
scintillating fibres .
Shashlik rad-hard with

shower max measurement
Crystal grain innovative calo

Sampling EM RADICAL Sampling EM/HM

| DRCAL
Z L

W (2.5 mm)

SPACAL

mirror
= light guide

[ e

front back
——3 Beam direction
GRANITA
> T = S ey P ZON PR Light detector with quantum
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Active scintillating structure
Active veto for external radiation
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Optical calorimeters (few material examples) EESEES
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PEN/PET R&D

Separation

NIM A 1045, 167629 (2022)

W-GAGG crystal fiber
R&D synergic to LHCb
ECAL upgrade

Large density
High light yield
Energy resolution
Low cost

Fast decay

Large size

Scintillating Glasses
as a possible “cheap’
alternative

H

CsPbBr; nanocrystals in epoxy resin

Nano-scintillators
(ultrafast~ 1ns) and
rad-hard

Quantum-dots for (\6‘% 906
¥ AN
chromo calo ?9
O 13
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Curopean Strategy

Optical calorimeters (detection technique example s

* Dual readout technique aiming at
g reducing the fluctuation of
e 00 e T electromagnetic fraction
bk ' (Cherenkov and scintillating light)
o * Both fibre based (2 different media)
- B or separating within the same
crystal (e.g BGO/PWO-UF)

* Timing information for longitudinal
“segmentation”

* Toward high granularity
(PF-friendly) with SiPM
(or MCP-PMT)

Rotating stage Wrapped crystals

14
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many thanks to
Rok Pestotnik
for the material
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RICH: Ring Imaging Cerenkov Counters ‘D

RICH detectors are vital for particle identification in HEP experiments
achieving reliable particle ID for a broad momentum range

Measure single photons with high position and timing resolution

Experimental drivers:
* HL-LHC (e.g. LHCb and ALICE3) and future hadron colliders

* Operation at higher luminosities, increased background rates, and stricter
integration.

* Upgrades needed for enhanced robustness, rate capability, and precision.

* FCC-ee experiments: PID is essential for precision studies of
heavy-flavour physics and Z, Higgs, W, and top decays.

16




DRD4 — ()
Photon Detectors and Particle Identification Techniques

European Strategy
for Particle Physics

Scope: . .

*

* Photodetectors (vacuum, solid state, hybrid), single

L 2
photon sensitive H’PRDZI. .

* Particle Identification (PID) techniques (Cherenkov-
based, Time of Flight)

* Scintillating Fibre (SciFi) tracking

* Transition Radiation (TR) using solid state X-ray 67 institutions / 20 countries
detectors
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RICH: Key challenges ‘>

* Low number of photons
* High radiation hardness

* Improving timing and space resolution

* Improving S/N ratio (e.g increase the photon detection efficiencies

and reduce sensor noise)
* Low-power high-performing readout electronics
* Mechanical integration

* Large coverage area in intense magnetic field

18
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RICH development main drivers )

* High Particle Rate:
* Resolving multiple, overlapping Cherenkov rings (pile-up).

* Need to handle particle fluxes exceeding (10° - 10°) tracks/cm?/s, avoid signal
saturation, and ensure fast recovery.

* Spatial & Time Resolution:
* Fine pixelation in photon detectors for accurate ring reconstruction.
* Precision timing (<100 ps) to suppress background (from pile-up and noise).

* Breakthroughs in pixel density (sub-mm), time resolution (down to 20-50 ps), and
minimising optical system aberrations

* Radiation Hardness:
* Materials and sensors must retain properties/stability under radiation.

* Anticipated rates increase by x5—x10 (expected fluence > 10''); require more
radiation-durable materials, sensor lifetimes >10 years, and rate tolerance beyond

MHz/cm? without significant loss/aging

19







Solid State Single Photon Detectors

for Particle Physics

Current Status: SiPMs offer QE 50%, operation
in magnetic fields, fast timing (100 ps), but dark
noise and crosstalk remain challenges, especially
after irradiation

online self-annealing with forward bias
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radiator and SiPM modules with
21
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Solid State Single Photon Detectors )

Current Status: SiPMs offer QE 50%, operation in magnetic fields, fast
timing (100 ps), but dark noise and crosstalk remain challenges,
especially after irradiation

Future Expectations:

* lower dark count rates (<100 kHz/mm?),

* higher tolerance to radiation 10'2-10'3 n/cm?,
* reduced crosstalk (<1%),

* improved QE in deep UV;

* stable operation in strong magnetic fields;

* scalable to larger areas

22
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Solid State Single Photon Detectors ‘D

* Developments:
* BSI (Backside Illumination) technology for enhanced PDE and radiation
tolerance;
* ultra-granular SiPMs with 2.5D/3D integration (SiPM+integrate RO elx);
CMOS-SPAD sensors;
* blue sky research - alternative materials (SiC, GeC, InGaAs).

G TSVSiPM O Segmented O 3D-integrated SiPM\
SiPM

Front Side

Photo-
generated ———— % ) _ 1 channel 1 channel
clectrons Collection Region \
m

Trench "’H_ _________
Back Side Sensor
Light Entrance Bump-Bonding
Amplification
Discriminator &
Counter

—| Read-Out 23




Vacuum-Based Single Photon Detectors gEses

* Current Status: MCP-PMTs offer excellent timing (<50 ps with microchannel
design), low dark counts, and good quantum efficiency (QE) (~20-35%), but they
are sensitive to magnetic fields and have issues with lifetime.

5 [ Fomamass
Developments: 5 || il
Study of MCPs with high-rate capabilities, long " osh Ty SR 1
lifetimes, and new photocathode 0-82 ﬁLZQSszZ) - 0267
materials/structures for increased QE; 2 S s YH0205
development of readout electronics. 06 (iC/emy
Future Expectations: v acc1.Omu1ateldsoutpuf(lhargezfocm%o

New photocathodes resistant to ion backflow,
longer MCP lifetime (>5 C/cm? charge), robust
operation in several T magnetic fields, integrated
fast pixelated readout, and cost-effective large-
area coverage.

primary electron

glv.... ["Al Etectrode] Al Eleetrode
| a-SiI:H 40-100 pm
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Outlook E“ffg%isgs;;s;sgv

Calorimeter

Different approaches to obtain maximal information from particle detection
* Complex and bulky detectors with high granularity and timing capability
* Challenge in integration (electronics, mechanics and cooling)

* Challenge in testing (a calorimeter testbeam is an experiment with physics output
in itself => need dedicated beam line setup)

Challenges addressed by DRDé6

RICH detectors are indispensable for PID
Meeting physics goals will require R&D

* materials, photon sensors, electronics, system-level integration
Challenges for both RICH and Photodetectors addressed by DRD4

25
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ECFA Roadmap it N

Y & \ £ & & gé ff
i i Qo?é;@”? bf\ f:;‘ ‘3\ f§§$3§ & a"’
* Key technologies and requirements are FiE5e ¢ F 4 FASiid s gé
. - . TEIFEIT €L CLEe <
Identlfled In ECFA Roadmap DROT <2030 2030-2035 nis- INO-ZNSOI >2045 )
* Si based Calorimeters Low powsr 6263 eoc000 @6
* Noble Liquid Calorimeters St ooy soasert oo 616265 @ oo i e d ®e
K calorimeters Large homogeneous amay 62,63 . . . . .
* Calorimeters based on gas detectors s g d263 cge oo °0
* Scintillating tiles and strips - S o 2 °%%°9
. . calorimeters noise 616263
* Crystal based high-resolution Ecals 5:“,,;"'2,1"“3}25@ 616263 = H ; S ocee o
* Fibre based dual readout ey G0 e ° 9 388 2
e b0
- - High granularity .1,6.26.
* R&D should in particular enable G Rt oo & @
* Precision timing I . W SHs 3 3 H
. . resolution ECAL  1ynung for z .2.6.
* Radiation hardness oA G e o o i °
Front-end processing 61,6263 ® ® ®
e i 62 H
° . readost Fromim&g 6:2
R&D Tasks are grouped into 0610000 62 e o0 o
Timing 10-100 pe 616263 @ ® e [ X}
* Must happen c10ps 616263 PP
m Upu:ew'ﬁn_{an? 6162 @ @ o (6] @ & 2] @ ®
* Important s oy S e
L]
@ Must happen or main physics goals cannot be met @ Important to meet several physics goals Desirable to enhance physics reach @ RED needs being met

* Already met
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Liquified Noble gas

High Granularity Noble Liquid ECAL

1st layer ——=== S

;\ e ALLEGRO - general-purpose detector
7///A for FCC-ee - v

o A Lepton colLlider Experiment with
Granular calorimetry Read-Out

e Highly-granular noble liquid ECAL a
central and most studied feature

= o LAror LKr with Pb or W absorbers
| == | o Multi-layer PCB as read-out electrode

' e Vertex detector, drift chamber and
® Evolution of ATLAS calorimeter ECAL inside 2 T solenoid, sharing

with much finer granularity for cryostat
particle-flow reconstruction:
O 46;4¢ =10;8 mrad e HCAL and muon system outside
O 11 longitudinal layers solenoid
O Superior (~5x) SNR with cold
electronics

O Narrow strips (2.5 mrad) in small R ¢ Optimized for full FCC-ee physics
longitudinal layer for . detection program

28




RICH: Experimental integration constraint gEsse

* Compactness & Space:

* Current developments: Thin detectors to minimize material to reduce
scattering and photon conversion, and integration with tracking/calorimetry.

* Future Expectations: Even thinner, lighter systems (<1% Xy material budget),
modular structures, and seamless integration.

* Material Budget:

* Current developments: Transparent, radiation-resistant radiator materials
preferred to minimize interaction lengths.

* Future Expectations: Low material budgets to improve overall detector
resolution and performance.

* Mechanical Integration:
* Current developments: Stable mechanical structures with excellent alignment.

* Future Expectations: Maintain precision over long operation periods.

29




RICH Electronics and Data Acquisition ‘)

e Current Status:

* Dedicated ASICs enable multi-MHz readout; intelligent DAQ used to filter
photon hits; robust calibration systems.

* Current Developments:
* Develop and adapt existing electronics readout systems.

* Future Expectations:

* DAQ capable of >100M hits/s, improved on-detector data processing, and
real-time analysis.

30
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DRD4) MCP-PMTs: New materials and read-out options  » Francoe:a S &

g Partilc DHLE
e e s Particle Physics

» New material, new coatings, longevity and rate capability study

This concerns the R&D on new materials to produce VPD,
new shapes, new coatings , and their consequences
on their longevity and rate capability

» New photocathode materials, structure and high quantum efficiency VPD
New photocathode materials, new structures and their impact on improving the quant.
efficiency for different wavelengths

» Time and spatial resolution performance

Study of VPD timing and spatial performance using appropriate readout electronics ar nt
appropriate anode structures

Si nanometric structure for
reflective photocathode (Lyon)

: Single-photon

Pixelated anode

Woven strips

MCP+Timepix4 MCP+PICMIC concept
(Ferrara) (Lyon)



Future of Electron Multiplication

MCP-PMT with CMOS anode

Conceptual design for 4D detection of single photons

Hybrid concept: MCP-PMT where the pixelated anode is an ASIC
(CMOS) embedded inside the vacuum

Prototype with Timepix4 ASIC as anode (array of 23k pixels)
Envisaged performance

<100 pstime resolution and 5-10 ym spatial resolution
Rate capability of >100 MHz/cm? (<2.5 Ghits/s @ 7 cm? area)
Low gain (~10%) operation possible » x100 lifetime increase

TR

Tynodes (@ Time Photon Counter) [ vander Graafetal NIMA847 (2017) 148 ]
Transmission mode dynode = tynode Transmission Reflection

Fabrication of tynodes (MgO ALD, diamond) using MEMS
technology

<+—Primary electron—

| s (e

“Anode” is a CMOS chip (e.g., TimePix) Substrate

Very promising properties — A B  Diamond EEBXY\ 8N

Very compact, high B-field tolerance, very fast r— M o i N
Amplified

Very low DCR; very good 2D spatial resolution

signal
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Latest achievements in SiPM technology

Deep trench isolation strongly suppresses optical crosstalk, enabling higher PDE and operating

European Strategy

for Particle Physics

ot voltage [A Gola, talk at RICH2022] 07
. e 1 °
Connections : Quenching : Direct Crosstalk P D E 70% I h
i 0.6
resistor 1 40%
H 35% ——NUV-HD-MT th e p e a k
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% 3
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2 4 2 18 20 22 24 2

—
~ few um

Metal-filled DTI

Conceptual drawing of the NUV-HD-MT, with
the addition of metal-filled Deep Trench
Isolation.

Variation of TTS over the
device surface can contribute
to overall time spread:
evariation within micro-
cell
evariation for different
micro-cells

SPTR FWHM (ps) vs Laser position (mm)

LE._Acerbi etal. NIM A926(2019)16|

FBK: Masking of
outer regions of
micro-cells: Improve
signal peaking and
mask areas of
micro-cells with
worse timing

0.2
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Wavelength (nm)
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%PRDJ' 2.5D and 3D integration of SiPMs& elecronics

Timing of SSPD & Developing ultra-granular SiPM that integrates with the readout electronics Current developments
2.5D Integration

Substrate  Die Bump Underfill

Under
development by

PET

VISI N

3x3 mm? SiPM array 256 Ch 5x5¢cm?
Module proposal —

G TSV SiPM O Segmented O 3D-integrated SiPM\
SiPM

' EXCELENCIA
MARIA
» DE MAEZTU

Institute of Cosmos Sciences

[
'\

FastIC+
(collab. CERNICCUB)

BOJB JOSUSS ZWIWQGX0S

r

Low power
Chip

1 channel 1 channel Tens of channels

2024 Produced design &
and evaluated production 6.2025
Hybrid SiPMs Custom SiPM technology for sensing

MicroTSVs to layer for maximum performance

achieve a
single-cell
connection for
ultimate timing
performance.

Sensor

@ & O @ @& Bump-Bonding

Amplification

CMOS technology for readout layer

Discriminator &
Counter

e resa-ou 2.5D or 3D Integration -0ng-term needs




ackside llluminated SiPMs

Clear separation between charge collection and

multiplication regions.

Front Side

|||||

Photo-
generated —— %
electrons

Trench |

Light Entrance %

otential Advantages:
p to 100% Fill Factor even with small cell pitch

Back Side

Interconnection density: < 15 um
igh speed and dynamic range
ow gain and external crosstalk

ocal electronics: ultra-fast and possibly low-power.

INFN UC AVIs

uropean strategy

=14

A. Gola - Status and perspectives of SiPMs at FBK @CERN 2023

for Particle Physics

Istituto Nazionale di Fisica Nucleare

i - Sensor layer (Custom) f

= —lhl_ b — e ~ SPAD array

= *l= - :=--~~= — e — g
4 i we ' - ih| ol - . e we e - e
| I |
3 i | I —
P——
10 - 20 um

The first technology demonstration run is close to completion.

Radiation hardness:
*The SiPM area sensitive to radiation damage is much
smaller than the light-sensitive area

Assumption: The main source of DCR is field-
enhanced generation (or tunnelling).

35



SiPMs: Radiation damage o e

1E+10

gle photon detection is much —HNakamura, J°S meeting. Sep. 2008 1602 o
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- Increased dark count rate 0500 000 500 000 everse voltage Fluence [n,/cm?]
- Increased Reverse Current Time (ns)
Wavefarms from irradiated SiPMs
anneaflonga elevalc (‘?Femperatures .
Annealing

Cooling: Temperature at which the

itigation strategies (combine several ones) single photo electron peak @ 9V e selfanrealingsobsmard b

Operating the SiPMs at a lowertemperature OV is separated from the g, | « rr « , e , —
Use of waveform sampling readout Jbackground | | 3 O : § §
electronics - @~ Afterirradiation - g aNE By ﬁ ]
Annealing periodically (annealing at elevated < o 8 Ea [ "
= 107 I 150 £ ;
temperature is necessary) : o g ; ; s ;
1 1 o S % cure: 1 | a = -]
Reducing recovery time to lower cell 2 © = S 5 Ve _ _ e e g

@ 100 fovd R - W —r B o
OCCl.Jp.ancy . . § -Lf)' g EE § 8 ‘ﬁ; 10_2_T=100°C_§'_T=125°C_5_ T =150°C __ T=175°C _
Radiation-resistant SiPMs: g . m Lo AV SRR P S Y I
. . 3 1 10 1 10 1 10102 0?
- Experimental structures - low E field , £ ; ; l l annealing ﬁm; (:f)l]rs)

BSI, other materials? | I AR SR S\ okt
9 . 10 10 10 10 10 36

Fluence [neg/cm?]

|D. Consuegra-Rodrigez et al., Eur. Phys. J. C84,970 (2024) | R. Preghenella, PD24
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