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HEP physics drivers

“Higgs Factories” (in particular FCC-ee)  among the main drivers for 
current calorimeter development

Jet final state will be dominant at the Higgs Factories

• higher branching ratio

• clean environment
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Disantangling W and  Z peak 

e.g. Separation of  VVH from WW 

fusion and HZ



HEP physics drivers

e+e- HZ physics constraints

H→ 𝛾𝛾 ⇒ ECAL resolution

As good as possible – at least 20%/ 𝐸 + 1%

For HF physics 3%/√E is required

High granularity / Pre-shower is needed

for 𝜋0 identifications

“Higgs Factories” (in particular FCC-ee)  among the main drivers for 
current calorimeter development
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5D-calorimeter paradigm

Energy Position(3D) Timing

High Energy Resolution

• Reduce fluctuations by 

construction

• Improved by algorithm 

(e.g. Particle Flow 

approach) and Machine 

Learning approach

High granularity

• mechanical 

integration 

• cooling for embedded 

electronics

• increased number of 

channels

Fast timing information

• fast detector

• fast electronics

• larger data size
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DRD6 – DRD on Calorimetry

• Addressing three main categories of Calorimeters

• Sandwich calorimeters with fully embedded electronics

• Liquified Noble Gas calorimeter

• Optical calorimeters

• Addressing transversal needs
• Electronics

• Software

• Mechanics and cooling

• Photodetectors (no development)

• Material
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Sandwich calo with fully embedded elx

• Optimized for particle flow approach

• integrated ECAL & HCAL (+ tracking)

• Sensor aspect and system aspect closely related

• Front-end electronics embedded in the calorimeter (including ASIC)

Solid State Optical Gaseous

Silicon or GaAs Detectors

MAPS

Scintillator Strips

Scintillator Tiles

Glass Scintillator Tiles

Lead Glass (Cherenkov)

RPC (semi-digital with Timing)

MPGD
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Sandwich calo with fully embedded elx
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Solid State sensors
(see Daniela’s talk for more details)
connection with DRD3

R&D on optical material
Connection with DRD4 for 
photodetectors

Connection with DRD1 for 
gaseous detector (see 
Maksym’s talk for more details)
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Liquified Noble Gas calorimeters

• Long and successful tradition in HEP

• Low systematics

• High granularity achievable => can 
be optimized for particle flow

• Cold electronics option under study

• Mechanical design optimization for 
energy resolution
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Optical calorimeters

Calorimeters based on optical media

Photodetectors with large dynamic range and good linearity

Enhanced granularity

R&D to develop faster and more rad-hard materials

Homogeneous

ECAL

Sampling

ECAL

Sampling 

HCAL

• High granular crystal 

optimized for PF

• Dual Readout segmented 

crystals

• Rad-hard segmented crystals 

• Oriented crystals

• SpaCal with rad-hard 

scintillating fibres

• Shashlik rad-hard with 

shower max measurement

• Crystal grain innovative calo

• Hadron tile calorimeter

• Dual-Readout fibre 

calorimeter
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Optical calorimeters (few material examples) 
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W-GAGG crystal fiber
R&D synergic to LHCb 
ECAL upgrade

PEN/PET R&D

Scintillating Glasses
as a possible “cheap” 
alternative

Nano-scintillators 
(ultrafast ~ 1ns) and 
rad-hard

Quantum-dots for 
chromo calo



Optical calorimeters (detection technique example) 

• Dual readout technique aiming at 
reducing the fluctuation of 
electromagnetic fraction 
(Cherenkov and scintillating light)

• Both fibre based (2 different media) 
or separating within the same 
crystal (e.g BGO/PWO-UF)

• Timing information for longitudinal 
“segmentation”

• Toward high granularity             
(PF-friendly) with SiPM                   
(or MCP-PMT) 
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RICH

many thanks to 
Rok Pestotnik 
for the material 
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RICH: Ring Imaging Cěrenkov Counters

RICH detectors are vital for particle identification in HEP experiments 
achieving reliable particle ID for a broad momentum range

Measure single photons with high position and timing resolution

Experimental drivers:

• HL-LHC (e.g. LHCb and ALICE3) and future hadron colliders

• Operation at higher luminosities, increased background rates, and stricter 
integration. 

• Upgrades needed for enhanced robustness, rate capability, and precision.

• FCC-ee experiments:  PID is essential for precision studies of 
heavy-flavour physics and Z, Higgs, W, and top decays.
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DRD4 – 
Photon Detectors and Particle Identification Techniques

Scope:

• Photodetectors (vacuum, solid state, hybrid), single 
photon sensitive

• Particle Identification (PID) techniques (Cherenkov-
based, Time of Flight)

• Scintillating Fibre (SciFi) tracking 

• Transition Radiation (TR) using solid state X-ray 
detectors 

67 institutions / 20 countries
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RICH: Key challenges

• Low number of photons

• High radiation hardness

• Improving timing and space resolution

• Improving S/N ratio (e.g increase the photon detection efficiencies 

and reduce sensor noise)

• Low-power high-performing readout electronics

• Mechanical integration

• Large coverage area in intense magnetic field
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RICH development main drivers

• High Particle Rate:
• Resolving multiple, overlapping Cherenkov rings (pile-up).

• Need to handle particle fluxes exceeding (105 - 106) tracks/cm²/s, avoid signal 
saturation, and ensure fast recovery.

• Spatial & Time Resolution:
• Fine pixelation in photon detectors for accurate ring reconstruction. 

• Precision timing (<100 ps) to suppress background (from pile-up and noise).

• Breakthroughs in pixel density (sub-mm), time resolution (down to 20–50 ps), and 
minimising optical system aberrations

• Radiation Hardness:
• Materials and sensors must retain properties/stability under radiation.

• Anticipated rates increase by x5–x10 (expected fluence > 1011); require more 
radiation-durable materials, sensor lifetimes >10 years, and rate tolerance beyond 
MHz/cm² without significant loss/aging
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Photon Detectors Development
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Solid State Single Photon Detectors

Current Status: SiPMs offer QE 50%, operation 
in magnetic fields, fast timing (100 ps), but dark 
noise and crosstalk remain challenges, especially 
after irradiation
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ALICE3 and FCC development 
based on mix gas and aerogel 
radiator and SiPM modules with 
integrated cooling

D. Consuegra-Rodrigez et al., Eur. Phys. J. C 84, 970 
(2024)

R. Preghenella, PD24



Solid State Single Photon Detectors

Current Status: SiPMs offer QE 50%, operation in magnetic fields, fast 
timing (100 ps), but dark noise and crosstalk remain challenges, 
especially after irradiation

Future Expectations:

• lower dark count rates (<100 kHz/mm²), 

• higher tolerance to radiation 1012-1013 n/cm2, 

• reduced crosstalk (<1%), 

• improved QE in deep UV; 

• stable operation in strong magnetic fields; 

• scalable to larger areas

22



Solid State Single Photon Detectors
• Developments: 

• BSI (Backside Illumination) technology for enhanced PDE and radiation 
tolerance; 

• ultra-granular SiPMs with 2.5D/3D integration (SiPM+integrate RO elx); 
CMOS-SPAD sensors; 

• blue sky research - alternative materials (SiC, GeC, InGaAs).
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Vacuum-Based Single Photon Detectors

• Current Status: MCP-PMTs offer excellent timing (<50 ps with microchannel 
design), low dark counts, and good quantum efficiency (QE) (~20–35%), but they 
are sensitive to magnetic fields and have issues with lifetime.

Developments: 
Study of  MCPs with high-rate capabilities, long 
lifetimes, and new photocathode 
materials/structures for increased QE;  
development of readout electronics.

Future Expectations:
New photocathodes resistant to ion backflow, 
longer MCP lifetime (>5 C/cm² charge), robust 
operation in several T magnetic fields, integrated 
fast pixelated readout, and cost-effective large-
area coverage.
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Outlook

Calorimeter 

Different approaches to obtain maximal information from particle detection

• Complex and bulky detectors with high granularity and timing capability

• Challenge in integration (electronics, mechanics and cooling)

• Challenge in testing (a calorimeter testbeam is an experiment with physics output 
in itself => need dedicated beam line setup) 

Challenges addressed by DRD6

RICH detectors are indispensable for PID  

Meeting physics goals will require R&D 

• materials, photon sensors, electronics, system-level integration

Challenges for both RICH and Photodetectors addressed by DRD4
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BACKUP
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ECFA Roadmap
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Liquified Noble gas 
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RICH: Experimental integration constraint

• Compactness & Space:
• Current developments:Thin detectors to minimize material to reduce 

scattering and photon conversion, and integration with tracking/calorimetry.

• Future Expectations: Even thinner, lighter systems (<1% X₀ material budget), 
modular structures, and seamless integration.

• Material Budget:
• Current developments:Transparent, radiation-resistant radiator materials 

preferred to minimize interaction lengths.

• Future Expectations: Low material budgets to improve overall detector 
resolution and performance.

• Mechanical Integration:
• Current developments: Stable mechanical structures with excellent alignment.

• Future Expectations: Maintain precision over long operation periods.
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RICH Electronics and Data Acquisition

• Current Status: 

• Dedicated ASICs enable multi-MHz readout; intelligent DAQ used to filter 
photon hits; robust calibration systems.

• Current Developments: 
• Develop and adapt existing electronics readout systems.

• Future Expectations: 

• DAQ capable of >100M hits/s, improved on-detector data processing, and 
real-time analysis.
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➢ New material, new coatings, longevity and rate capability study
This concerns the R&D on new materials to produce VPD, 
new shapes , new coatings , and their consequences 
on their longevity and rate capability

➢ New photocathode materials, structure and high quantum efficiency  VPD
New photocathode materials, new structures and their impact on improving the quantum 
efficiency for different wavelengths

➢ Time and spatial resolution performance
Study of VPD timing and spatial performance using appropriate readout electronics and 
appropriate anode structures

Amorphous Si MCPC(Geneva)

A. Franco et al. Sci. Rep. 1 (2014).

Si nanometric structure for
 reflective photocathode (Lyon)

MCP+Timepix4 
(Ferrara)

MCP+PICMIC concept 
(Lyon)

time

Woven strips

MCP-PMTs: New materials and read-out options



Future of Electron Multiplication

Tynodes (→ Time Photon Counter)
Transmission mode dynode → tynode
Fabrication of tynodes (MgO ALD, diamond)  using MEMS
technology
“Anode” is a CMOS chip (e.g., TimePix) 
Very promising properties
Very compact, high B-field tolerance, very fast
Very low DCR; very good 2D spatial resolution

MCP-PMT with CMOS anode

Conceptual design for 4D detection of single photons
Hybrid concept: MCP-PMT where the pixelated anode is an ASIC 
(CMOS) embedded inside the vacuum
Prototype with Timepix4 ASIC as anode (array of 23k pixels)
Envisaged performance

<100 ps time resolution and 5-10 μm spatial resolution
Rate capability of >100 MHz/cm² (<2.5 Ghits/s @ 7 cm² area)
Low gain (~104) operation possible → x100 lifetime increase

M. Fiorini, RICH2022

H. van der Graaf et al., NIM A847 (2017) 148
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Latest achievements in SiPM technology

~ few µm

High-field region

Quenching  

resistor

Metal
Connections

Deep trench isolation strongly suppresses optical crosstalk, enabling higher PDE and  operating 
voltage

Metal-filled DTI

Conceptual drawing of the NUV-HD-MT, with 

the addition of metal-filled Deep Trench

Isolation.

> 10x

reduction

A. Gola, talk at RICH2022

Microcell (SPAD) 
of SiPM

Variation of TTS over the 
device surface can contribute 
to overall time spread:

•variation within micro-
cell
•variation for different 
micro-cells

.

FBK: Masking of 
outer regions of 
micro-cells: Improve 
signal peaking and 
mask areas of 
micro-cells with 
worse timing

F. Acerbi et al. NIM A926(2019)16

A. Gola, talk at DRD4 WG1

PDE 70% in 
the peak

NUV-DJ
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2.5D and 3D integration of SiPMs& elecronics

256 Ch 5x5cm2

Module proposal

FastIC+
(collab. CERN ICCUB)

Low p ower
Chip 

Timing of SSPD & Developing ultra-granular SiPM that integrates with the readout electronics

design & 
production 6.2025

2024 Produced 
and evaluated

3x3 mm2 SiPM array

Current developments

Long-term needs

MicroTSVs to 

achieve a 

single-cell 

connection for 

ultimate timing 
performance.

Hybrid SiPMs Custom SiPM technology for sensing 

layer for maximum performance

3mm

1.5mm

0.5-
1mm

CMOS technology for readout layer

2.5D Integration

2.5D or 3D Integration

Under 

development by
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Backside Illuminated SiPMs

The first technology demonstration run is close to completion.

Clear separation between charge collection and 

multiplication regions.

A. Gola - Status and perspectives of SiPMs at FBK @CERN 2023

Potential Advantages:

•Up to 100% Fill Factor even with small cell pitch

• Interconnection density: < 15 um

•High speed and dynamic range

•Low gain and external crosstalk

•Local electronics: ultra-fast and possibly low-power.

Radiation hardness:

•The SiPM area sensitive to radiation damage is much 

smaller than the light-sensitive area

•Assumption: The main source of DCR is field-

enhanced generation (or tunnelling).
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Single photon detection is much 
more affected than multi photon

Showstopper at fluences above 
~1011 in case single (or a few) 
photon sensitivity (e.g. expected 
fluence in the LHCb RICH Upg2  
area :  3 1013  n/cm-2 )

→Effects: 
→ Increased dark count rate

→ Increased Reverse Current

SiPMs: Radiation damage

Waveforms from irradiated SiPMs
   
 Mitigation strategies (combine several ones)

→ Operating the SiPMs at a lower temperature
→ Use of waveform sampling readout 

electronics
→ Annealing periodically (annealing at elevated 

temperature is necessary)
→ Reducing recovery time to lower cell 

occupancy
→ Radiation-resistant SiPMs:

→ Experimental structures – low E field , 
BSI,  other materials? 

Cooling: Temperature at which the 
single photo electron peak  @ 9V 
OV is separated from the 
background.

    

D. Consuegra-Rodrigez et al., Eur. Phys. J. C 84, 970 (2024) R. Preghenella, PD24

 Annealing 
  

annealing at elevated temperatures

A. Gola, RICH2022
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