

PARALLEL 2 / ACCELERATOR TECHNOLOGIES

Lessons from Current e+e- Colliders

Yukiyoshi / Ohnishi (KEK)

23-27 JUNE 2025 Lido di Venezia

- Ring Colliders: DA ANE and SuperKEKB
- **Current Status and Achievements**
- Experiences and What is Challenge ?
- Path Forward and Useful Experiences for Future Collider Projects \bigcirc

$$L = \frac{N_{+}N_{-}n_{b}f_{0}}{2\pi\sqrt{\sigma_{x+}^{*2} + \sigma_{x-}^{*2}}\sqrt{\sigma_{y+}^{*2} + \sigma_{y-}^{*2}}} R_{L}$$
Geometrical Loss
Hourglass Effect, Crossing
m, $\sigma_{y}^{*} = 30 - 50$ nm is a target. $\rightarrow \beta_{y}^{*} < 1$ mm and $\epsilon_{y} < 10$ pm
hourglass effect to squeeze β_{y}^{*}
 $\frac{\sigma_{z}}{1 + \Phi^{2}}$ $\Phi = \frac{\sigma_{z}}{\sigma_{x}^{*}} \tan \frac{\theta_{c}}{2} \leftarrow \text{Creating a Large Piwinski Angle}$
to Make Short "Bunch"
the Crossing Angle and Low Emittance = Nano-Beam Scheme
 $L = \frac{N_{+}N_{-}n_{b}f_{0}}{\pi\theta_{c}\sqrt{\sigma_{z+}^{2} + \sigma_{z-}^{2}}\sqrt{\sigma_{y+}^{*2} + \sigma_{y-}^{*2}}} R_{L} = \left(1 + \frac{\sigma_{z+}^{2} + \sigma_{z-}^{2}}{\sigma_{x+}^{*2} + \sigma_{x-}^{*2}} \tan^{2}\frac{\theta_{c}}{2}\right)^{-1}$
DAPNE: $\Phi = 1.7$
SuperKEKB: $\Phi = 12.3 / 12.7$

In

(

$$L = \frac{N_{+}N_{-}n_{b}f_{0}}{2\pi\sqrt{\sigma_{x+}^{*2} + \sigma_{x-}^{*2}}\sqrt{\sigma_{y+}^{*2} + \sigma_{y-}^{*2}}} R_{L}$$
Geometrical Loss Hourglass Effect, Crossing hourglass Effect to squeeze β_{y}^{*}

$$\beta_{y}^{*} > \frac{\sigma_{z}}{\sqrt{1 + \Phi^{2}}} \qquad \Phi = \frac{\sigma_{z}}{\sigma_{x}^{*}} \tan \frac{\theta_{c}}{2} \leftarrow \text{Creating a Large Piwinski Angle to Make Short "Bunch"}$$

$$L = \frac{N_{+}N_{-}n_{b}f_{0}}{\pi\theta_{c}\sqrt{\sigma_{z+}^{2} + \sigma_{z-}^{2}}\sqrt{\sigma_{y+}^{*2} + \sigma_{y-}^{*2}}} R_{L} = \frac{N_{+}N_{-}n_{b}f_{0}}{\pi\theta_{c}\sqrt{\sigma_{z+}^{2} + \sigma_{z-}^{2}}\sqrt{\sigma_{y+}^{*2} + \sigma_{y-}^{*2}}} R_{L} = \frac{1}{2.3 \times 12.7}$$

Luminosity Challenge

Angle.

 $-\frac{1}{2}$ R_H

$$L = \frac{N_+ N_- n_b f_0}{\pi \theta_x \sqrt{\sigma_{z+}^2 + \sigma_{z-}^2} \sqrt{\sigma_{y+}^{*2} + \sigma_{z-}^2}}$$

Vertical Beam Size at the IP

Vertical Emittance

Combined Effect of Collimator Impedance and BxB Feedback Noise \rightarrow -1 Mode Instability **Optics Distortion due to Machine Imperfection**

Beam-Beam Blowup

Betatron Resonance → Crab Waist Scheme can mitigate. Combined Effect of Lattice Nonlinear, Beam-Beam, and Wakefield

Luminosity Challenge (cont'd)

Two New Technologies

SuperKEKB Machine Study in 2024

Phys. Rev. AB 26 071001

Crab Waist ON and OFF

Experiment on March 12 and March 21-22 2024

$L_{sp} = \frac{L}{I_{b+}I_{b-}n_b} \propto \frac{1}{\sigma_u^*}$ Beam-Beam Blowup We don't know the reason. L_{sp} decreases by 30 % Lattice Nonlinear ? ON Space Charge ? **Combined Effect ?** OFF $\nu_{y+} \models .570$ OFF $\nu_{y+} = .567$ $\nu_{y+} = .59$ 0.20 0.25 0.30 0.35 0.40 0.45

 $I_{b+}I_{b-}$ (mA²) Crab waist is effective at high intensity. **Crab waist changes betatron resonance structure.**

DA\PhiNE Performance Summary

Crab Waist Sextupole

Peak Luminosity

Int.

Daily

P. Raimondi et al.

The first crab sextupole in the world (DA Φ NE) Successfully tested in 2008 - 2009

Physics events evaluated on the base of preliminary conservative considerations exhibit a signal to noise ratio 3 time higher with respect to the one measured in 2009.

SHIDDHARTA-2 2.4 x 10³² cm⁻²s⁻

2024

.......

Simple IR

		DAΦNE KLOE (2005)	DA ONE CW upgrade tested with SIDDHARTA (2009)	DAΦNE (CW) KLOE-2 (2014)	DA ΦN SIDDHART
	L _{peak} [cm ⁻² s ⁻¹]	1.50•10 ³²	4.53•10 ³²	2.38•10 ³²	2.4•
Ξ).	I ⁻ [A]	1.4	1.52	1.18	1.:
	I* [A]	1.2	1.0	0.87	8.0
	ϵ_x [mm mrad]	0.34	0.28	0.28	0.3
	N _{bunches}	111	105	106	1 1
t a	∫ _{1h} L [pb ⁻¹]	0.4	0.79	0.67	0.4
to	∫ _{day} L [pb⁻1]	9.8 (seldom)	14.98	14.3	9.3
	∫ _{1h} L [fb ⁻¹]	3.0		6.8	1.3
S ⁻¹	ξγ	0.0245	0.0443 (0.09 w.s.)		-
L _{sp} [cm ⁻² s ⁻¹ /mA ²	0.99×10^{28}	3.13 x 10 ²⁸	2.46 x 10 ²⁸	2.31

SuperKEKB Operation History

 $\beta_{y}^{*} = 1 mm$

Crab Waist

Using Many Corrector Coils to Correct Error Field

Obstacles to Increase Beam Current

Sudden Beam Loss -> Quench of SC Final Focus Magnet, Collimator Damage, Detector Damage

Large beam loss (~40 %) within a few turns Quit different from known beam instabilities

"VACSEAL" (Vacuum Sealant) Changes Black Stain Baked by SR \rightarrow Amorphous Graphite MO-Type Flange

at CCG D10_L02

burst 02

¥ 15

5 10 H

2024-10-08

of

S

Cleaning Work at Wiggler Flange on November 6

Specific to Wiggler and IR because **VACSEAL** was used there.

Beam-Dust interaction is a candidate of SBL events.

Cleaning Work \rightarrow SBL events are significantly reduced.

K. Ohmi, eeFACT2025; S. Heifets, PR ST-AB 8 061002 (2005)

KEKB < FCC-ee < SuperKEKB

Machine Parameters of SuperKEKB

	December 27, 2024 Next Target Target before LS2		efore LS2	Uni			
Ring	LER	HER	LER	HER	LER	HER	
Emittance	4.0	4.6	4.0	4.6	4.0	4.6	nm
Beam Current	1632	1259	2080	1480	3026	2000	mA
Number of bunches	2346		2346		2346		
Bunch current	0.696	0.537	0.89	0.63	1.29	0.85	mA
Horizontal size σ_x^*	15.5	16.6	15.5	16.6	15.5	16.6	μm
Vertical cap sigma Σ _y *	375		217		159		mm
Vertical size σ_y^*	265		154		112		nm
Betatron tunes v_x / v_y	44.525 / 46.589	45.531 / 43.599	44.525 / 46.589	45.532 / 43.573	44.525 / 46.589	45.532 / 43.573	
β _x * / β _y *	60 / 1.0	60 / 1.0	60 / 0.8	60 / 0.8	60/0.6	60 / 0.6	mm
σ _z	4.6 (6.0*)	5.1 (6.1*)	4.6 (6.5*)	5.1 (6.4*)	4.6 (7.5*)	5.1 (6.9*)	mm
Piwinski angle	12.3	12.7	12.3	12.7	12.3	12.7	
Crab waist ratio	80	60	80	80	80	80	%
Beam-Beam ξ _y	0.036	0.027	0.0444	0.0356	0.0549	0.0475	
Specific luminosity	cific luminosity 5.8 x 10 ³¹		7.62 x 10 ³¹		9.30 x 10 ³¹		cm ⁻² s ⁻¹ /
Luminosity	5.1 x	x 10 ³⁴	1 x	10 ³⁵	2.4 x	10 ³⁵	cm ⁻² s

Step-by-Step Improvement

* Bunch lengthening is considered by using streak camera measureme

2	
mA ²	
-1	
ents.	14

	Stand-By	On-Going	Future Collider Projects	
e+ / e-	DAΦNE Crab Waist (2024)	SuperKEKB (2024)	FCC-ee (ZH)	CEPC (ZH)
Energy E (GeV)	0.51	4 / 7	120	120
Emittance ε _x (nm)	280	4.0 / 4.6	0.66	0.64
σ _y * (nm)	3100 (low current)	265	32	36
<mark>β</mark> x* (mm)	230	60	240	300
β _y * (mm)	8	1	1	1
Bunch Length σ _z (mm)	15	4.6 (6.0) / 5.1 (6.1)	3.3 (5.6)	2.3 (4.1)
Piwinski Angle Φ	1.7	12.3 (16) / 12.7 (15)	3.8 (6.5)	2.8 (4.9)
Bunch Population N (x10 ¹⁰)	1.63 / 2.37	4.37 / 3.37	12.7	13
Number of Bunches nb	110	2346	440	268
L (cm ⁻² s ⁻¹) / IP	2.4 x 10 ³²	5.1 x 10 ³⁴	7.5 x 10 ³⁴	5.0 x 10 ³⁴

FCC Integrated Program Stage 1: The FCC-ee

CEPC TDR

- High Intensity Machine \rightarrow Very Interesting and Big Challenge 0
- Reducing Impedance \bigcirc
 - Nonlinear collimator helps reduce the impedance with background mitigation. (Full-Swing in the Next Run) Design of the IR should be simple as much as possible.
- \bigcirc
- Lattice nonlinear in the IR reduces dynamic aperture (Touschek lifetime) and can also affect \bigcirc Beam-Beam performance.
 - Try to correct imperfections. SuperKEKB has sextupole, skew sextupole, octupole correctors in the final focus.
- Beam-Beam Blowup
 - Combined effect of Beam-Beam, lattice nonlinear, and wakefield can affect luminosity. \bigcirc
- Squeezing β^* and increasing beam currents form the basis toward higher luminosity.
 - Lower β^* with small emittance reduces dynamic aperture. Chromaticity correction is big challenge.

DA\PhiNE Team

Contributions from:

- P. Raimondi, Fermilab
- J. Chavanne, G. Le Bec, ESRF
- O. R. Blanco-Garcia, ALBA
- O. Etisken, Kirikalle University

SuperKEKB Team

Contributions from:

- B. Dalena, Q. Buruant, CEA/Sacley
- M. Li, IHEP/IJCLab; S. Wallon, IJCLab
- I. Agapov, DESY
- M. Migliorati, Sapienza University of Rome
- L. Ruckman, SLAC

C. Milardi, D. Alesini, S. Bilanishvili, S. Bini, M. Boscolo, B. Buonomo, S. Cantarella, A. Ciarma, A. Drago, A. De Santis, E. Di Pasquale, D. Di Giovenale, C. Di Giulio, G. Di Pirro, L. Foggetta, G. Franzini, A. Gallo, R. Gargana, S. Incremona, A. Liedl, A. Michelotti, L. Pellegrino, L. Piersanti, R. Ricci, U. Rotundo, S. Spampinati, A. Stella, A. Vannozzi, M. Zobov, LNF-INFN Frascati

T. Abe, Y. Arimoto, H. Ikeda, T. Ishibashi, F. Ito, S. Iwabuchi, R. Ueki, S. Enomoto, X. Wang, T. Oki, Y. Ohnishi, T. Okada, S. Ogasawara, H. Kaji, T. Kawamoto, H. Koiso, T. Kobayashi, K. Shibata, H. Sugimura, H. Sugimoto, M. Tawada, M. Tobiyama, S. Nakamura, M. Nishiwaki, Y. Funakoshi, M. Masuzawa, G. Mitsuka, T. Mimashi, A. Morita, S. Yoshimoto, T. Yamaguchi, Y. Yamamoto, K. Watanabe, Y. Mu-Lee, O. E. Driss, M. Kurata, N. Iida, T. Kamitani, Y. Seimiya, K. Furukawa, T. Yoshimoto, F. Miyahara, K. Matsuoka, K. Ohmi, D. Zhou, H. Nakayama, S. Tanaka, I. Nakamura, T. Koga, K. Uno, S. Uno, KEK

G. Broggi, J. Keintzel, M. L. Garrec, M. Ady, J. Salvesen, K. Oide, R. Soos, F. Zimmermann, R. Tomas, CERN

- Sudden Beam Loss in SuperKEKB
 - Beam-Dust interactions; Amorphous Graphite: VACSEAL Baked by Intense SR in the Flange Connection
 - 0 Cleaning work is on-going. \rightarrow Expected to Be Solved.
 - Comparison between experiments and simulations is also on-going.
 - Don't use VACSEAL for MO-type flange. (Not found inside HELICOFLEX-type flange)
- **Beam-Beam Issues**
 - X-Z instability can be understood. Reason for the Beam-Beam blowup is still unclear. 0
 - Beam-Beam simulations on GPU machines (Weak-Strong and Strong-Strong include lattice, machine imperfections, and wakefield) are on-going.
- Very Short Lifetime in Nono-Beam Scheme with Crab Waist Scheme \rightarrow Injection Performance
 - Small dynamic aperture and Beam-Beam may require longitudinal phase-space injection.
- International collaboration with CERN, IJCLab, DESY, IHEP, Frascati, SLAC, BNL, and Fermilab works to overcome these challenges.

