

PLENARY / Large-scale accelerator projects at CERN

A Linear Collider Vision: future perspectives with advanced technologies

Jenny List (DESY) on behalf of the LCVision team

- Introduction
- Routes to Higher Energy
- Higher Luminosity, Photon Collisions & Beyond
- Conclusions

Introduction

What this talk is about

Steinar's talk showed: a Linear Collider

- can be built with today's technologies
- combines adequate precision with large energy range providing new insights and consistency checks

This talk: what can be done after an initial 10...20 year program by making use of advanced accelerator concepts and technologies?

Linear Collider Vision

A Linear Collider Vision | J.List | ESPPU Open Symposium | Lido di Venezia June 24, 2025

Introduction

What this talk is about

Steinar's talk showed: a Linear Collider

- can be built with today's technologies
- combines adequate precision with large energy range providing new insights and consistency checks

This talk: what can be done after an initial 10...20 year program by making use of advanced accelerator concepts and technologies?

Introduction

What this talk is about

Steinar's talk showed: a Linear Collider

- can be built with today's technologies
- combines adequate precision with large energy range providing new insights and consistency checks

This talk: what can be done after an initial 10...20 year program by making use of advanced accelerator concepts and technologies?

for the future of a Linear Collider Facility

assume we had a 33.5km straight tunnel... (c.f. Steinar's talk)

- ...with some initial Linear Collider inside, starting to take data mid 2040ies
- 10...20 years later:

2050ies - 2060ies => obviously very conceptual now — lots of opportunies!

for the future of a Linear Collider Facility

assume we had a 33.5km straight tunnel... (c.f. Steinar's talk)

- ...with some initial Linear Collider inside, starting to take data mid 2040ies
- 10...20 years later:

2050ies - 2060ies => obviously very conceptual now — lots of opportunies!

- go for higher energies:
 - advanced SCRF
 - cool copper cavities
 - warm copper cavities
 - wakefield acceleration

for the future of a Linear Collider Facility

assume we had a 33.5km straight tunnel... (c.f. Steinar's talk)

- ...with some initial Linear Collider inside, starting to take data mid 2040ies
- 10...20 years later:

2050ies - 2060ies => obviously very conceptual now — lots of opportunies!

 go for higher energies: 	 go for higher luminosity - ERL:
 advanced SCRF 	ReLiC / ERLC
 cool copper cavities 	 go for photon collisions:
 warm copper cavities 	 with optical lasers or a la XCC
 wakefield acceleration 	 beyond-collider opportunities
	 beam dump / fixed-target / R&D

for the future of a Linear Collider Facility

assume we had a 33.5km straight tunnel... (c.f. Steinar's talk)

- ...with some initial Linear Collider inside, starting to take data mid 2040ies
- 10...20 years later:

2050ies - 2060ies => obviously very conceptual now — lots of opportunies!

 go for higher luminosity - ERL:
ReLiC / ERLC
 go for photon collisions:
 with optical lasers or a la XCC
 beyond-collider opportunities
 beam dump / fixed-target / R&D

LCVision reviewed

how these could be embedded as upgrade of initial facility

— obviously each technology could be used for a stand-alone project, too!

LCVision: a bottom-up community organisation

started at LCWS2024: Linear Colliders in view of the ESPPU

- all linear colliders share the same scientific goals:
 - formulate a coherent physics program
 - define energy stages etc science-driven
- beyond an individual technology:
 - design a linear collider facility
 - infrastructure compatible with various technologies
 - plus beam-dump / fixed-target exp's / R&D facilities
- study the Higgs in e+e- now but maintain flexibility for the future:
 - start now with an affordable project
 - maintain scientific diversity
 - strengthen accelerator R&D towards 10 TeV pCM collider
 - decide on upgrades / new projects based on future developments or even break-throughs:
 - scientifically: a discovery at HL-LHC or elsewhere
 - technologically: higher gradients / muon cooling / high-field magnets

Routes to Higher Energy

Super-conducting RF Upgrades

Need ~60 MV/m to reach 1 TeV in LCF tunnel

- SCRF is one of the key directions of Accelerator R&D Roadmap
 - significant synergies with ERL needs
 - needs to be accompanied by R&D on high-efficiency klystrons, couplers, He refrigerators, …
 - progress is funding limited
- 5-year horizon: standing-wave, bulk niobium cavities: 50-60 MV/m
 - new baking: 2-step (75°/120°) or mid-T followed by low-T
 - new shapes
- 10-year horizon: traveling-wave cavities 60-70 MV/m "HELEN"
 - substantially lower k_M => higher gradients for same magnetic quench limit
 - 2x higher R/Q => lower losses
 - higher stability of field distribution -> longer structures
- >10-year or break-through: Nb₃Sn or multilayer cavities 100 MV/m
 - ~2x higher transition T than Nb: 2K -> 4K
 - ~2x higher DC superheating field than Nb
 - to-date only reached gradients up to 24MV/m with Nb₃Sn

Linear Collider Vision

R. Porter et al, LINAC'2018

12

Nb3Sn cavity at 4.2 I

8 8 10

Accelerating gradient (MV/m)

Proof-of-principle 3-cell cavity

Super-conducting RF Upgrades

Need ~60 MV/m to reach 1 TeV in LCF tunnel

- SCRF is one of the key directions of Accelerator R&D Roadmap
 - significant synergies with ERL needs
 - needs to be accompanied by R&D on high-efficiency klystrons, couplers, He refrigerators, ...
 - progress is funding limited
- 5-year horizon: standing-wave, bulk niobium car
 - new baking: 2-step (75°/120°) or mid_
 - new shapes
- 10-year horizon: travel
 - substantially

 - h •
- >10-ye

.gn: Nb₃Sn or multilayer cavities **100 MV/m**

Tonger structures

- sition T than Nb: 2K -> 4K • ~2x
- ~2x higher DC superheating field than Nb
- to-date only reached gradients up to 24MV/m with Nb₃Sn

Linear Collider Vision

R. Porter e Nb3Sn cavity a

> 6 8 Accelerating gradier

 4×10^{3}

f=1.3GHz

Cool Copper Technology Idea and R&D

- C3 technology:
 - normal-conducting C-band copper cavities
 - operated at cryogenic temperatures (LN₂~80K)
 - gradients demonstrated up to 155 MV/m
- R&D:
 - plan towards demonstrator established during Snowmass
 - since then significant progress on system design, accelerator structure design, high gradient testing, vibration measurements, damping materials, alignment system, lowlevel rf & klystrons, ... and cryo-module design

• stand-alone facility 8km: 250 /550 GeV (70 /120 MV/m)

Cool Copper Technology Idea and R&D

- C3 technology:
 - normal-conducting C-band copper cavities
 - operated at cryogenic temperatures (LN₂~80K)
 - gradients demonstrated up to 155 MV/m
- R&D:
 - plan towards demonstrator established during Snowmass
 - since then significant progress on system design, accelerator structure design, high gradient testing, vibration measurements, damping materials, alignment system, lowlevel rf & klystrons, ... and cryo-module design
- stand-alone facility 8km: 250 /550 GeV (70 /120 MV/m)

Cool Copper Technology Idea and R&D

- C3 technology:
 - normal-conducting C-band copper cavities
 - operated at cryogenic temperatures (LN₂~80K)
 - gradients demonstrated up to 155 MV/m
- R&D:
 - plan towards demonstrator established during Snowmass
 - since then significant progress on system design, accelerator structure design, high gradient testing, vibration measurements, damping materials, alignment system, lowlevel rf & klystrons, ... and cryo-module design
- stand-alone facility 8km: 250 /550 GeV (70 /120 MV/m)

Linear Collider Vision

A Linear Collider Vision | J.List | ESPPU Open Symposium | Lido di Venezia June 24, 2025

Dynamic

C3 as upgrade for LCF

the route to 3 TeV

- studied in context of LCVision
- LCF injector complex and damping rings compatible with C3:
 - larger LCF DRs = lower risk
 - replace fast->slow kickers (kick whole trains)
 - bunch compressor length / emittance sufficient
 - => substantial part of infrastructure could be reused
- cryo-plants need modification
- SRF cryomodules could be sold / donated for XFELs / medical linacs /.. round the world
- to be considered in design of beam delivery systems and dumps

Parameter	Unit	it Value Value		Value
Centre-of-Mass Energy	GeV	1000	2000	<mark>3000</mark>
Site Length	km	20	20	33
Main Linac Length (per side)	km	7.5	7	10.5
Accel. Grad.	<mark>MeV/m</mark>	75	155	<mark>155</mark>
Flat-Top Pulse Length	ns	500	195	195
Cryogenic Load at 77 K	MW	14	20	30
Est. AC Power for RF Sources	MW	68	65	100
Est. Electrical Power for Cryogenic Cooling	MW	81	116	175
Est. Site Power	MW	200	230	320
RF Pulse Compression		N/A	3X	3X
RF Source efficiency (AC line to linac)	%	50	80	80
Luminosity	x10 ³⁴ cm ⁻² s ⁻¹	${\sim}4.5$	\sim 9	<mark>~14</mark>
Single Beam Power	MW	5	9	14
Injection Energy Main Linac	GeV	10	10	10
Train Rep. Rate	Hz	60	60	60
Bunch Charge	nC	1	1	1
Bunch Spacing	ns	3	1.2	1.2

C3 as upgrade for LCF

the route to 3 TeV

- studied in context of LCVision
- LCF injector complex and damping rings compatible with C3:
 - larger LCF DRs = lower risk
 - replace fast->slow kickers (kick whole trains)
 - bunch compressor length / emittance sufficient
 - => substantial part of infrastructure could be reused
- cryo-plants need modification
- SRF cryomodules could be sold / donated for XFELs / medical linacs /.. round the world
- to be considered in design of beam delivery systems and dumps

Parameter	Unit	Value	Value	Value
Centre-of-Mass Energy	GeV	1000	2000	<mark>3000</mark>
Site Length	km	20	20	<mark>33</mark>
Main Linac Length (per side)	km	7.5	7	10.5
Accel. Grad.	MeV/m	75	155	<mark>155</mark>
Flat-Top Pulse Length	ns	500	195	195
Cryogenic Load at 77 K	MW	14	20	30
Est. AC Power for RF Sources	MW	68	65	100
Est. Electrical Power for Cryogenic Cooling	MW	81	116	175
Est. Site Power	MW	200	230	320
RF Pulse Compression		N/A	3X	3X
RF Source efficiency (AC line to linac)	%	50	80	80
Luminosity	x10 ³⁴ cm ⁻² s ⁻¹	${\sim}4.5$	${\sim}$ 9	<mark>~14</mark>
Single Beam Power	MW	5	9	14
Injection Energy Main Linac	GeV	10	10	10
Train Rep. Rate	Hz	60	60	60
Bunch Charge	nC	1	1	1
Bunch Spacing	ns	3	1.2	1.2

Sustainability: C3 can be 2-4x more power efficient in TeV regime than CLIC / ILC Very exciting R&D target for the next decade!

HALHF

Hybrid-Asymmetric Linear Higgs Factory

- e+e- LC using e-beam-driven plasma wakefield acceleration for the e- beam...
- ...and RF cavities for the e+ beam
- => asymmetric collisions with γ=1.67 (HERA: γ=3), luminosity ~ILC baseline
- site-length and cost small & cheap:
 - 250 GeV: 4.9 km, 3.8 BCHF
 - 550 GeV: 8.4 km, 6.3 BCHF

Plasma-accelerator linac

(48 stages, 7.8 GeV per stage, 1 GV/m)

if R&D successful - estimated need:
 213 MCHF & 341 FTEyrs over ~15 years

HALHF

RF linac

(3 GeV e⁻)

Electron

source

(1.6 nC)

Positron

target

(4.8 nC)

Surface-to-underground

transfer line (5% slope)

Helical

undulator

PWA Booster à la HALHF

as upgrade to LCF

- can one apply the HALHF-scheme to (asymmetrically) double the E_{CM} of a symmetric e+e- LC?
- example: 250 GeV (125 GeV on 125 GeV) -> 550 GeV (550 GeV on 137.5 GeV, γ=1.2)
 - e+ : only small increase in E(e+) needed either operate at 35 MV/m or add few cryomodules
 - e-: re-purpose main linac to produce drive-beams for plasma stages
 => low gradient high current operation
 - plasma stages would sit next to undulator source
 => need to foresee lateral space from beginning
 - PWA needs ~10x shorter bunches than LCF standard
 => the HALHF concept assumes that suitable sources will be available same assumption here
- conclusion:
 - conceptually possible
 - in detail many open questions
 - => room for exciting R&D and creative system design!

10 TeV pCM wakefield collider

R&D and LCF pave the way

- 10 TeV Wakefield Collider Study
 - by 2028 produce a unified, self-consistent concept, including cost scales for a 10-TeV parton-center-of-mass (pCM) collider based on wakefield accelerator (WFA) technology
 - HEP-wide community effort, involving theorists, experimentalists and Linear Collider experts (~100 participants at last collaboration meeting)
 - investigates the Physics case for 10 TeV pCM e+e-, e-e-, and $\gamma\gamma$ collisions
 - identifies R&D at current and proposes the required new R&D test facilities
 - would greatly benefit from R&D enabled by LCF
- R&D challenges
 - optimization of power efficiency
 - demonstration of collider plasma modules with 10 GeV energy gain, > 100 pC of charge and normalized emittance < 100 nm
 - staging of collider modules
 - positron acceleration in plasma (not a problem in wake-driven structures or for $\gamma\gamma$)
 - BDS and beam-beam effects at 10 TeV pCM

10 TeV pCM wakefield collider

R&D and LCF pave the way

- 10 TeV Wakefield Collider Study
 - by 2028 produce a unified, self-consistent concept, including cost scales for a 10-TeV parton-center-of-mass (pCM) collider based on wakefield accelerator (WFA) technology
 - HEP-wide community effort, involving theorists, experimentalists and Linear Collider experts (~100 participants at last collaboration meeting)
 - investigates the Physics case for 10 TeV pCM e+e-, e-e-, and $\gamma\gamma$ collisions

facilities:

facilities...

- identifies R&D at current and proposes the required **new** R&D test facilities
- would greatly benefit from R&D enabled by LCF
- R&D challenges
 - optimization of power efficiency
 - demonstration of collider plasma modules with 10 GeV energy gain, > 100 pC of charge and normalized emittance < 100 nm
 - staging of collider modules
 - positron acceleration in plasma (not a problem in wake-driven structures or for $\gamma\gamma$)
 - BDS and beam-beam effects at 10 TeV pCM

Linear Collider Vision

BEAM DELIVERY SYSTEM KHZ LASER SOUR

vibrant R&D program at many AWAKE (CERN), FACET II (SLAC), FLASH-Forward (DESY), AWA (ANL), BELLA (LBNL), SPARC-LAB (INFN), many high-intensity laser

14

10 TeV pCM wakefield collider

R&D and LCF pave the way

- 10 TeV Wakefield Collider Study
 - by 2028 produce a unified, self-consistent concept, including cost scales for a 10-TeV parton-center-of-mass (pCM) collider based on wakefield accelerator (WFA) technology
 - HEP-wide community effort, involving theorists, experimentalists and Linear Collider experts (~100 participants at last collaboration meeting)
 - investigates the Physics case for 10 TeV pCM e+e-, e-e-, and $\gamma\gamma$ collisions
 - identifies R&D at current and proposes the required new R&D test facilities
 - would greatly benefit from R&D enabled by LCF
- R&D challenges
 - optimization of power efficiency
 - demonstration of collider plasma modules with 10 GeV energy gain, > 100 pC of charge and normalized emittan
 - staging of collider modules
 - positron acceleration in plasma
 - BDS and beam-beam effects at

Linear Collider Vision

vibrant R&D program at many facilities:

AWAKE (CERN), FACET II (SLAC), FLASH-Forward (DESY), AWA (ANL), BELLA (LBNL), SPARC-LAB (INFN), many high-intensity laser facilities...

Higher Luminosity, Photon Collisions & Beyond

Energy- & Particle Recovery as path to High Luminosities

higher luminosity

δ_{VSete}.

20

10

6 5

2

- Energy and particle recovery:
 - boost luminosity up to 10³⁶ / cm² / s and high e+ polarisation
 - by re-using particles and energy => requires to limit beam-strahlung, far from disruption limit
 - several concepts e.g. ReLiC, ERLC
- physics motivations for high luminosity in e+e- LC:
 - most measurements statistics limited => gain everywhere

A Linear Collider Vision | J.List | ESPPU Open Symposium | Lido di Venezia June 24, 2025

quid He temperature [K]	2	2	2	4.5	4.5
unch population [10 ¹⁰]	2	2.5	2.5	2.5	2.5
ollision frequency [MHz]	2.62	1.5	1.5	1.5	1.5
uty cycle	0.0012	CW	CW	CW	CW
eam current, all beams [mA]	0.042	12	12	12	12
ormalised emittance hor.[μ m] / vert.[nm]	5/25	4/1	4/1	4/1	4/1
_x / β _y [m] / [mm]	0.013/0.41	2.2/0.19	2.2/0.19	2.2/0.19	4/0.36
σ_x / σ_y at IP [μ m] / [nm]	0.52/7.7	6/0.9	6/0.9	6/0.9	6/0.9
D_{χ} / D_{γ}	0.5/34.5	0.01/87	0.01/87	0.01/87	0.01/88
max	0.068	0.0028	0.0028	0.0028	0.0031
uminosity [10 ³⁴ cm ⁻² s ⁻¹]	2.7	140	140	140	153
C Site Power [MW]	111	~135	~105	~95	~ 250
ReLiC based on current "conventional" Nb SW SCRF technology [512]. Cryogenics system: 80 MW					

LCF

250

31.5

2

Centre-of-mass energy [GeV

Accel, Grad, [MeV/m

Cavity Q₀ [10¹⁰]

ReLiC¹

250

12.55

16

Damping ring

ReLiC

250

12.55

4

ReLiC²

250

12.55

ReLiC³

550

27.6

Energy- & Particle Recovery as path to High Luminosities

A Linear Collider Vision | J.List | ESPPU Open Symposium | Lido di Venezia June 24, 2025

Beyond a collider

Beam-dump / fixed-target / R&D / irradiation

E MILLING HILLING THE MELLING Ample opportunities to foresee beam extraction / dump instrumentation / far detectors at a LCF

- extraction of bunches before IP -> mono-energetic, extremely stable, few 10¹⁰ @ 1-10 Hz => super-LUXE (SF-QED χ = O(few hundred) & BSM search), super-LDMX, ...
- disrupted beam after IP -> broad energy and highly divergent, but up to 10¹⁵ eot / s super-SHIP, generic dark photon and ALP searches => together with e+e- cover all Dark Sector portals
- Low-emittance, mono-energetic beams ideal for
 - high-rate detector and beam instrumentation tests
 - creating low-emittance beams of photons / muons / neutrons for various applications (hadron spectroscopy, material science, irradiation, tomography, radioactive isotope production, i.,
 - accelerator development:
 - high-gradient accelerating structures, new final focus schemes, deceleration (for ERLs), beam and laser driven plasma, ...
 - from extracted beam to test small setups to large-scale demonstrators for upgrades of the main facility

Conclusions & Invitation

General Considerations

at the heart of LCVision

- Timing is important need a timely e+e- Higgs factory based on technology in-hand:
 - current young researchers are key to both the HL-LHC program and the future Higgs factory
 - prolonged uncertainly or delays in decision making discourage ECRs => loss of talent
 - clear and timely transition from HL-LHC to next collider will provide long-term research opportunities
- Flexibility is important too keep driving (and profit from) advanced accelerator technologies:
 - stageable and upgradable approach
 - can decide to switch / upgrade technology at any stage
 - based on scientific and technological developments or even break-throughs
- Need for intensified accelerator R&D:
 - goal for the next-to-next generation facility must be a 10-TeV pCM collider
 - there is no affordable technology today
 - all routes (pp <=>HFM; $\mu\mu$ <=> cooling; ee/ $\gamma\gamma$ <=> PWFA) need expensive R&D and demonstrators
 - a staged and flexible Higgs factory aligns best with this ambitious R&D program

Conclusions

LCVision for the ESPPU

- we need a new e+e- collider to study the Higgs now
- a Linear Collider has decisive advantages:
 - particle physics: polarisation & high-energy reach
 => Higgs pair production in two complementary production modes

• strategically:

- well-understood technology and staged approach allow fast start
- flexible and responsive to future physics developments
- technologically:
 - flexible upgrades with advanced accelerator technologies
- for the next-to-next step: support R&D towards 10-TeV pCM scale
- the LCVision team contributed to the ESPPU:
 - the physics and technology case for Linear Colliders in general
 - and proposed a Linear Collider Facility @ CERN as the next flagship project, in the spirit of the Linear Collider Vision

Invitation to participate in LCVision

What you can do

- sign-up for LCVision mailing list (CERN e-group): <u>http://simba3.web.cern.ch/simba3/SelfSubscription.aspx?groupName=LCVision-General</u>
- sign up on supporter list for the LCVision documents:
 - either following link on https://agenda.linearcollider.org/event/10624/program
 - or directly on <u>https://www.ppe.gla.ac.uk/LC/LCVision/index.php?</u> <u>show=instadmin&skey=etUI1visTy25</u>
- join us at LCWS2025: October 20-24 in Valencia, Spain

Any Questions?