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Neutrino physics cases
- Neutrino oscillations 

- granted physics case: CP violation, n mass ordering → tests of fundamental symmetries of Nature

- BSM door (Pilar’s talk)

- Neutrino have mass… but which one?

- Very important impact on cosmology (Valerie’s talk)

- Are neutrino new type of particles? Majorana vs Dirac 

- 0nbb: the most compelling and first order BSM case (Pilar’s talk) 

- Neutrino as cosmic messangers: from low E (SuperNovae) to high E (Valerie’s talk)

- Neutrino & nuclear physics: neutrino-nucleus interaction cross-sections

- crucial for precision on oscillation, neutrino astrophysics 

- new probes to study neutrino properties and nuclear properties
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Neutrino oscillation experiments
- Accelerator neutrino, long-baseline experiments:

- controlled production of n and n + near detector → CPV and MO, precision PMNS (q23, Dm2
23) 

- T2K, NOVA → HyperKamiokande, DUNE
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- controlled production of n and n + near detector → CPV and MO, precision PMNS (q23, Dm2
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Neutrino oscillation experiments
- Accelerator neutrino, long-baseline experiments:

- controlled production of n and n + near detector → CPV and MO, precision PMNS (q23, Dm2
23) 

- T2K, NOVA → HyperKamiokande, DUNE 

SuperKamiokande 
volume x8
(water Cherencov)

T2K beam 
X2.6 power

- Very long baseline

- Wide-band energy beam 
(~few GeV)

- LAr technology: strong CERN 
contribution with protoDUNE

- Start beam in 2031 with staged approach

Proven technology 
boosted by factor ~20

Starts of data taking 
in 2028 

3High complementarity

- T2K, NOVA → HyperKamiokande, DUNE (both experiments have ~40/50% European collaborators)



  

- Reactor neutrinos 

- large statistics of ne

- DayaBay, RENO, Double Chooz short baseline: q13

- long baseline (KamLand) JUNO: q12, Dm2, 
MO from “phase” of vacuum oscillation

20kTon liquid scintillator
Starting data taking now!

Neutrino oscillation experiments
- Accelerator neutrino, long-baseline experiments:

- controlled production of n and n + near detector → CPV and MO, precision PMNS (q23, Dm2
23) 

- T2K, NOVA → HyperKamiokande, DUNE

4



  

- Atmospheric neutrinos
- large stat ‘for free’ but no control on flux: 
sensitivity to MO, q23, Dm2

23

IceCube DeepCore 10Mton + 
Upgrade 2MTon

Km3Net: deploying on-going 
→ ORCA 7MTon 

Mediterranean sea

Antarctic ice

Neutrino oscillation experiments

- Reactor neutrinos 

- large statistics of ne

- DayaBay, RENO, Double Chooz short baseline: q13

- long baseline (KamLand) JUNO: q12, Dm2, 
MO from “phase” of vacuum oscillation

- Accelerator neutrino, long-baseline experiments:

- T2K, NOVA → HyperKamiokande, DUNE

- controlled production of n and n + near detector → CPV and MO, precision PMNS (q23, Dm2
23) 
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- far detectors of LBL (eg SuperKamiokande) 
+ low-E dense detectors in observatories: 
huge statistics (MegaTons)
with limited PID and resolution 



  

Oscillations: where are we going?
- Two clear open physics cases at reach: CP-Violation and Mass Ordering

- number of events in long-baseline: x25 to x100 larger 
than previous generation. 
Importance of systematics (flux and xsec): precision → accuracy? 

- JUNO: solar sector improved by factor 5 to 10 → need accurate control of gigantic detector

break degeneracies between PMNS parameters – systematics – New Physics
- Overconstrain the oscillation system by combination of experiments to boost physics reach: 

- Oscillation precision physics → impact on model building, 
cosmology, 0nbb, ...
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Mass Ordering

Dm2
3i in ne and nm disapp (in vacuum)

JUNO + LBL(T2K/NOVA) 2-3 s ~2026

Various oscillations effects are sensitive to MO

Various ~3s hints in the next 5 years: 
agreement or tensions?
(Systematic bias or New Physics hints?)

First clear unambiguous MO determination 
from DUNE beam n

Also 5s expected ultimately from atmospherics 
(ORCA, IceCube, HK) and JUNO

→combination of experiments allowing over-
constraints and x-checks.
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Discovery of CP violation

If CPV large, discovery in 2-4 years (2030-2032 depending on systematics)
but knowing MO is important in degenerate regions

If CPV small, systematics may be the ultimate limitation to the discovery 
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MO known

→ importance of combination of experiments!  

Unique 
sensitivity on 
CPV from LBL 
experiments:

ESPP 
Preliminary

MO known

MO known



  

PMNS precision

- Precision physics on nm disappearance 
parameters |Dm23

2| and sin2q23

Present precision of LBL oscillation 
experiments: n rate~2-4% and Escale ~4% 
→ this precision must improve by a 
factor 4-5 in HK/DUNE

- Precision on dCP 
~7 degrees : if small CPV
~18 degrees : if large CPV

- Precision physics on solar sector (JUNO):
1% → 0.3% precision on Δ𝑚2
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2% → 0.5% precision on sin2𝜃12

→ Need to improve control of systematics: flux and xsec (neutrino energy reconstruction)
9
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Flux tuning: NA61/SHINE at CERN

Hadroproduction from proton scattering in the target: 
complex nuclear&hadronic physics
 
→ crucial direct tuning by NA61/SHINE
(e.g improved the flux uncertainty by factor ~2 during T2K era)
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Flux tuning: NA61/SHINE at CERN

Hadroproduction from proton scattering in the target: 
complex nuclear&hadronic physics
 
→ crucial direct tuning by NA61/SHINE
(e.g improved the flux uncertainty by factor ~2 during T2K era)

The dominant flux uncertainty for CPV & MO (n/n and wrong sign contamination) comes from low energy hadron 
rescattering  which escape (de)focusing 
 → proposal of new low-E beamline at SPS for NA61 

n background 
in n flux
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Flux tuning: NA61/SHINE at CERN

Hadroproduction from proton scattering in the target: 
complex nuclear&hadronic physics
 
→ crucial direct tuning by NA61/SHINE
(e.g improved the flux uncertainty by factor ~2 during T2K era)

The dominant flux uncertainty for CPV & MO (n/n and wrong sign contamination) comes from low energy hadron 
rescattering  which escape (de)focusing 
 → proposal of new low-E beamline at SPS for NA61 

n background 
in n flux

Also big impact on 
atmospheric neutrino 

flux uncertainties
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Near detectors and xsec measurements
Highly capable (near) detectors: exclusive reconstruction (low momentum protons, 
neutrons, electron vs g…) + PRISM technique → overconstrain the xsec model
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Near detectors and xsec measurements
Highly capable (near) detectors: exclusive reconstruction (low momentum protons, 
neutrons, electron vs g…) + PRISM technique → overconstrain the xsec model

- T2K ND280 Upgrade: new generation ND 
(eg, granular target → low threshold, neutron 
kinematics) 
Strong contribution from CERN

- R&D for further upgrade under discussion
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Near detectors and xsec measurements
Highly capable (near) detectors: exclusive reconstruction (low momentum protons, 
neutrons, electron vs g…) + PRISM technique → overconstrain the xsec model

- T2K ND280 Upgrade: new generation ND 
(eg, granular target → low threshold, neutron 
kinematics) 
Strong contribution from CERN

- R&D for further upgrade under discussion

- SBN@FNAL: rich xsec program 
thanks to amazing capabilities of LAr

+ running ICARUS (CERN 
contribution)

+ LAr TPC + HP Gas Argon TPC 
for DUNE ND 11



  

Hic sunt leones!

Strong EU (and CERN) physics expertise 

12

Lesson from present generation of 
experiments: known unknowns + 
unknown unknowns → biases
Especially away from QE peak 
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- New project from Neutrino Platform ‘nursery’: 
realistic beamline design and detector technology 
for monitored+tagged beam (nuSCOPE)

Measuring hadrons/leptons in the beamline → 
1% rate ne,nm, 1% En reso nm 12



  

Hic sunt leones!

Strong EU (and CERN) physics expertise 

- Another opportunity will rise from 
muon collider roadmap: NuSTORM 

m-→e- nm ne : 
- 1% precision on rate
- scanning En by beam tuning

Measuring hadrons/leptons in the beamline → 
1% rate ne,nm, 1% En reso nm

- New project from Neutrino Platform ‘nursery’: 
realistic beamline design and detector technology 
for monitored+tagged beam (nuSCOPE)
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Lesson from present generation of 
experiments: known unknowns + 
unknown unknowns → biases
Especially away from QE peak 



  

Future projects
- European funded exploratory studies: 

ESSnSB: new neutrino beam line exploiting the proton beam at the ESS

SuperChooz: new gigantic short baseline at Chooz reactor experiment

- Opportunity for interesting detector R&D

Opaque scintillator (LiquidO)

Water based liquid scintillator (ND280++)

Combination of water Cherencov and liquid scintillator (Theia proposal for DUNE Module 
of opportunity)

Enhanced optical readout for LAr TPC (DUNE FD3/4)

High Pressure Gas Argon TPC (DUNE ND)
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Beyond 
oscillations: 

Baryon Number 
Violation

Proton decay: 
>1034 years → >1035 years

Neutron-antineutron oscillations: 
unique sensitivity at ESS with a new 
proposed experiment (HIBEAM)

14



  

Neutrinos & astrophysics

- Neutrino, a new messenger from the cosmos (see Valerie’s talk)

Here focus on low energy neutrinos from SuperNovae (but also Sun, geoneutrinos)

- New technologies being developed for low energy neutrino detection
- New approaches for xsec measurements at very high energy 

15



  

Neutrinos from SuperNovae burst
Rich information: direct look ‘inside’ a 
complex astrophysical process
- HK has largest statistics (tenths of thousands of events at 10kPc) 
& very good pointing (1 degree)

- DUNE: unique clean sample of ne

- JUNO: best neutrino energy resolution and lowest threshold 
(pre-collapse neutrinos)

- IceCube (& ORCA) 

→ timing triangulation with ~degrees pointing resolution

→ SNEWS: combined trigger network crucial to enable 
multimessanger

From observation of one SN (Kamiokande, Nobel 

prize 2002) with ~24 events to thousands of events 
in multiple experiments: a brand new field 
would open !

Publ.Astron.Soc.Jap. 77 (2025) 2, L9-L15 e-Print: 2501.15256 [astro-ph.HE]
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Diffuse SuperNovae background
Crucial insights in star formation history → present 
models of DSNB flux differs by order of magnitudes!

Consistent excess from SK (both 
pure water and Gd loading): 2.3s ! 
(1-5 events expected)

SK-Gd has realistic possibility for discovery!
→ next generation dominated by HK and JUNO (50-100 events each in 10 years)

17



  

~keV detectors for ~MeV neutrinos

Allow to probe SM and BSM with low-E neutrinos 
(w/o gigantic detector)

~x100

~Nn
2

18

Coherent-elastic neutrino-nucleus scattering: large xsec 
Requires to measure of ~0.2-10 keV from nucleus recoil



  

~keV detectors for ~MeV neutrinos

18

Available measurements

Allow to probe SM and BSM with low-E neutrinos 
(w/o gigantic detector)

Coherent-elastic neutrino-nucleus scattering: large xsec 
Requires to measure of ~0.2-10 keV from nucleus recoil



  

~keV detectors for ~MeV neutrinos

18

‘Explosion’ of proposals

Allow to probe SM and BSM with low-E neutrinos 
(w/o gigantic detector)

Coherent-elastic neutrino-nucleus scattering: large xsec 
Requires to measure of ~0.2-10 keV from nucleus recoil



  

~keV detectors for ~MeV neutrinos

Experimental challenges to improve the measurements:
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- p-DAR at neutron spallation source (ne, nm) ~30 MeV
    - need to improve flux uncertainty (can use ne/nm ratio)

- at reactors (ne) ~5 MeV
     - need better calibration of quenching factor 

(CRAB approach + measure heat+ionization)

- from Sun (in large DM detectors) all flavours ~10 MeV

Allow to probe SM and BSM with low-E neutrinos 
(w/o gigantic detector)

Coherent-elastic neutrino-nucleus scattering: large xsec 
Requires to measure of ~0.2-10 keV from nucleus recoil



  

Forward-LHC for ~TeV neutrinos

SND@HL-LHC

New way to probe production (PDF) and xsec at TeV +  
to search for BSM signatures (eg, FIP):
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SND@HL-LHC

FASER Upgrade

- An obvious serendipitous opportunity

New way to probe production (PDF) and xsec at TeV +  
to search for BSM signatures (eg, FIP):
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Forward-LHC for ~TeV neutrinos

- Proposal for a much bigger dedicated facility in future 
(Forward Physics Facility)



  

SND@HL-LHC

FASER Upgrade

- An obvious serendipitous opportunity

New way to probe production (PDF) and xsec at TeV +  
to search for BSM signatures (eg, FIP):

21

Forward-LHC for ~TeV neutrinos

- Proposal for a much bigger dedicated facility in future 
(Forward Physics Facility)

- SHIP granted physics case: 10-100 GeV neutrinos, enriched in nt



  

Neutrino mass

- 0nbb

- direct mn in lab

- cosmology 
(Valerie’s talk)

(Bands corresponds to value allowed by present oscillation measurements 
and unknown Majorana phases)

Various correlated observables:

22



  

mne<0.45 eV (90%)

Atomic tritium production mandatory 
to avoid de 1eV broadening of 
molecular tritium → global consortium 

b decay: KATRIN++, 
Project8, QTNM, PTolemy

3H → 3He + e- + ne

23



  

Challenge of scalability for 
bolometers

e- capture: ECHo, HOLMES
163Ho + e- → ne + 163Dy* 

mne<0.45 eV (90%)

Atomic tritium production mandatory 
to avoid de 1eV broadening of 
molecular tritium → global consortium 

3H → 3He + e- + ne
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b decay: KATRIN++, 
Project8, QTNM, PTolemy



  

Challenge of scalability for 
bolometers

e- capture: ECHo, HOLMES
163Ho + e- → ne + 163Dy* 

mne<0.45 eV (90%)

Atomic tritium production mandatory 
to avoid de 1eV broadening of 
molecular tritium → global consortium 

3H → 3He + e- + ne

- Significant R&D effort is required in the next years 
to demonstrate the technology to reach IO scale
This will be essential also to achieve the long-term goal of detecting the 
cosmic neutrino background (CvB) -> next major step beyond CMB 23

b decay: KATRIN++, 
Project8, QTNM, PTolemy



  

Radioactive 
background

(Nuclear matrix element) x (phase space): S ~ Qbb
6

Background ~10-4 - 10-5 cts/keV/kg/y
Energy resolution ~ 50-5 keV
Mass x time ~ (100 kg → ton) x 10 years 
 

1

mβ β
2 ∼G0 v|M 0 ν|

2√ Mt
bΔE

Neutrinoless double beta decay
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Technologies
- Te (CUORE* bolometers → SNO+ in LS): large natural abundance (30%), low Qbb

- Xe: low Qbb

- Kamland-Zen LS: easy scalability but limited resolution (240 → 120 keV)
- liquid TPC: EXO → nEXO, XLZD: improved resolution (~50 keV) and multivariate 

analysis
- gas TPC (NEXT*): good resolution (12 keV), backgr. rejection with topological cuts

- Ge (GERDA, Legend*): very low Qbb but amazing resolution (2 keV), difficult scalability
- Mo bolometers (CUPID*, Amore): high Qbb, good resolution (8 keV), difficult scalability

Technological comparison:
half-life for fixed mbb x background x DE

→ exposure needed for a fixed sensitivity 

25* Underground laboratories in Europe

ESPP Preliminary



  

Technologies

Not one winning option: we need to keep the technological development on various fronts. 
Complex control of background → confirmation from at least two different technologies. 
Discovery on different isotopes will bring complementary info (NME vs BSM) 

→ next-to-next generation:
- Ba++ tagging in Xe detectors (scale with mass instead of √mass)
- bolometers with very high Qbb isotopes: Zr,Nd 
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- Te (CUORE* bolometers → SNO+ in LS): large natural abundance (30%), low Qbb

- Xe: low Qbb

- Kamland-Zen LS: easy scalability but limited resolution (240 → 120 keV)
- liquid TPC: EXO → nEXO, XLZD: improved resolution (~50 keV) and multivariate 

analysis
- gas TPC (NEXT*): good resolution (12 keV), backgr. rejection with topological cuts

- Ge (GERDA, Legend*): very low Qbb but amazing resolution (2 keV), difficult scalability
- Mo bolometers (CUPID*, Amore): high Qbb, good resolution (8 keV), difficult scalability



  

Status and prospects

mbb < meV needs cancellations/fine tuning 
mβ β=|m1c13

2 c12
2 e2 i(α1−δCP)+m2c13

2 s12
2 e2 i(α2−δCP)+m3 s13

2 |
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Status and prospects

- modeling of matrix elements to interpret a signal (and 
evaluate future sensitivities): 

- input from single and double charge exchange measurements
- convergence when short- & long-range correlations included
- correlations (in some models) between 2nbb and 0nbb

 - These detectors are exquisite measurement devices: 
new nuclear measurements and BSM searches in the 
2nbb spectrum

- Already putting limits on BSM (see Pilar’s talk)

Eur.Phys.J.C 84 (2024) 9, 925 e-Print: 2405.10766 [nucl-ex]

ESPP 
Preliminary

ESPP 
Preliminary

ESPP 
Preliminary



  

Summary

- Particularly crucial expertise in Europe (and at CERN) on flux and xsec for LBL: new opportunities and 
new projects (NA61/SHINE low-E beamline, nuSCOPE, nuSTORM)

- Success of Neutrino Platform for DUNE and T2K → future: DUNE FD3/4 modules, HK ND280++ 
→ complete ‘hub’ for neutrino analysis pivotal for combination of experiments

- Neutrino rich physics case beyond oscillations from very low-E: CEvNS, SuperNovae, 
…  to very high-E: forward neutrinos at HL-LHC, astrophysics sources

- Neutrino masses in lab: major technological challenge to go beyond present generation. 
Important impact on cosmology

- 0nbb: the most compelling BSM physics case. A big technological challenge: R&D should 
continue

- Need to settle SM effects and nuclear physics → new door to BSM

27

- Oscillations experiments: MO, CPV, PMNS precision + BSM reach. 
Improved control of systematics and combination of experiments are game changers



  

References (beyond ESPP input)

DUNE Phase II white paper: https://arxiv.org/pdf/2408.12725

HyperKamiokande LBL sensitivity: https://arxiv.org/abs/2505.15019

JUNO Chin.Phys.C 46 (2022) 12, 123001 e-Print: 2204.13249 [hep-ex]
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~100 relevant inputs submitted
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NA61/SHINE additional impact
Knowing the flux precisely is also crucial in order to enable precise neutrino xsec 
measurements at SBN@FNAL. 

Impact of new proposed low-E beamline on SBND

29



  

ESS (+ ESSnSB)
Fundamental (nuclear and) particle physics center for neutron physics (complementary to 
colliders) 

proton beam
tungsten target -> neutron 
spallation source

1st n moderator: cold 
and thermal neutrons

2nd n moderator: cold, 
very-cold, ultra-cold 
neutrons

Rich particle physics program with neutron:

- CEnNS 
- n,nbar oscillations
- n EDM, charge

Construction on-going

- high precision n decay
- n interferometry
- n spin and spin procession

30



  

ESS (+ ESSnSB)

proton beam
tungsten target -> neutron 
spallation source

1st n moderator: cold 
and thermal neutrons

2nd n moderator: cold, 
very-cold, ultra-cold 
neutrons

Rich particle physics program with neutron:

- CEnNS 
- n-nbar oscillations
- n EDM, charge

Further opportunities being explored:

Construction on-going

New target and beamline for oscillations

Alternatives:
- different monitored/tagged beamline
- use pions to feed a low energy muon 
storage ring 

- high precision n decay
- n interferometry
- n spin and spin procession

HK

DUNE

ESSnuSB

With new ND and FD 
(HK mass x2)
→ improved dCP 
resolution:
for large CPV
18 → 7 degrees

Fundamental (nuclear and) particle physics center for neutron physics (complementary to 
colliders) 
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SuperChooz

Exploratory study funded by 
AntiMatterOTech and CLOUD

New large detector (10 kTon) for reactor ne 
(Chooz site, q13) but also ne and NC 
→ solar and geo-neutrinos and new 
measurements at reactor 

Technology based on 
LiquidO: 
R&D on-going

31



  

Step into the future
Systematics control crucial for PMNS precision physics but also for BSM searches

- Measure oscillations in model-
independent way → characterizes L/E

Eg: drop all SM assumptions (allows for steriles, NSI…) 
CP <-> T violation  = L-even dependency at fixed E 

- Explore neutrino reach with open mind: 
new observables

- Search for Quantum Gravity effects 
along the baseline

- CPT: AD/Elena CPT baryonic -> nm 
vs nmbar disappearance: CPT leptonic

Eg: Quantum Correlations, Bell’s like inequality in the time domain 
(LGI), coherence on thousands of km

Nature Phys. 20 (2024) 6, 913-920 e-Print: 2308.00105 [hep-ex]

Phys.Rev.Lett. 128 (2022) 9, 091801 e-Print: 2106.16099 [hep-ph]

Phys.Rev.Lett. 117 (2016) 5, 050402 e-Print: 1602.00041 [quant-ph]

32

https://arxiv.org/abs/1602.00041


  

We should look at the topic from a wider prospective (beyond the present “simplistic” 
paradigm of the measurement of PMNS parameters)

What we want to do is to characterize 
precisely the oscillation as a function of the 
fundamental variable L/E: combine different L 
and different E

- The ‘standard’ oscillation paradigm (PMNS-based) is very strict and ‘accidental’
In particular it assumes - minimal 3-flavour scenario

- standard neutrino interactions for production and detection

- standard matter effects along propagation

Example:
CP violation in a more model-independent 
way→ search for T-violation → look for L 
dependency of oscillations at fixed energy 

No good fit with 
L-even terms 
only → 
T-Violation !

Phys.Rev.Lett. 128 (2022) 9, 091801
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Events at LBL

~T2K, HK ~NOVA ~DUNE

Ultimate statistics
(HK 10 years – 2038
DUNE 15 years - 2046)

34



  

dCP vs MO degeneracies

35



  



  



  

Systematics in long-baseline experiments

Present precision of oscillation experiments: nu rate~2-4% and Escale ~4% → this precision 
must improve by a factor 4-5 in HK/DUNE

Near 
Detectors

highly capable

oscillations 
along baseline

Far 
Detector(s)

huge underground

Protons → hadrons (focusing) 
→ leptons and neutrinos.

- ND always sensitive to xsec x flux:   σ true⋅ϕtrue∼σwrong⋅ϕwrong
- ND and FD are different (acceptance, En)

- Flux is not monochromatic → En must be reconstructed 
from final state particles (neutrons, thresholds, …)

→ predictive and tuned 
flux and xsec models

→ highly capable near 
detectors

We need:

38



  



  



  

M
ass O

rdering

2029 2031 2033 2035 2037

today

today
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Mass Ordering: DUNE

~2.5 years
(2033)
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CP 
violation

2038

2033

2041

2046

2038-2039

2033-2034

~10 years (2041)

~15 years (2046)

~10 years (2041)

~15 years (2046)
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dCP 
resolution

Ultimate results 
(HK 10 years – 2038
DUNE 15 years - 2046)

HK best resolution for small CPV (large 
stat)

DUNE bring shape info useful for dCP 
resolution in case of large CPV

45



  

dCP resolution

HK 
3 years
(2031)

HK 
10 years
(2038)

DUNE 
300kt-MW-yr 
(2037) 

DUNE 
1000kt-MW-yr 
(2046) 

ESSnuSB

dCP=0 10 degrees 6 degrees 11 degrees 7 degrees 5 degrees

dCP=-p/2 30 degrees 20 degrees 27 degrees 18 degrees 6 degrees

Dominant factors:
- small CPV → statistics (nue/nuebar dominat syst)
- large CPV → spectral shape (many systematics: 
E scale, NC background, ...)

46



  

CEnNS

+ measurement at different energies and lowest possible threshold (reactors)

Flavour ratio at p-DAR unique feature for sterile searches and very useful for NSI

Rate measurements→ major technological challenge: control of Erecoil and extract 
reliable differential information vs Q2

47



  

SuperNovae burst

Theia 
proposal

48



  

T2K and NOVA

NO

IO

Direct comparison



  

T2K beam + SK atmospherics
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