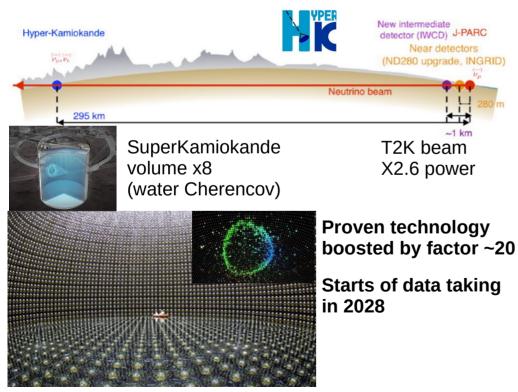
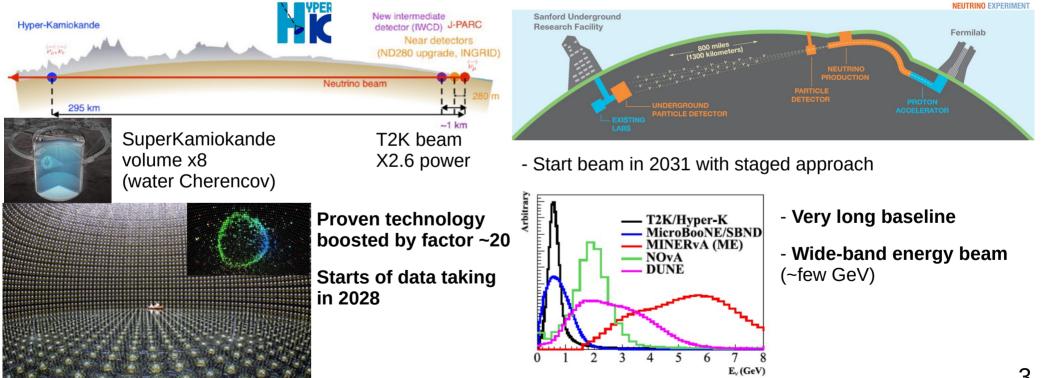


Measurements of neutrino properties in the SM and beyond

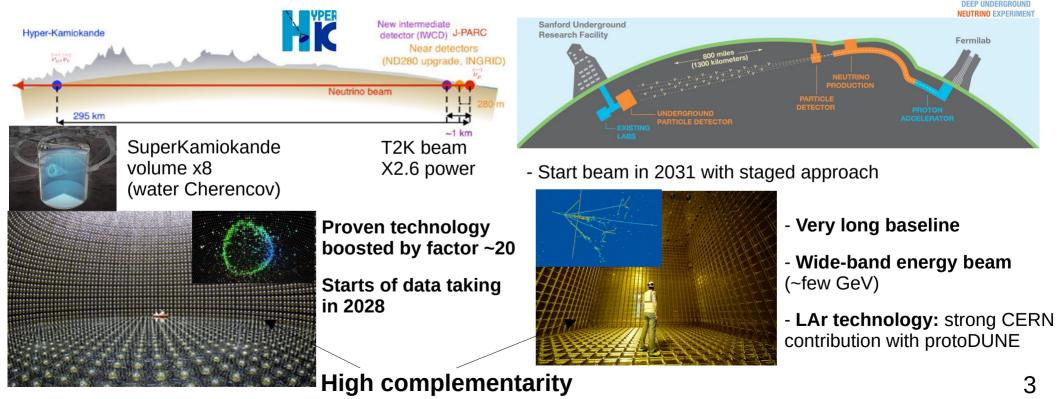
S.Bolognesi (IRFU, CEA) for the Neutrino & Cosmic messenger Working Group

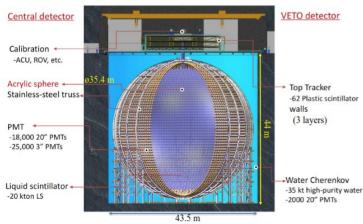

Neutrino physics cases

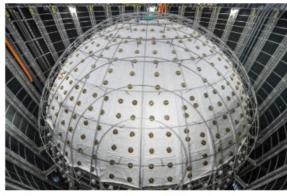
- Neutrino oscillations


- granted physics case: **CP violation**, v mass ordering \rightarrow tests of fundamental symmetries of Nature
- BSM door (Pilar's talk)
- Neutrino have mass... but which one?
 - Very important impact on cosmology (Valerie's talk)
- Are neutrino new type of particles? Majorana vs Dirac
 - $0\nu\beta\beta$: the most compelling and first order BSM case (*Pilar's talk*)
- Neutrino as cosmic messangers: from low E (SuperNovae) to high E (Valerie's talk)
- Neutrino & nuclear physics: neutrino-nucleus interaction cross-sections
 - crucial for precision on oscillation, neutrino astrophysics
 - new probes to study neutrino properties and nuclear properties

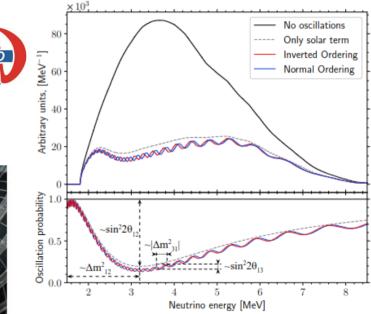
- Accelerator neutrino, long-baseline experiments:
 - controlled production of v and \overline{v} + near detector \rightarrow CPV and MO, precision PMNS (θ_{23} , Δm^2_{23})
 - T2K, NOVA \rightarrow HyperKamiokande, DUNE


- Accelerator neutrino, long-baseline experiments:
 - controlled production of v and \overline{v} + near detector \rightarrow CPV and MO, precision PMNS (θ_{23} , Δm^2_{23})
 - T2K, NOVA \rightarrow HyperKamiokande, DUNE (both experiments have ~40/50% European collaborators)

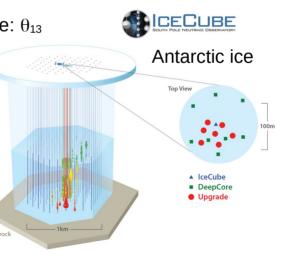

- Accelerator neutrino, long-baseline experiments:
 - controlled production of v and \overline{v} + near detector \rightarrow CPV and MO, precision PMNS (θ_{23} , Δm^2_{23})
 - T2K, NOVA \rightarrow HyperKamiokande, DUNE (both experiments have ~40/50% European collaborators)



- Accelerator neutrino, long-baseline experiments:
 - controlled production of v and \overline{v} + near detector \rightarrow CPV and MO, precision PMNS (θ_{23} , Δm^2_{23})
 - T2K, NOVA \rightarrow HyperKamiokande, DUNE (both experiments have ~40/50% European collaborators)



- Accelerator neutrino, long-baseline experiments:
 - controlled production of v and \overline{v} + near detector \rightarrow CPV and MO, precision PMNS (θ_{23} , Δm^2_{23})
 - T2K, NOVA \rightarrow HyperKamiokande, DUNE
- Reactor neutrinos
 - large statistics of $\overline{\nu}_e$
 - DayaBay, RENO, Double Chooz short baseline: $\theta_{\mbox{\tiny 13}}$
 - long baseline (KamLand) JUNO: θ_{12} , Δm^2 , MO from "phase" of vacuum oscillation


The JUNO detector seen from outside. The Veto PMTs and the earth magnetic field compensation coil are seen.

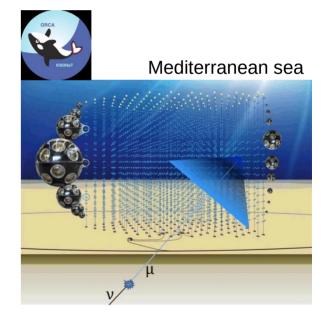
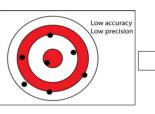
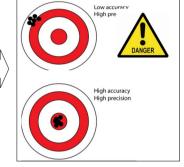

20kTon liquid scintillator Starting data taking now!

Figure 2: Schematic view of the JUNO detector

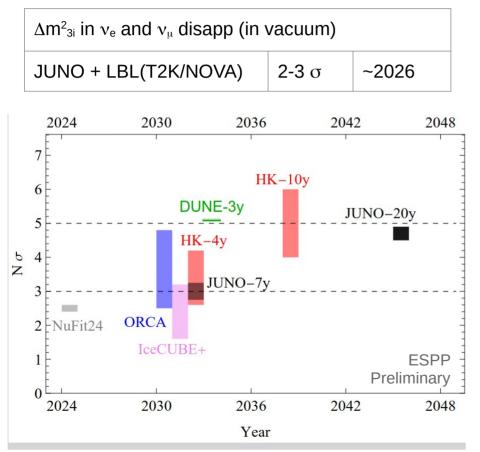
- Accelerator neutrino, long-baseline experiments:
 - controlled production of v and \overline{v} + near detector \rightarrow CPV and MO, precision PMNS (θ_{23} , Δm^2_{23})
 - T2K, NOVA \rightarrow HyperKamiokande, DUNE
- Reactor neutrinos
 - large statistics of $\overline{\nu}_{e}$
 - DayaBay, RENO, Double Chooz short baseline: $\theta_{\mbox{\tiny 13}}$
 - long baseline (KamLand) JUNO: $\theta_{12},\,\Delta m^2,\,$ MO from "phase" of vacuum oscillation
- Atmospheric neutrinos
 - large stat 'for free' but no control on flux: sensitivity to $MO,\,\theta_{23},\,\Delta m^2{}_{23}$
 - far detectors of LBL (eg SuperKamiokande) + **low-E dense detectors in observatories**: huge statistics (MegaTons) with limited PID and resolution


IceCube DeepCore 10Mton + Upgrade 2MTon



Km3Net: deploying on-going \rightarrow ORCA 7MTon

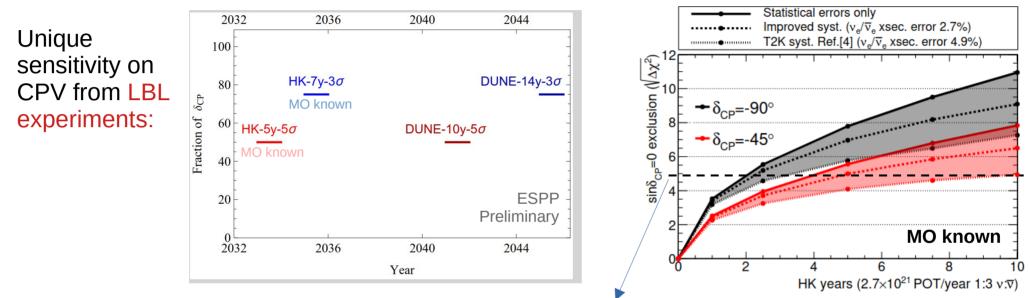
Oscillations: where are we going?


- Two clear open physics cases at reach: **CP-Violation and Mass Ordering**
- Oscillation precision physics \rightarrow impact on model building, cosmology, $0\nu\beta\beta$, ...
 - number of events in **long-baseline**: x25 to x100 larger than previous generation. Importance of **systematics** (flux and xsec): precision \rightarrow accuracy?

- **JUNO:** solar sector improved by factor 5 to 10 \rightarrow need accurate **control of gigantic detector**
- Overconstrain the oscillation system by <u>combination of experiments</u> to boost physics reach: break degeneracies between PMNS parameters – systematics – New Physics

Mass Ordering

Various oscillations effects are sensitive to MO

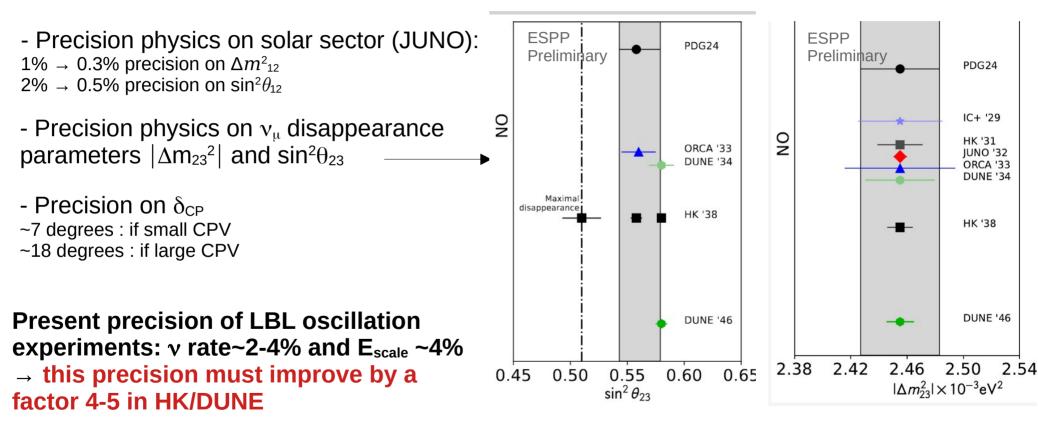

Various ~3 σ hints in the next 5 years: agreement or tensions? (Systematic bias or New Physics hints?)

First clear unambiguous MO determination from DUNE beam $\boldsymbol{\nu}$

Also 5σ expected ultimately from atmospherics (ORCA, IceCube, HK) and JUNO

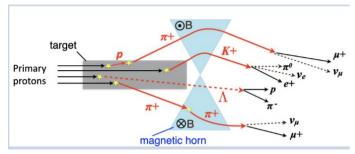
 \rightarrow combination of experiments allowing over- constraints and x-checks.

Discovery of CP violation



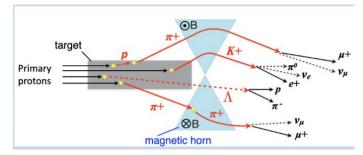
If CPV large, **discovery in 2-4 years** (2030-2032 depending on systematics) but knowing MO is important in **degenerate regions**

If CPV small, systematics may be the ultimate limitation to the discovery


→ importance of combination of experiments!

PMNS precision

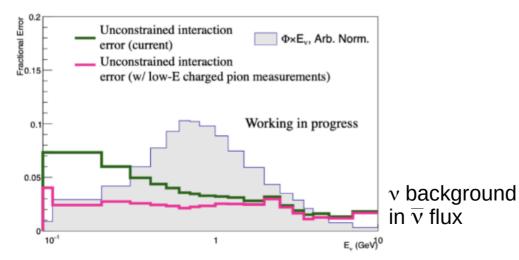
→ Need to improve control of systematics: <u>flux and xsec (neutrino energy reconstruction)</u>


Flux tuning: NA61/SHINE at CERN

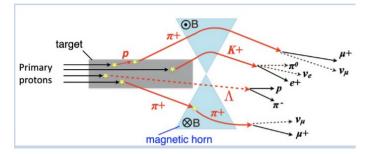
Hadroproduction from proton scattering in the target: complex nuclear&hadronic physics

→ crucial direct tuning by NA61/SHINE
 (e.g improved the flux uncertainty by factor ~2 during T2K era)

Flux tuning: NA61/SHINE at CERN



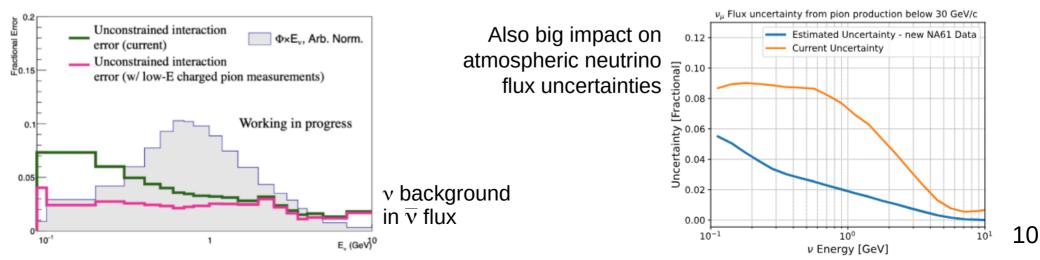
Hadroproduction from proton scattering in the target: complex nuclear&hadronic physics


 \rightarrow crucial direct tuning by NA61/SHINE (e.g improved the flux uncertainty by factor ~2 during T2K era)

The dominant flux uncertainty for CPV & MO (v/v and wrong sign contamination) comes from low energy hadron rescattering which escape (de)focusing

 $\rightarrow\,$ proposal of new low-E beamline at SPS for NA61

Flux tuning: NA61/SHINE at CERN



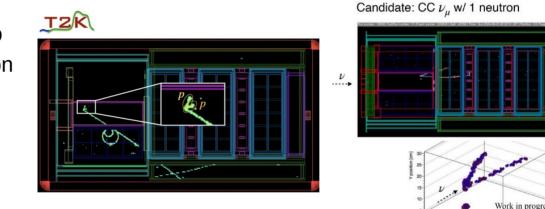
Hadroproduction from proton scattering in the target: complex nuclear&hadronic physics

 \rightarrow crucial direct tuning by NA61/SHINE (e.g improved the flux uncertainty by factor ~2 during T2K era)

The dominant flux uncertainty for CPV & MO (v/\overline{v} and wrong sign contamination) comes from low energy hadron rescattering which escape (de)focusing

 $\rightarrow\,$ proposal of new low-E beamline at SPS for NA61

Near detectors and xsec measurements


Highly capable (near) detectors: exclusive reconstruction (low momentum protons, neutrons, electron vs γ ...) + PRISM technique \rightarrow **overconstrain the xsec model**

Near detectors and xsec measurements

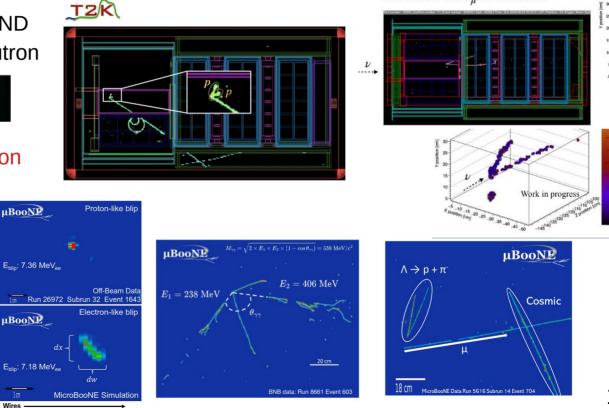
Highly capable (near) detectors: exclusive reconstruction (low momentum protons, neutrons, electron vs γ ...) + PRISM technique \rightarrow **overconstrain the xsec model**

- T2K ND280 Upgrade: new generation ND (eg, granular target \rightarrow low threshold, neutron kinematics) Strong contribution from CERN

- R&D for further upgrade under discussion

5 40 45 50

Near detectors and xsec measurements

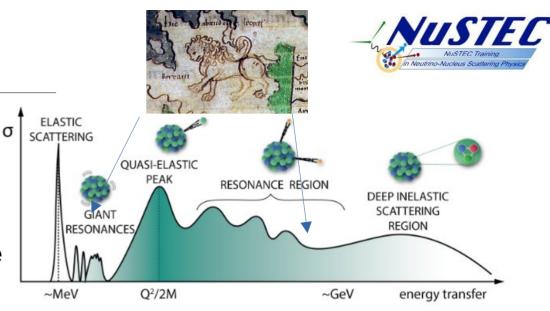

Highly capable (near) detectors: exclusive reconstruction (low momentum protons, neutrons, electron vs γ ...) + PRISM technique \rightarrow **overconstrain the xsec model**

- T2K ND280 Upgrade: new generation ND (eg, granular target \rightarrow low threshold, neutron kinematics) Strong contribution from CERN

- R&D for further upgrade under discussion

- **SBN@FNAL:** rich xsec program thanks to amazing capabilities of LAr

- + running ICARUS (CERN contribution)
- + LAr TPC + HP Gas Argon TPC for DUNE ND

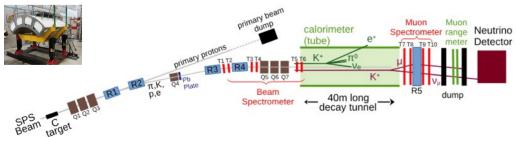


Candidate: CC ν_{μ} w/ 1 neutron

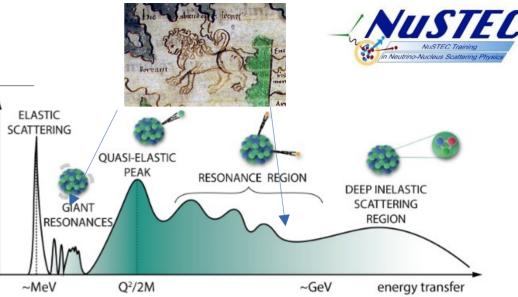
Hic sunt leones!

Lesson from present generation of experiments: known unknowns + <u>unknown unknowns</u> → <u>biases</u> Especially away from QE peak

Strong EU (and CERN) physics expertise


Hic sunt leones!

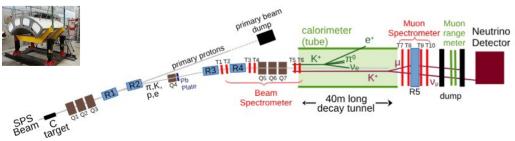
Lesson from present generation of experiments: known unknowns + <u>unknown unknowns</u> → <u>biases</u> Especially away from QE peak


Strong EU (and CERN) physics expertise

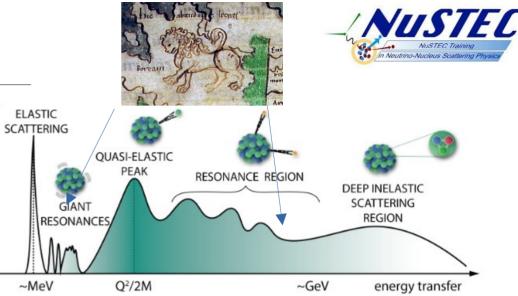
- New project from Neutrino Platform 'nursery': realistic beamline design and detector technology for monitored+tagged beam (nuSCOPE)

σ

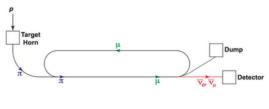
Measuring hadrons/leptons in the beamline \rightarrow 1% rate $\nu_e, \nu_\mu,$ 1% Ev reso ν_μ



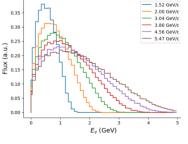
Hic sunt leones!


Lesson from present generation of experiments: known unknowns + <u>unknown unknowns</u> → <u>biases</u> Especially away from QE peak

Strong EU (and CERN) physics expertise


- New project from Neutrino Platform 'nursery': realistic beamline design and detector technology for monitored+tagged beam (nuSCOPE)

Measuring hadrons/leptons in the beamline \rightarrow 1% rate $\nu_e, \nu_\mu,$ 1% Ev reso ν_μ



- Another opportunity will rise from muon collider roadmap: NuSTORM

 μ - \rightarrow e- $\nu_{\mu} \overline{\nu}_{e}$:

- 1% precision on rate
- scanning E_{V} by beam tuning

Future projects

- European funded exploratory studies:

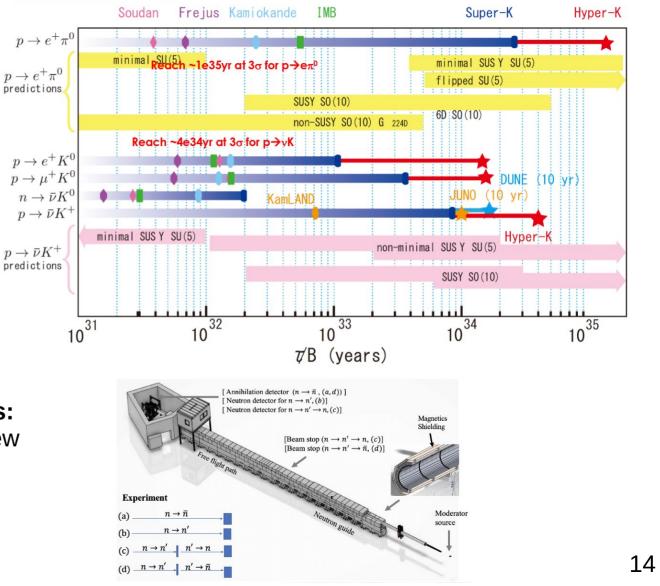
ESSvSB: new neutrino beam line exploiting the proton beam at the ESS **SuperChooz**: new gigantic short baseline at Chooz reactor experiment

- Opportunity for interesting detector R&D

Water based liquid scintillator (ND280++)

High Pressure Gas Argon TPC (DUNE ND)

Enhanced optical readout for LAr TPC (DUNE FD3/4)


Combination of water Cherencov and liquid scintillator (**Theia** proposal for DUNE Module of opportunity)

Opaque scintillator (LiquidO)

Beyond oscillations: Baryon Number Violation

Proton decay: >10³⁴ years \rightarrow >10³⁵ years

Neutron-antineutron oscillations: unique sensitivity at ESS with a new proposed experiment (HIBEAM)

Neutrinos & astrophysics

Neutrino, a new messenger from the cosmos (see Valerie's talk)
 Here focus on low energy neutrinos from SuperNovae (but also Sun, geoneutrinos)

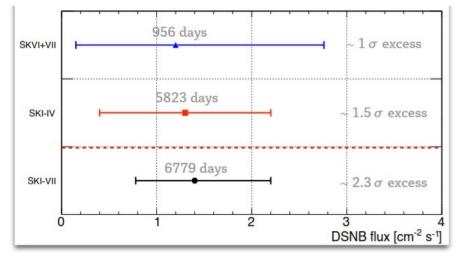
- New technologies being developed for low energy neutrino detection
- New approaches for xsec measurements at very high energy

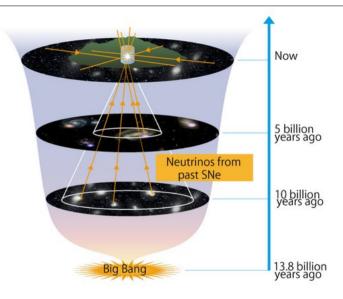
Neutrinos from SuperNovae burst

Rich information: direct look 'inside' a complex astrophysical process

- HK has largest statistics (tenths of thousands of events at 10kPc) & very good pointing (1 degree)

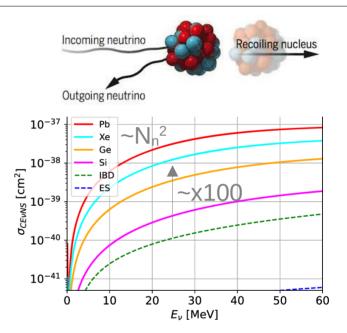
- DUNE: unique clean sample of ν_{e}
- JUNO: best neutrino energy resolution and lowest threshold (pre-collapse neutrinos)
- IceCube (& ORCA)
- \rightarrow timing triangulation with ~degrees pointing resolution
- \rightarrow SNEWS: combined trigger network crucial to enable multimessanger


From observation of one SN (Kamiokande, Nobel prize 2002) with ~24 events to thousands of events in multiple experiments: **a brand new field would open !**



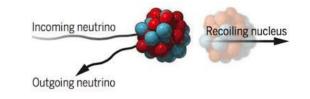
Diffuse SuperNovae background

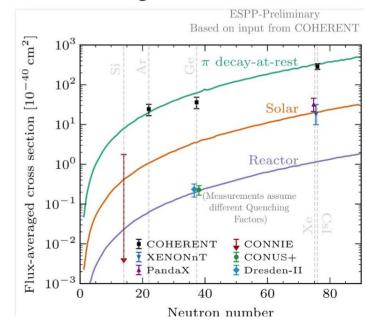
Crucial **insights in star formation history** \rightarrow present models of DSNB flux differs by order of magnitudes!


Consistent excess from SK (both pure water and Gd loading): 2.3σ ! (1-5 events expected)

SK-Gd has realistic possibility for discovery!

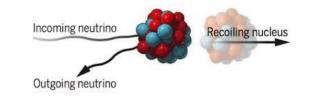
 \rightarrow next generation dominated by **HK and JUNO** (50-100 events each in 10 years)

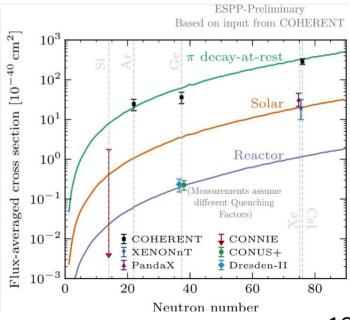

Coherent-elastic neutrino-nucleus scattering: large xsec Requires to measure of ~0.2-10 keV from nucleus recoil


Allow to probe SM and BSM with low-E neutrinos (w/o gigantic detector)

Coherent-elastic neutrino-nucleus scattering: large xsec Requires to measure of ~0.2-10 keV from nucleus recoil

Allow to probe SM and BSM with low-E neutrinos (w/o gigantic detector)




Experiment	Neutrino source	Detector material	Detection?	Reference
COHERENT	Pion-decay-at-rest	Csl, 14.6 kg	Yes	arXiv:2110.07730
COHERENT	Pion-decay-at-rest	Ar, 24 kg	Yes	arXiv:2003.10630
COHERENT	Pion-decay-at-rest	Ge, 17.6 kg	Yes	arXiv:2406.13806
Dresden II	Reactor	Ge, 3 kg	Yes	arXiv:2202.09672
CONUS+	Reactor	Ge, 2.83 kg	Yes	arXiv:2501.05206
Connie	Reactor	Si, 36.2 g	No	arXiv:2110.13033
Connie		(very low threshold)		ainiv.2110.15055
Texono	Reactor	Ge, 1.4 kg	No	arXiv:2411.18812
nuGen	Reactor	Ge, 1.4 kg	No	arXiv:2502.18502
Red 100	Reactor	Xe, 126 kg	No	arXiv:2411.18641
XENONnT	Solar	Xe, 6ton	Yes	arXiv:2407.02877
PandaX-4T	Solar	Xe, 5.5 ton	Yes	arXiv:2407.10892

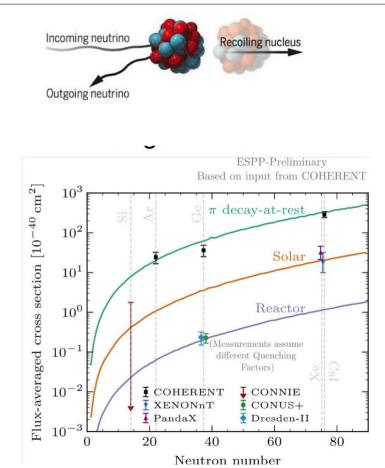
Available measurements

Coherent-elastic neutrino-nucleus scattering: large xsec Requires to measure of ~0.2-10 keV from nucleus recoil

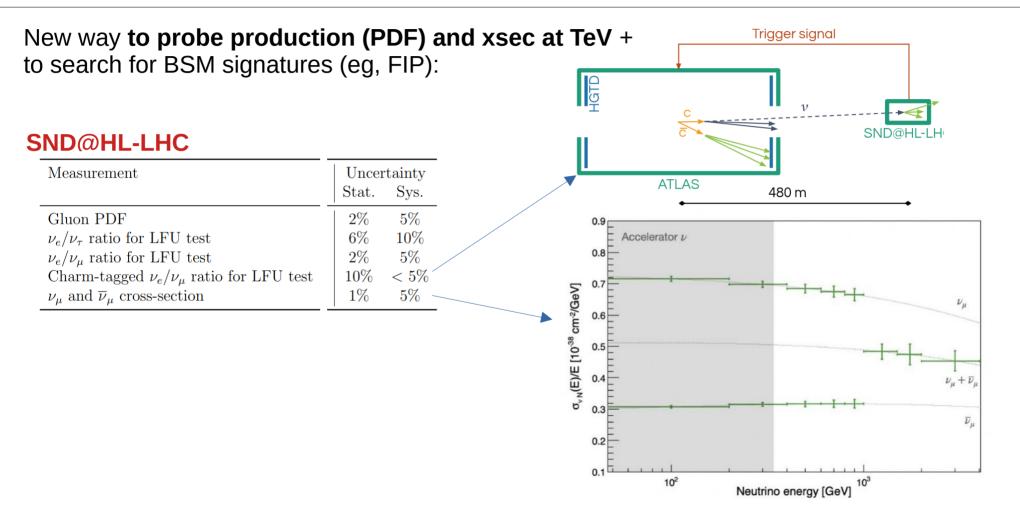
Allow to probe SM and BSM with low-E neutrinos (w/o gigantic detector)

Experiment	Neutrino source	Detector material	Deployed?	Reference
COHERENT	Pion-decay-at-rest	Nal (3500 kg)	3/7 modules deployed	COHERENT input
COHERENT	Pion-decay-at-rest	Liquid Ar (750 kg)	Cryostat under commissioning	COHERENT input
COHERENT	Pion-decay-at-rest	Cryogenic Csl (low threshold)	No	COHERENT input
COHERENT	Pion-decay-at-rest	Ne	No	COHERENT input
Captain Mills	Pion-decay-at-rest	Ar	Commissioning last year	arXiv:2105.14020
ESS	Pion-decay-at-rest	Csl, Si, Xe, Ge, Ar, C_3F_8 (large ν flux)	No	arXiv:1911.00762
SuperCDMS	Solar	Si, Ge	Commissioning	Proceedings
RES_NOVA	Solar	Pb	No	arXiv:2004.0693
CYGNUS	Solar	He	No	arXiv:2404.03690
BULLKID	Solar	Si	Demonstrator commissioned	arXiv:2209.14806
CONUS100	Reactor	Ge	No	CONUS input
CONNIE upgrade	Reactor	Si (low threshold)	No	CONNIE input
MINER	Reactor	Ge, Si	Engineering runs done	arXiv:1609.02060
NEON	Reactor	Nal	Yes	arXiv:2204.06318
NUCLEUS	Reactor	Al ₂ O ₃ , CaWO ₄ (low threshold)	Yes	arXiv:2211.04189
Ricochet	Reactor	Ge (low threshold)	Yes	arXiv:2111.06745
SBC	Reactor	Ar	Prototype under construction	arXiv:2101.0878
NUXE	Reactor	Xe	No	Paper
PALEOCCENE	Reactor	Different materials (exploits defect formation, low threshold)	No	arXiv:2203.05525

'Explosion' of proposals


Coherent-elastic neutrino-nucleus scattering: large xsec Requires to measure of ~0.2-10 keV from nucleus recoil

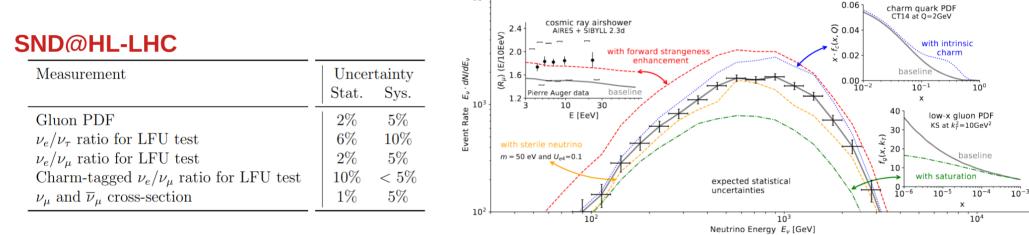
Allow to probe SM and BSM with low-E neutrinos (w/o gigantic detector)


Experimental challenges to improve the measurements:

- π -DAR at neutron spallation source (v_e , v_μ) ~30 MeV
 - need to improve flux uncertainty (can use $\nu_{e}\!/\nu_{\mu}$ ratio)
- at reactors ($\overline{\nu}_e$) ~5 MeV
 - need better calibration of quenching factor (CRAB approach + measure heat+ionization)

- from Sun (in large DM detectors) all flavours ~10 MeV

Forward-LHC for ~TeV neutrinos

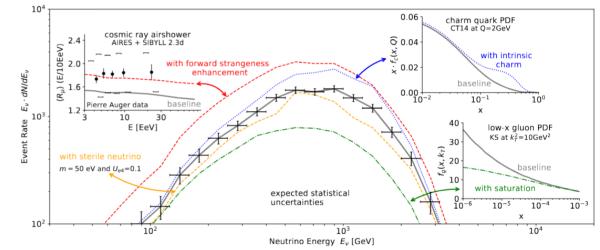


Forward-LHC for ~TeV neutrinos

104

New way to probe production (PDF) and xsec at TeV + to search for BSM signatures (eq. FIP):

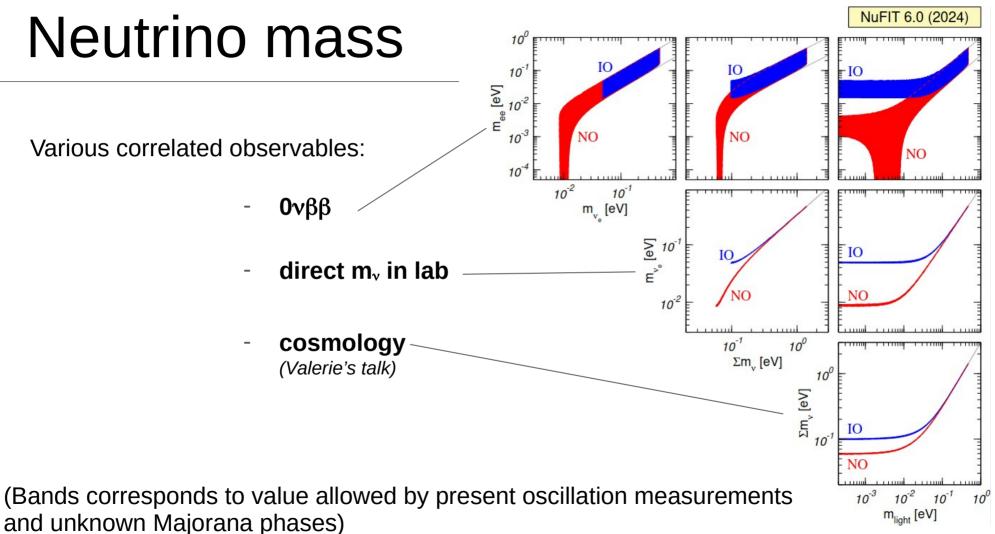
FASER Upgrade


- An obvious serendipitous opportunity
- Proposal for a much bigger dedicated facility in future (Forward Physics Facility)

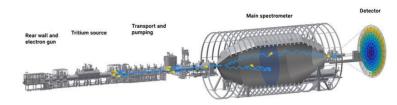
Forward-LHC for ~TeV neutrinos

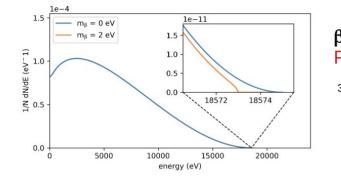
New way to probe production (PDF) and xsec at TeV + to search for BSM signatures (eq. FIP):

FASER Upgrade

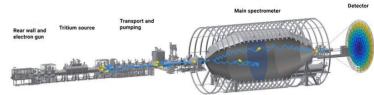

SND@HL-LHC			
Measurement	Uncertainty		
	Stat.	Sys.	
Gluon PDF	2%	5%	
ν_e/ν_{τ} ratio for LFU test	6%	10%	
ν_e/ν_μ ratio for LFU test	2%	5%	
Charm-tagged ν_e/ν_μ ratio for LFU test	10%	< 5%	
ν_{μ} and $\overline{\nu}_{\mu}$ cross-section	1%	5%	

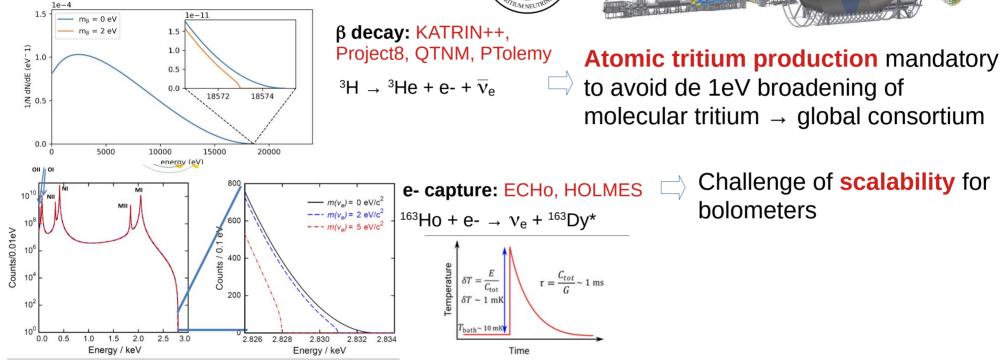
- An obvious serendipitous opportunity
- Proposal for a much bigger dedicated facility in future (Forward Physics Facility)
- SHIP granted physics case: 10-100 GeV neutrinos, enriched in v_{τ}


	CC DIS	Charm CC DIS
N_{ν_e}	2.0×10^{6}	$1.2 imes 10^5$
$N_{\nu\mu}$	5.8×10^{6}	$2.8 imes 10^5$
$N_{ u_{ au}}$	5.9×10^4	$3.2 imes 10^3$
$N_{\overline{\nu}_e}$	4.0×10^{5}	$2.1 imes 10^4$
$N_{\overline{\nu}_{\mu}}$	1.3×10^{6}	$5.0 imes 10^4$
$N_{\overline{ u}_{ au}}$	4.3×10^{4}	2.5×10^3


21

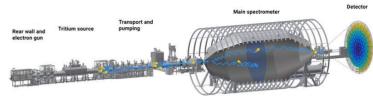
m_{ve}<0.45 eV (90%)





Atomic tritium production mandatory to avoid de 1eV broadening of molecular tritium \rightarrow global consortium

m_{ve}<0.45 eV (90%)



23

m_{ve}<0.45 eV (90%)

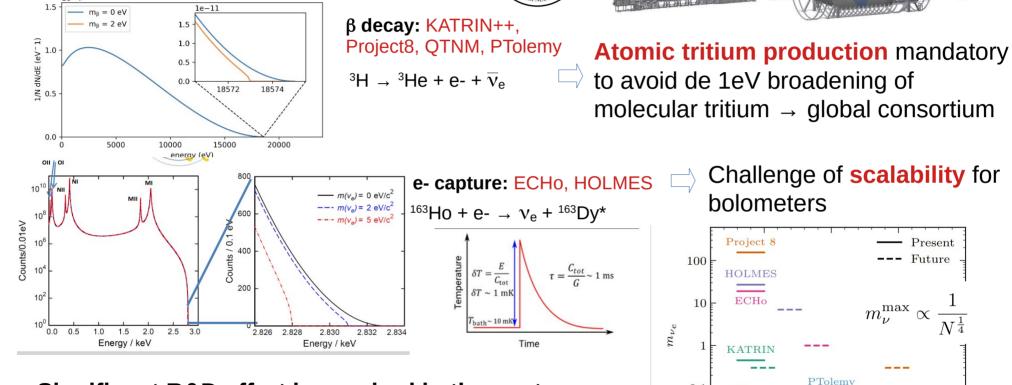
1e-4

 $0.1 [m_{\beta}^{\min}]_{IO}$

0.01

ESPP preliminary

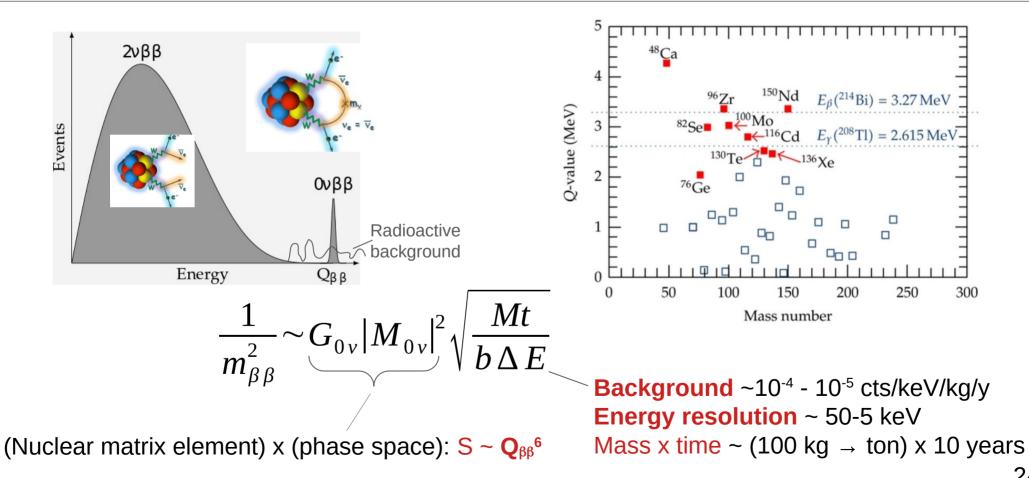
 $(m_{\beta}^{\min})_{\rm NO}$


2025

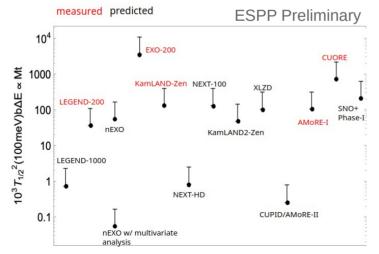
2030

Year

2035


2040

Significant R&D effort is required in the next years to demonstrate the technology to reach IO scale —


This will be essential also to achieve the long-term goal of detecting the cosmic neutrino background (CvB) -> next major step beyond CMB

Neutrinoless double beta decay

Technologies

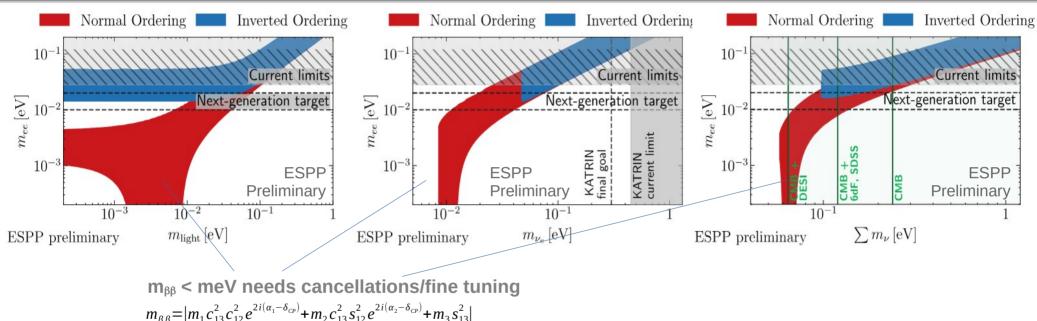
- **Te** (CUORE* bolometers \rightarrow SNO+ in LS): large natural abundance (30%), low $Q_{\beta\beta}$
- Xe: low $Q_{\beta\beta}$
 - Kamland-Zen LS: easy scalability but limited resolution (240 \rightarrow 120 keV)
 - liquid TPC: EXO → nEXO, XLZD: improved resolution (~50 keV) and multivariate analysis
 - gas TPC (NEXT*): good resolution (12 keV), backgr. rejection with topological cuts
- **Ge** (GERDA, Legend*): very low $Q_{\beta\beta}$ but **amazing resolution** (2 keV), difficult scalability
- Mo bolometers (CUPID*, Amore): high $Q_{\beta\beta}$, good resolution (8 keV), difficult scalability

Technological comparison: half-life for fixed $m_{\beta\beta} x$ background x ΔE

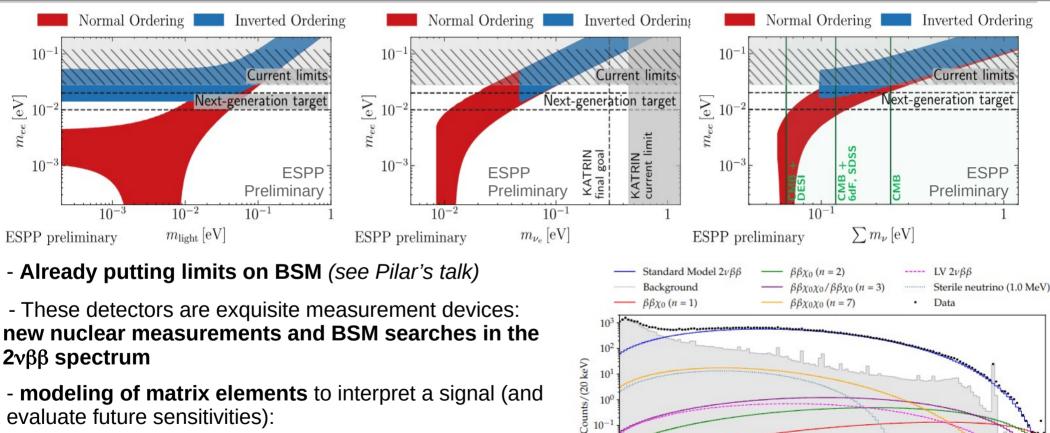
 \rightarrow exposure needed for a fixed sensitivity

* Underground laboratories in Europe 25

Technologies


- **Te** (CUORE* bolometers \rightarrow SNO+ in LS): large natural abundance (30%), low $Q_{\beta\beta}$
- Xe: low $Q_{\beta\beta}$
 - Kamland-Zen LS: easy scalability but limited resolution (240 \rightarrow 120 keV)
 - liquid TPC: EXO → nEXO, XLZD: improved resolution (~50 keV) and multivariate analysis
 - gas TPC (NEXT*): good resolution (12 keV), backgr. rejection with topological cuts
- **Ge** (GERDA, Legend*): very low $Q_{\beta\beta}$ but **amazing resolution** (2 keV), difficult scalability
- **Mo bolometers (CUPID***, Amore): high Q_{ββ}, good resolution (8 keV), difficult scalability

Not one winning option: we need to keep the technological development on various fronts. Complex control of background \rightarrow confirmation from at least two different technologies. Discovery on different isotopes will bring complementary info (NME vs BSM)


\rightarrow next-to-next generation:

- Ba++ tagging in Xe detectors (scale with mass instead of \sqrt{mass})
- bolometers with very high $Q_{\beta\beta}$ isotopes: Zr,Nd

Status and prospects

Status and prospects

10

10-

10

500

Eur.Phys.J.C 84 (2024) 9, 925 e-Print: 2405.10766 [nucl-ex]

1500

Energy [keV]

2000

2500

1000

- input from single and double charge exchange measurements
- convergence when short- & long-range correlations included
- correlations (in some models) between $2\nu\beta\beta$ and $0\nu\beta\beta$

Summary

- **Oscillations** experiments: MO, CPV, PMNS precision + BSM reach. Improved control of systematics and combination of experiments are game changers

- Particularly crucial **expertise in Europe (and at CERN) on flux and xsec for LBL**: new opportunities and new projects (**NA61/SHINE low-E beamline, nuSCOPE, nuSTORM**)

- Success of Neutrino Platform for DUNE and T2K \rightarrow future: DUNE FD3/4 modules, HK ND280++ \rightarrow complete 'hub' for neutrino analysis pivotal for combination of experiments

- Neutrino rich physics case beyond oscillations from very low-E: CEvNS, SuperNovae, ... to very high-E: forward neutrinos at HL-LHC, astrophysics sources

- Need to settle SM effects and nuclear physics \rightarrow new door to BSM

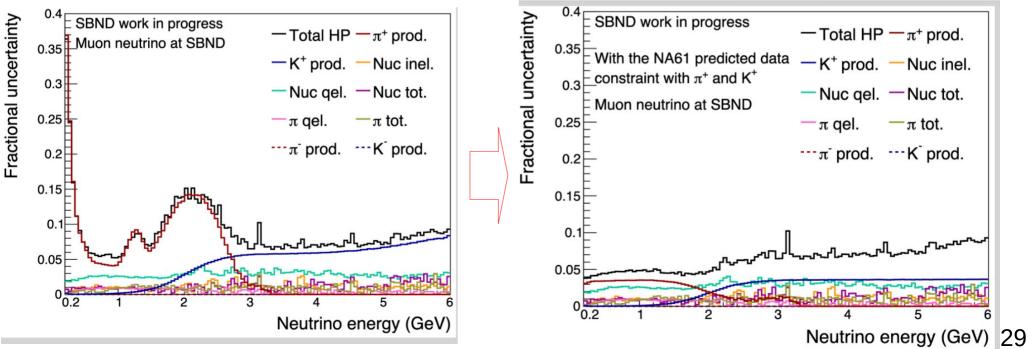
- Neutrino masses in lab: major technological challenge to go beyond present generation. Important impact on cosmology

- $0\nu\beta\beta$: the most compelling BSM physics case. A big technological challenge: R&D should continue

References (beyond ESPP input)

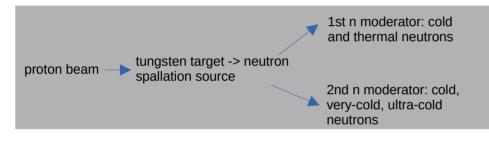
~100 relevant inputs submitted

DUNE Phase II white paper: https://arxiv.org/pdf/2408.12725 DUNE Contribution toSnowmass 2021e-Print:2203.06100 [hep-ex]


HyperKamiokande LBL sensitivity: https://arxiv.org/abs/2505.15019 HyperKamiokande TDR: e-Print: 1805.04163 [physics.ins-det]

JUNO Chin.Phys.C 46 (2022) 12, 123001 e-Print: 2204.13249 [hep-ex] JUNO – T2K/NOVA pheno combination: Phys.Rev.D 111 (2025) 1, 1 e-Print: 2404.08733 [hep-ph] JUNO - Chin.Phys.C 49 (2025) 3, 033104 e-Print: 2405.18008 [hep-ex] References: NFXT: JJ Gomez-Cadenas, 3rd Summit on DBD, 2025 nEXO: https://arxiv.org/pdf/2106.16243 D. Leonard, 1° Yemilab Workshop 2024 KamLAND2-Zen: Itaru Shimizu. International Conference on the Physics of the two Ininities, 2023 AMoRE: document submitted to **ESPPU** SNO+: document submitted to ESPPU CUPID: slides submitted to ESPPU LEGEND: slides submitted to ESPPU XLZD: M. Schumann, 3rd Summit on DBD 2025

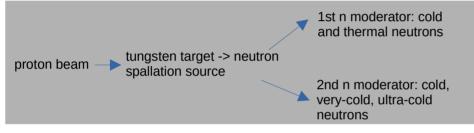
NA61/SHINE additional impact


Knowing the flux precisely is also crucial in order to enable precise neutrino xsec measurements at SBN@FNAL.

Impact of new proposed low-E beamline on SBND

ESS (+ ESSvSB)

Fundamental (nuclear and) particle physics center for neutron physics (complementary to colliders)


Rich particle physics program with neutron:

- CEvNS
- high precision n decay
- n,nbar oscillations n interferometry
- n EDM, charge n spin and spin procession

Construction on-going

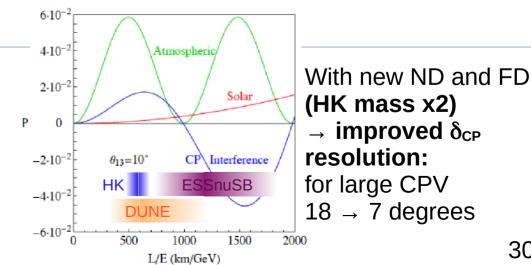
ESS (+ ESSvSB)

Fundamental (nuclear and) particle physics center for neutron physics (complementary to colliders)

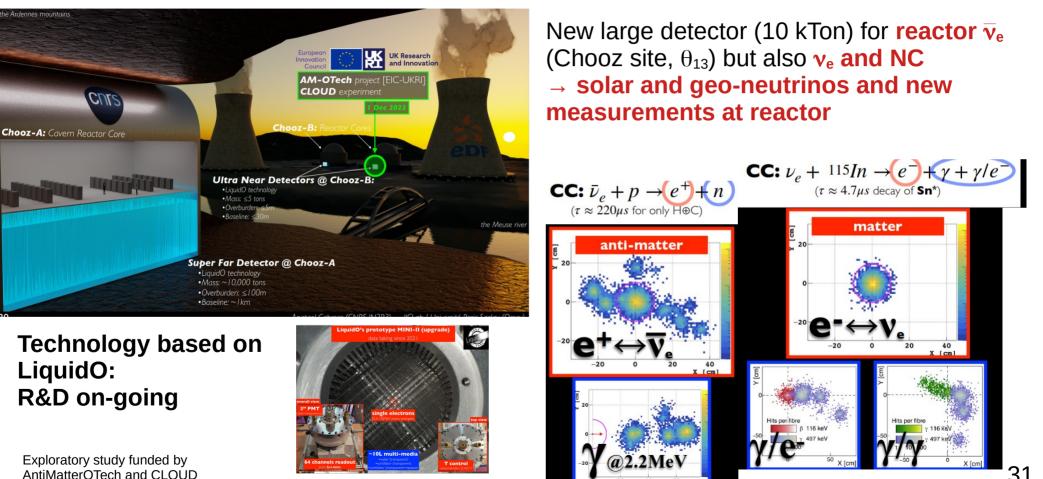
Construction on-going

Further opportunities being explored:

New target and beamline for oscillations


Alternatives:

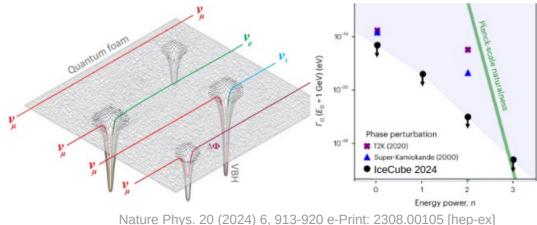
- different monitored/tagged beamline
- use pions to feed a low energy muon storage ring


Rich particle physics program with neutron:

- CEvNS

- high precision n decay
- n-nbar oscillations n interferometry
- n EDM, charge
- n spin and spin procession

SuperChooz


Step into the future

Systematics control crucial for PMNS precision physics but also for **BSM searches**

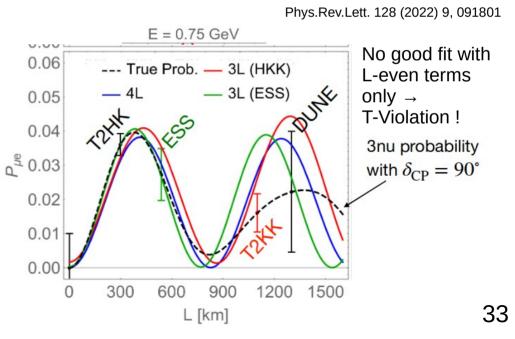
- Measure oscillations in modelindependent way \rightarrow characterizes L/E
- Explore neutrino reach with open mind: new observables
- Search for **Quantum Gravity effects** along the baseline
- CPT: AD/Elena CPT baryonic -> nm vs nmbar disappearance: CPT leptonic

Eg: drop all SM assumptions (allows for steriles, NSI...) CP <-> T violation = L-even dependency at fixed E Phys.Rev.Lett. 128 (2022) 9, 091801 e-Print: 2106.16099 [hep-ph]

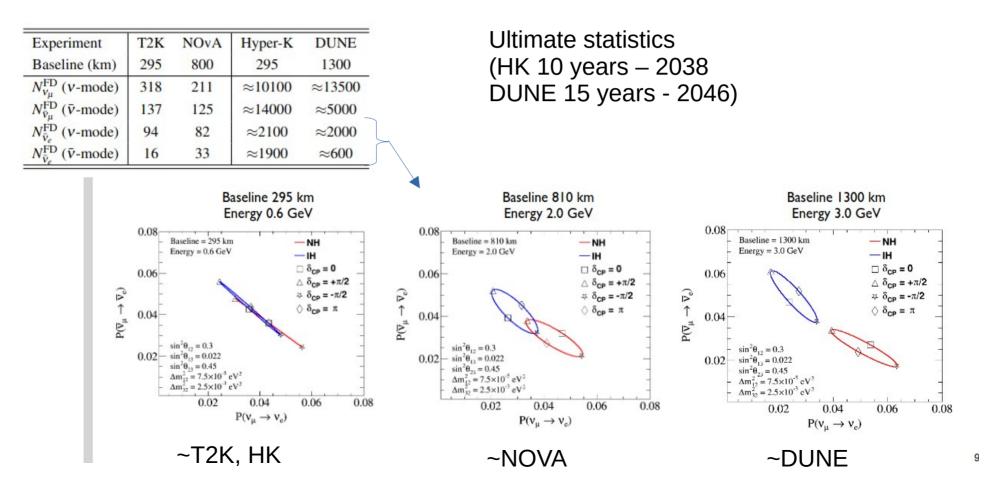
Eg: Quantum Correlations, Bell's like inequality in the time domain (LGI), coherence on thousands of km Phys.Rev.Lett. 117 (2016) 5, 050402 e-Print: 1602.00041 [guant-ph]

We should look at the topic from a **wider prospective** (beyond the present "simplistic" paradigm of the measurement of PMNS parameters)

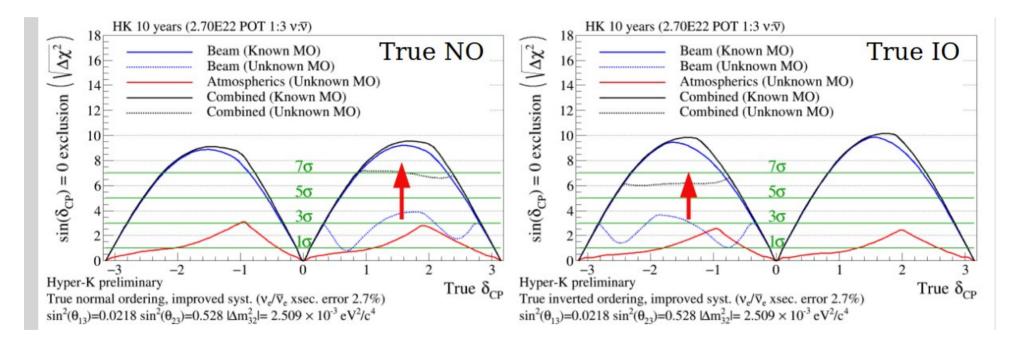
- The 'standard' oscillation paradigm (PMNS-based) is very strict and 'accidental' In particular it assumes - minimal 3-flavour scenario


- standard neutrino interactions for production and detection

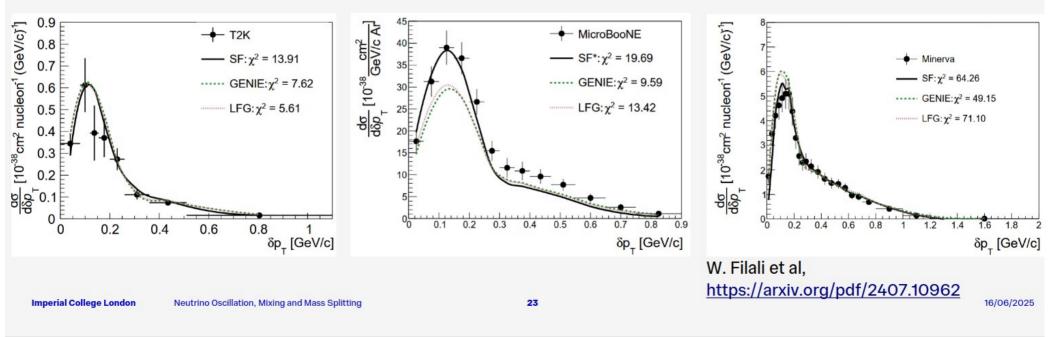
- standard matter effects along propagation


What we want to do is to characterize **precisely** the oscillation as a function of the fundamental variable L/E: combine different L and different E

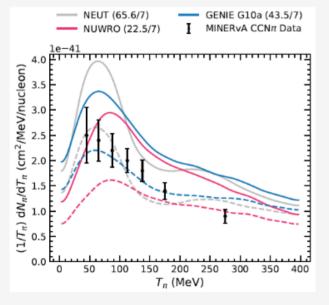
Example:


CP violation in a more model-independent way \rightarrow search for T-violation \rightarrow look for L dependency of oscillations at fixed energy

Events at LBL

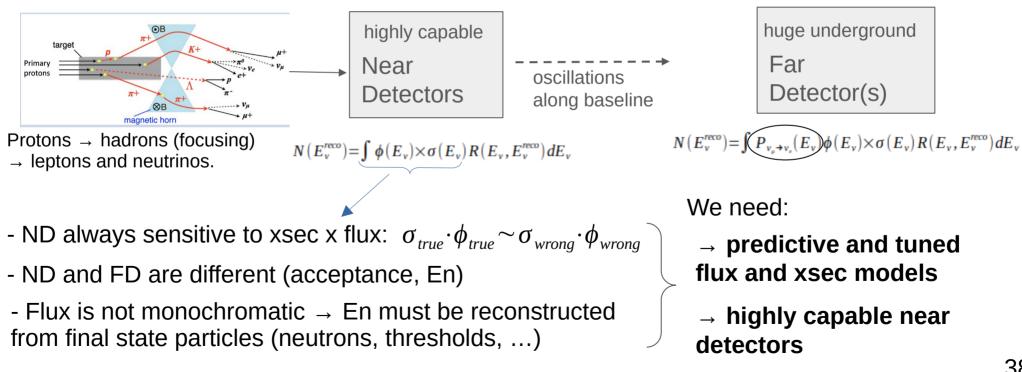


$\delta_{\mathsf{CP}} \, vs$ MO degeneracies


Neutrino cross sections in Long-baseline Experiments Neutrino scattering ~1 GeV

- At GeV-scale neutrino event generators must model both interaction of neutrino with a nucleon and the impact of the surrounding nucleus on this process
 - Final state interactions, collective nuclear excitations, hadron-quark transition, low-W hadronization...
- Models do reasonably well for quasi-elastic interactions

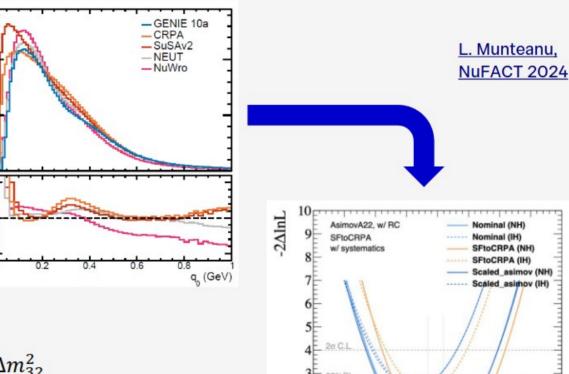
Neutrino cross sections in Long-baseline Experiments Neutrino scattering ~1 GeV


- At GeV-scale neutrino event generators must model both interaction of neutrino with a nucleon and the impact of the surrounding nucleus on this process
 - Final state interactions, collective nuclear excitations, hadron-quark transition, low-W hadronization...
- Models struggle to describe other data samples well (one example below)

- T2K experiment developing interaction model and uncertainties for neutrinos with energies from 0.3 - 2 GeV for Carbon and Oxygen targets
 - Hyper-K benefits from this
- DUNE uses argon target, beam neutrino energy mainly above 1 GeV
 - No existing data on argon in this energy range
 - Some data from SBN program at lower energy

Systematics in long-baseline experiments

Present precision of oscillation experiments: nu rate~2-4% and $E_{scale} \sim 4\% \rightarrow this precision$ must improve by a factor 4-5 in HK/DUNE



Neutrino cross sections in Long-baseline Experiments Impact on oscillation physics – T2K

 $d\sigma/dq_0 (\times 10^{-38} \text{ cm}^2/\text{GeV/nucleon})$

Model GENIE 10a

- Neutrino event generator cross section predictions differ by 50% at low energy transfer (right)
- T2K study:
 - Fit simulated data from CRPA model at near and far detector,
 - Extract oscillation parameters
 - Compare to expected value from nominal sensitivity fit
- Observed shift in best-fit value of Δm^2_{32}
 - Shift as large as total systematic error on Δm^2_{32}
 - Added as additional error

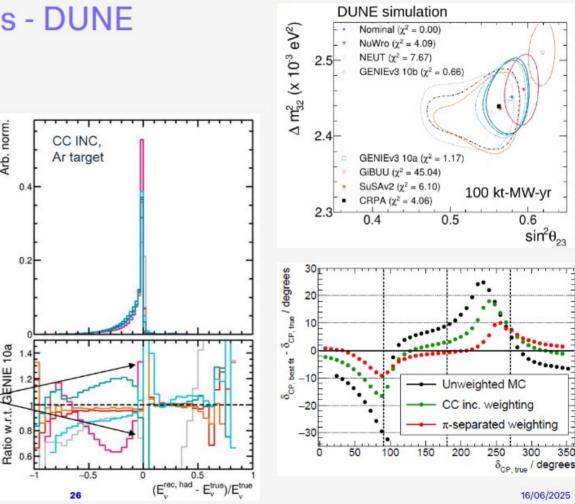
2.4 2.45 2.5 2.55 2.6 2.65 2.7

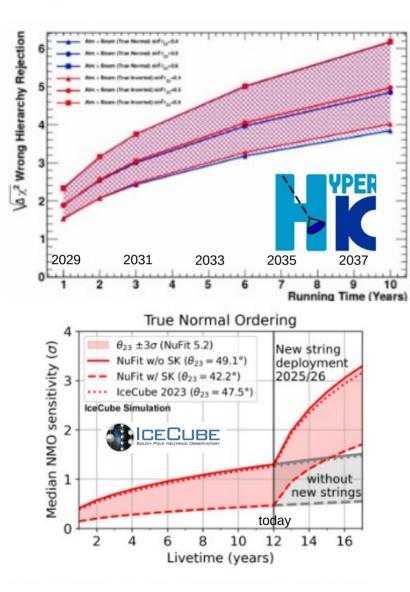
 Δm_{32}^2 (NO) / $|\Delta m_{31}^2|$ (IO) [eV²]

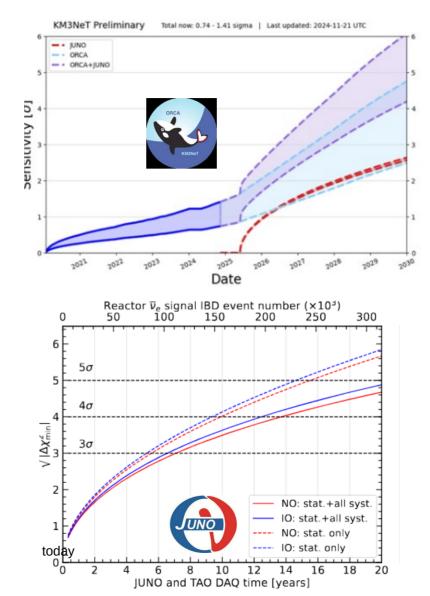
2.35

Neutrino cross sections in Long-baseline Experiments Impact on oscillation physics - DUNE

Arb. norm

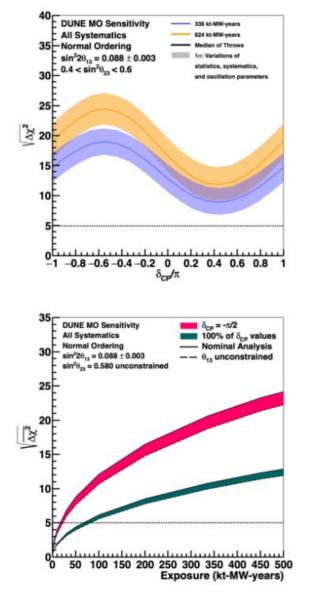

10a INE

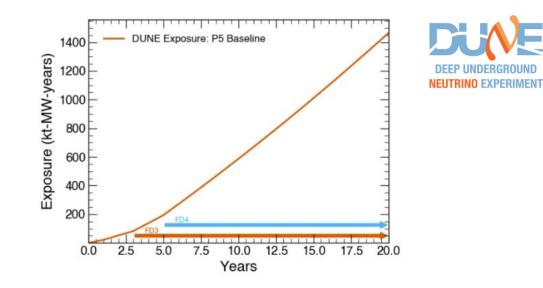

- DUNE has wide-band beam at higher energy
 - Modelling of neutrino energy v. important
 - Need to measure hadronic part of neutrino interaction as well as leptonic
 - Mis-modelling the amount of energy that is not detected can have significant impact


Proportion of E_{ν} reconstructed within 10% of the true E_{ν} differs by more than 20%

Imperial College London

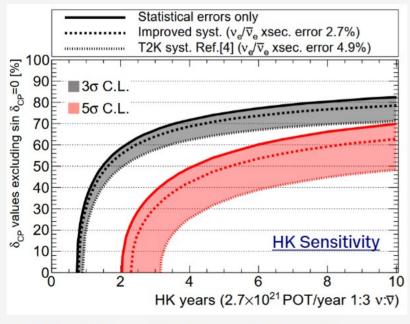
-GENIE 10a - GENIE 10c - GENIE 10b -CRPA - SuSAv2 - NEUT -NuWro Neutrino Oscillation, Mixing and Mass Splitting

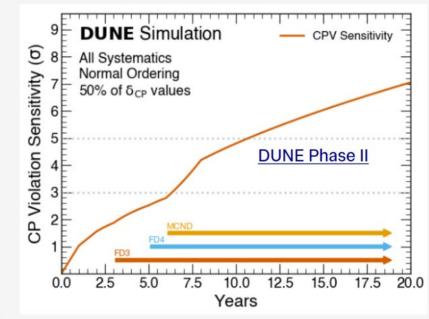




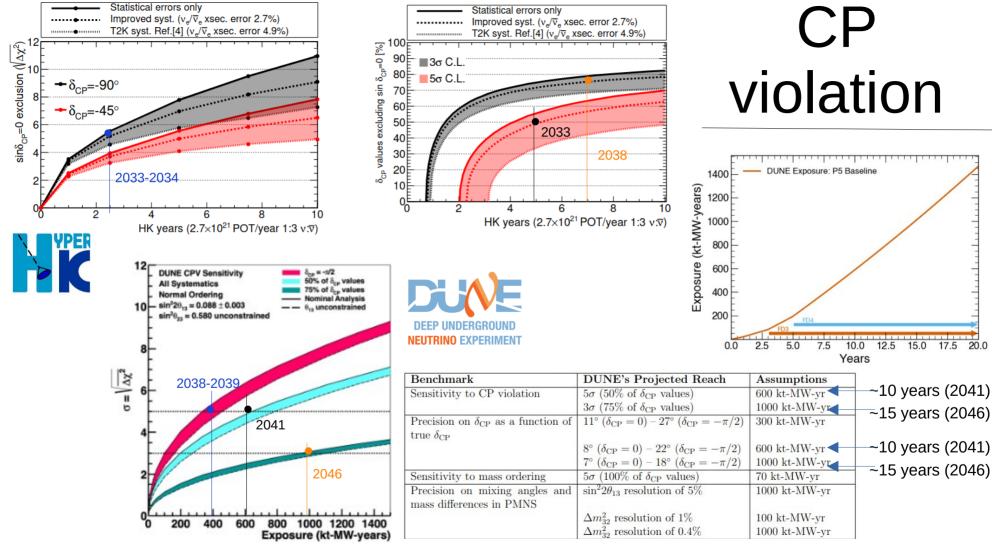
Mass Ordering

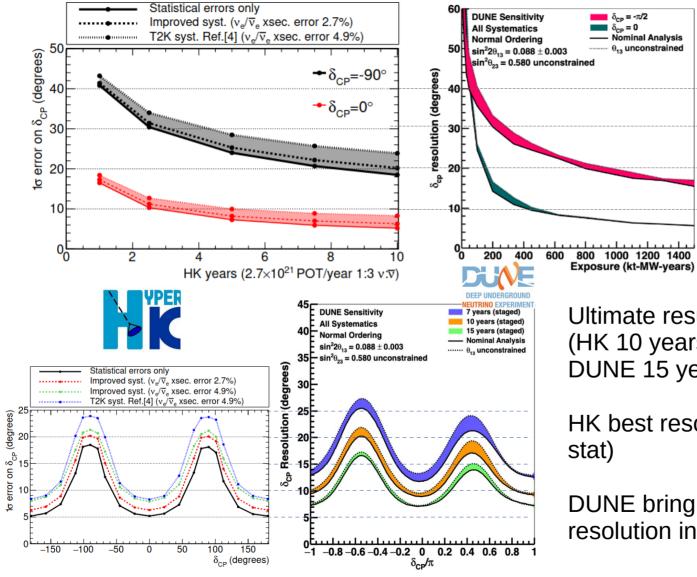
41


Mass Ordering: DUNE


Benchmark	DUNE's Projected Reach	Assumptions	
Sensitivity to CP violation	5σ (50% of $\delta_{\rm CP}$ values)	600 kt-MW-yr	
	3σ (75% of $\delta_{\rm CP}$ values)	1000 kt-MW-yr	
Precision on $\delta_{\rm CP}$ as a function of	$11^{\circ} (\delta_{\rm CP} = 0) - 27^{\circ} (\delta_{\rm CP} = -\pi/2)$	300 kt-MW-yr	
true $\delta_{\rm CP}$			
	$8^{\circ} (\delta_{\rm CP} = 0) - 22^{\circ} (\delta_{\rm CP} = -\pi/2)$	600 kt-MW-yr	
	$7^{\circ} (\delta_{\rm CP} = 0) - 18^{\circ} (\delta_{\rm CP} = -\pi/2)$	1000 kt-MW-yr	
Sensitivity to mass ordering	5σ (100% of $\delta_{\rm CP}$ values)	70 kt-MW-yr	→~2.5 years
Precision on mixing angles and	$\sin^2 2\theta_{13}$ resolution of 5%	1000 kt-MW-yr	
mass differences in PMNS	LORGE CONTRACTOR		(2033)
	Δm_{32}^2 resolution of 1%	100 kt-MW-yr	
	Δm_{32}^2 resolution of 0.4%	1000 kt-MW-yr	42

CP Violation sensitivity Hyper-K and DUNE

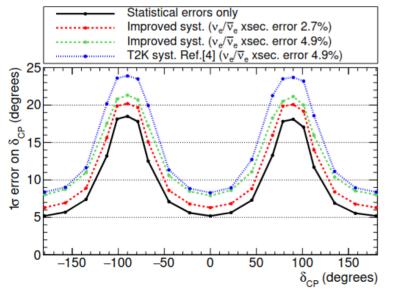

- Hyper-K expects 5σ CPV sensitivity for 50% of values of δ_{CP} after ~5 years beam exposure
- 75% of values at 3σ after ~7 years



- DUNE expects 5σ CPV sensitivity for 50% of values of δ_{CP} with 600 kt-MW-years exposure (~10 years)
- 75% of values at 3σ with 1000 kt-MW-years (~14 years)

Imperial College London

δ_{CP} resolution


Ultimate results (HK 10 years – 2038 DUNE 15 years - 2046)

HK best resolution for small CPV (large

DUNE bring shape info useful for δ_{CP} resolution in case of large CPV

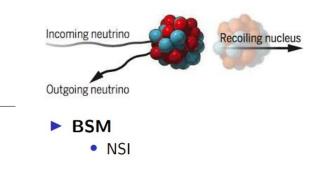
δ_{CP} resolution

	HK 3 years (2031)	HK 10 years (2038)	DUNE ^{300kt-MW-yr} (2037)	DUNE ^{1000kt-MW-yr} (2046)	ESSnuSB
δ _{CP} =0	10 degrees	6 degrees	11 degrees	7 degrees	5 degrees
δ _{CP} =-π/2	30 degrees	20 degrees	27 degrees	18 degrees	6 degrees

Dominant factors:

- small CPV \rightarrow statistics (nue/nuebar dominat syst)
- large CPV \rightarrow spectral shape (many systematics:

E scale, NC background, ...)


CEvNS

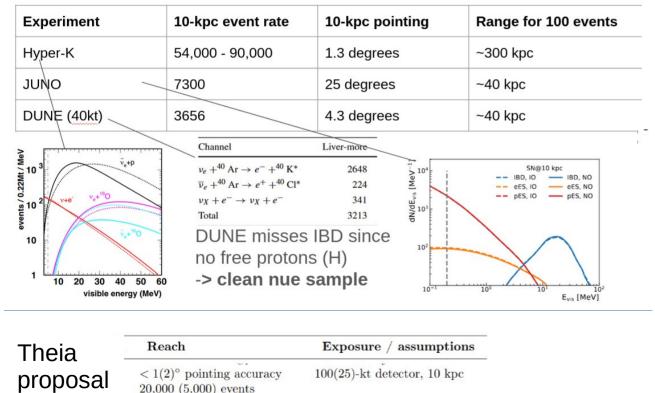
SM, already done

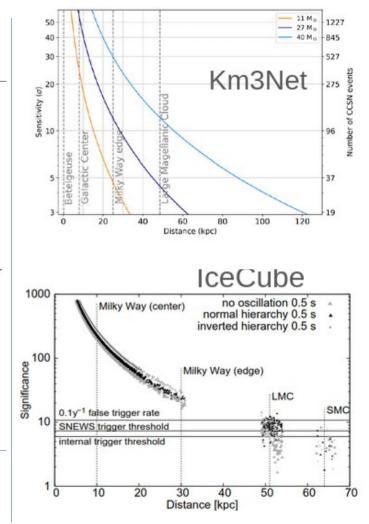
- Weak mixing angle
- Neutrino charge radius
- Nuclear form factors

SM, doable in the future

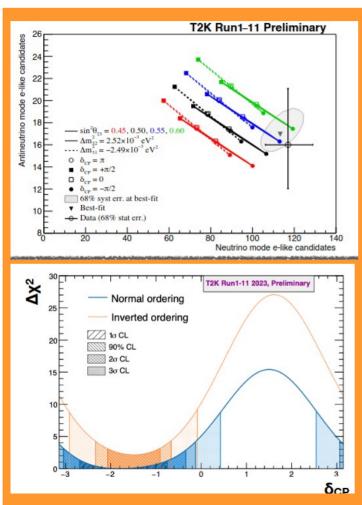
- Supernova detection via Neutral Currents $\mathcal{O}(10)$ events/tonne for a 10 M_{\odot} supernova at 10 kpc [arXiv:1606.09243]
- Inelastic cross sections for $E_{\nu} \sim 10 \,\mathrm{MeV}$, for supernova detection elsewhere ν_e –O [Super/Hyper-K] and ν_e –Ar [DUNE], never measured. D₂O detector taking data, 750 kg Ar detector proposed.
- Potentially, reactor monitoring (CE ν NS detectors are small)

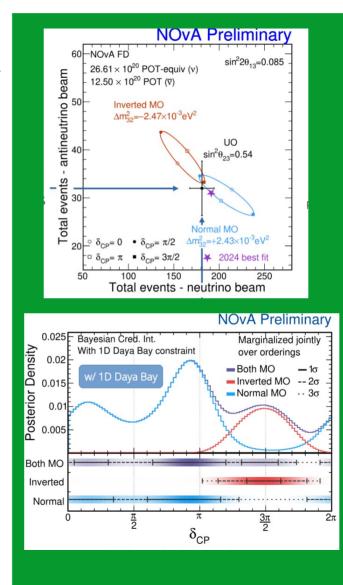
- Light mediators
- Neutrino millicharge
- Neutrino magnetic moment
- Dark matter produced in the beam
- Sterile neutrinos

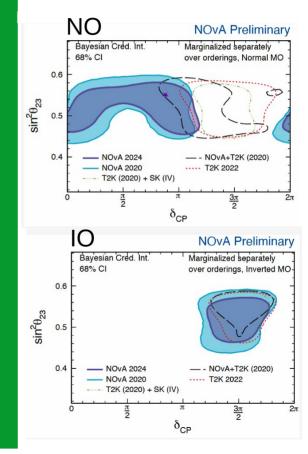

Rate measurements \rightarrow major technological challenge: control of E_{recoil} and extract reliable differential information vs Q²


+ measurement at different energies and lowest possible threshold (reactors)

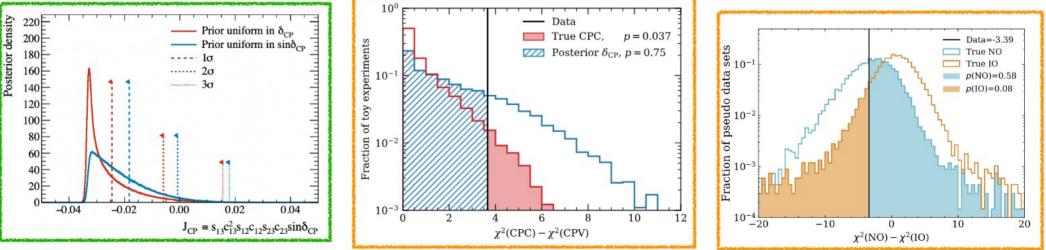
Flavour ratio at π -DAR unique feature for sterile searches and very useful for NSI


SuperNovae burst


Look at 10kpc rate for easy comparison, then distance to see 100 events, required for model measurements



T2K and NOVA



Direct comparison

T2K beam + SK atmospherics

- The CP-conserving value of the Jarlskog invariant is excluded with a significance between 1.9 and 2 σ
- In the frequentist analysis, p-value for CPC is 0.037 but increase to 0.05 when potential biases due to crosssection mis-modeling are included
- Normal ordering is preferred, p-value for IO 0.08

