

Status of CEPC in China

Yifang Wang for the team Institute of High Energy Physics, Beijing Venice, June 24, 2025

CEPC: Introduction

- Since 2005, we were thinking about the next machine after BEPCII/BESIII
- After its discovery, we realized that Higgs is the best portal for new physics and for the future of HEP
- The idea of a Circular e+e- Collider(CEPC) followed by a possible Super protonproton collider(SPPC) was firstly proposed in Sep. 2012, and reported at Fermilab during the workshop: "Higgs Factories 2012" in Oct. 2012
- It quickly gained momentum in China and in the world

arXiv:1302.3318[physics.acc-ph]

From Kick-off to TDR

CEPC Layout and Design Essentials

- 100km circumference
- Compatible tunnel for CEPC and SPPC
- Baseline: 100 km, 30 MW;
 - Upgradeable to 50 MW, High Lumi Z, ttbar
- Switchable operation: Higgs, W/Z, top
- A very high energy Synchrotron radiation facility

H/W/Z/ttbar bypass scheme

CEPC Accelerator Baseline Parameters

Linac

Booster

Collider

Doromotor	Symbol	Unit	Basalina			tt	L	I	W		Ζ
	Symbol		Daschlic			Off axis injection	Off axis injection	On axis injection	Off axis injection	Off axi	s injection
Energy	F/F	GeV	30	Circumfer.	km	100					
D				Injection energy	GeV		30				
rate	f _{rep}	Hz	100	Extraction	GeV	180	180 120 80 45.5		5.5		
Bunch				Bunch number		35	268	261+7	1297	3978	5967
number per pulse			1 or 2	Maximum bunch charge	nC	0.99	0.7	20.3	0.73	0.8	0.81
Bunch		nC	15(3)	Beam current	mA	0.11	0.94	0.98	2.85	9.5	14.4
charge			1.5 (5)	SR power	MW	0.93	0.94	1.66	0.94	0.323	0.49
Energy				Emittance	nm	2.83 1.26 0.56		0	.19		
spread	σ_E		1.5×10^{-3}	RF frequency	GHz		-		1.3	_	
RF voltage		GV	9.7	2.1	17	0.87	0	.46			
Emittance	\mathcal{E}_r	nm	6.5	Full injection from empty	h	0.1	0.14	0.16	0.27	1.8	0.8

	Higgs	Z	W	tī			
Number of IPs	2						
Circumference (km)	100.0						
SR power per beam (MW)	30						
Energy (GeV)	120	45.5	80	180			
Bunch number	268	11934	1297	35			
Emittance $arepsilon_x/arepsilon_y$ (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7			
Beam size at IP σ_x/σ_y (um/nm)	14/36	6/35	13/42	39/113			
Bunch length (natural/total) (mm)	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9			
Beam-beam parameters ξ_x/ξ_y	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1			
RF frequency (MHz)	650						
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0	115	16	0.5			

Electron and Positron Injection Linac

Transport lines

Operation Plan

* Higgs is the top priority. The CEPC will commence its operation with a focus on Higgs

Particle	E _{c.m.} (GeV)	Years	SR Power (MW)	Lumi. /IP (10 ³⁴ cm ⁻² s ⁻¹)	Integrated Lumi. /yr (ab ⁻¹ , 2 IPs)	Total Integrated L (ab ⁻¹ , 2 IPs)	Total no. of events
н*	240	10	50	8.3	2.2	21.6	$4.3 imes 10^6$
			30****	5	1.3	13	$2.6 imes 10^{6}$
Z	04	2	50	192**	50	100	4.1×10^{12}
	91	2	30****	115**	30	60	$2.5\times\mathbf{10^{12}}$
W	4.60		50	26.7	6.9	6.9	$2.1 imes 10^8$
	160	1	30****	16	4.2	4.2	$1.3 imes 10^8$
$t\overline{t}$	360	5	50	0.8	0.2	1.0	$0.6 imes 10^6$
	000	Ŭ	30****	0.5	0.13	0.65	$0.4 imes 10^{6}$

** Detector solenoid field is 2 Tesla during Z operation, 3Tesla for all other energies.

*** Calculated using 3,600 hours per year for data collection.

**** 30 MW leaves room for international in-kind contributions

Scientific Objectives: "Discovery + Precision Measurement"

Higgs coupling measurement can be improved by orders magnititude

Direct and indirect proble to new physics up to 10 TeV, ×10 higher then HL-LHC

Electroweak measurement can be improved by a large factor

CEPC physics white papers:

- 1. Higgs physics, arxiv:1810.09037 Chin. Phys. C 43(2019) 043002
- 2. Flavor physics, arxiv:2412.19743
- 3. New Physics Search at the CEPC: a General Perspective arXiv.2505.24810
- 4. Electroweak physics, to be published
- 5. QCD, to be published

High Energy Photon Source (HEPS)

Experience at HEPS/BEPCII

Magnets & alignment

9

R&D: Key Technologies

Key technologies R&D span over all components listed in CDR/TDR
 About 10% remaining (eg. RF power source, control, alignment, SC

✓ Specification Met

Prototype Manufactured

Accelerator	Fraction
✓ Magnets	27.3%
✓ Vacuum	18.3%
✓ RF power source	9.1%
 Mechanics 	7.6%
 Magnet power supplies 	7.0%
✓ SC RF	7.1%
 Cryogenics 	6.5%
 Linac and sources 	5.5%
 Instrumentation 	5.3%
✓ Control	2.4%
 Survey and alignment 	2.4%
 Radiation protection 	1.0%
SC magnets	0.4%
✓ Damping ring	0.2%

Accelerator TDR Published

Next Step for the Accelerator: EDR

EDR tasks start with 35 WGs aiming for issues like further R&D of new technologies, mass production, mockup for installation, etc.

- A full cryomodule containing six 650 MHz 2-cell cavities
- Higher efficiency klystrons
- Automatic production for NEG coated vacuum chambers
- Automatic production for magnets
- More prototypes of magnets
- C-band LINAC test band
- CCT type SC quadrupole magnet for final focusing
- MDI design and background studies
- Control and timing
- Alignment and installation plan
- Mockup for installation
- PWFA test facility

....

Correctors: mechanical design completed

Dual aperture quadrupole: block iron core and new cooling and power line design in EDR

EDR Example 1: SRF Cavities and Modules

In TDR phase: 650MHz 2*cell short module and 1.3GHz full module has been completed, exceeding spec.

In EDR: a full 11 m-long cryomodule containing six 650 MHz 2-cell cavities will be built

Status: construction started

EDR Example 2: Higher Efficiency Klystrons

In EDR: A full Energy recovery Klystron aiming for an efficiency >85%, construction will start soon ¹⁴

EDR Example 3: Automatic Production for Magnets

- Starting from booster dipole magnet: ~15000 magnets needed
- Can work 24h/day, 7days/week, may reduce the cost by ~30-50%

Status: design completed and construction started, commissioning test next year

EDR Example 4: Automatic Production for NEG Coated Vacuum Chamber

- > A total of 200 km needed
- Can work 24h/day, 7days/week, may reduce the cost by ~30-50%

Status: design completed and construction started, , commissioning test next year

EDR R&D for options: Polarization

Both the transverse and longitudinal polarization are feasible

Future Plan

- Implement the lattice design to accommodate polarized beams: spin rotator, wiggler, Compton polarimeters, dumping ring and booster design, etc.
- R&D of equipment: Compton polarimeter, polarized electron sources, spin rotator, etc.
- Simulate the process and effects of errors
- Carry out experiments at BEPCII & HEPS booster

R&D for Future: Plasma accelerator as the CEPC Injector

Conceptual design based on simulation
 For experimental proof and prototyping, a test facility based on the BEPCII LINAC is under construction:

- Cascading, positron acceleration,...
- > Technology: electron gun, laser, ...

R&D for Future: Iron-Based HTS Magnet

Why:

"Metal", isotropic, ...

Cheap: material(Ba_{0.6}K_{0.4}Fe₂As₂) and production(PIT, steel tube) Status

- Cable length >1000m with good Jc
- Small-scale cable production techniques understood
- Fest coil successful

First short coil with 40%Jc@24T First long coil with 80%Jc@10T

 \succ Continue to improve Jc by \times 2-3

Mid-scale cable production

> Test magnet

- Ba122 short tape - Ba122 single pancake coil

10

Background Field (T)

15

Critical Current (A)

4.2 H

20

25

vear

Efforts Towards a Green Accelerator

- Construct the underground tunnel in granite: minimum use of concrete and steel, re-use of granite, ...
- Experience at HEPS
 - Solar panel: 10 MW → 10% saving
 - Permanent magnet: 5.6 GWh saving/yr
 - Hot water(13 MW@42°C) for heating
- R&D for CEPC
 - High eff. Klystron, energy recovery Klystron, Solid State
 Transformer, permanent magnet, ...
 - Design and R&D of a "cooling-compressor + heatingpump system" to recover hot water in winter and cooling water in summer for use at HEPS
 - Continue to investigate power generator using low-T hot water

Solar panel on the roof of HEPS

CEPC Detector: Reference Detector TDR

- International collaboration may only be established after the CEPC project is approved by the Chinese government
- For the approval, a design and budget is needed
- Solution: A reference TDR to demonstrate a working design, the feasibility, technologies, budget, etc.
 - CEPC international advisory committee suggested and approved this plan
- An international review of the Ref-TDR held in April 14-16
- TDR will be released in the mid of this year, after being reviewed by the International Detector Review Committee

Date: June 9, 2025

Version: 0.1 build: 2025-04-02 01-08-51-08:00 Draft, to be published soon ~ 100 institutions involved

Reference Detector: Concept

Silicon tracker+TPC: precision tracking and PID

- Inner tracker: three barrel layers and 2×4 endcap layers of MAPS HV-CMOS pixel sensors using 55nm tech.
- TPC for PID and tracking: Pixelated readout (500×500µm²) of Micromegas for good tracking and PID
- Outer tracker for PID and tracking: one barrel layer and two endcap disks based on AC-LGAD to measure timing and position simultaneously

PFA-oriented ECAL: 18 layers of BGO crystal bars($1.5 \times 1.5 \times 40$ cm³), arranged in the x-y direction alternatively, in perpendicular to the incident particle, to achieve fine 3D granularity, and good position and energy resolution

PFA-oriented HCAL: 48 layers of glass scintillator tiles(4×4 cm²) interspersed with steel plates for good 3D granularity and resolution

from CDR to Ref-detector TDR

	CDR	RefDet-TDR			
	Inner radius of 16 mm	Inner radius of 11 mm			
VTX	Material Budget: 0.15%*6+0.14%(beampipe)= 1.05% X0	Material Budget: 0.06%*4(inner)+0.165%*2(outer)+0.2%(beampipe)= 0.77% X0			
Gaseous Tracker	TPC with 1 mm* 6 mm readout	TPC with 0.5 mm* 0.5 mm readout dN/dx resolution 3%			
ToF & Outer tracker	-	AC-LGAD, with <mark>50 ps</mark> per MIP, 10 um			
ECAL	Si-W-ECAL: 17%/ √E ⊕ 1%	Crystal Bar-ECAL: 1.3%/ √E ⊕ 0.7%			
HCAL	RPC-Iron: 60%/ √E ⊕ 2%	Glass-Steel: 30%/√ E ⊕ 6.5%			

Vertex and Silicon Tracker

Electromagnetic Calorimeter

- Crystal bars are arranged in x-y direction alternatively, read by a 3×3 mm² SiPM at each end
- Good 3D shower reconstructed for PFA
- Shower separation ~ 2× crystal cross section
- Beam test at CERN with BGO bars: 1cm² cross section, 12cm long, Energy resolution: 1.3%/√E⊕0.7%

Hadron Calorimeter

- High density glass scintillator for HCAL: much higher sampling ratio(~30%) and good energy resolution ~30%/√E
- Small size of glass tile: good for PFA
- Glass R&D for high density and high light yield:
 - Novel Gadolinium Fluoro-Oxide glass
 - Density: 6g/cm³
 - Size: 40*40*10 mm³
 - Light yield: ~1500 ph/MeV with a 3×3 mm² SiPM
 - Decay time: 600 ns

Light yield of Glass scintillators

Jet Performance

- Dijet Higgs well reconstructed, BMR in barrel reaches **3.87%**, design goal achieved (<4%)
- For the same BMR, crystal ECAL has a much better energy resolution
- Glass HCAL has a very good energy resolution, may be suitable for ECAL if light yield further improved → A full absorption ECAL+HCAL

Site Selection

- All sites have been investigated: good geology, mostly granite
- Good living conditions, and local support

- Site selection will compare geology, electricity supply, transportation, environment for foreigners, local support & economy,...
- Final decision will depend on the negotiation between the central and local governments

CEPC Planning and Schedule

TDR (2023), EDR(2027), start of construction (~2027)

- CEPC plans to submit the proposal to the central government(NDRC) within the "15th five year plan"
- For this purpose, CAS organized studies and reviews
- CEPC was ranked by CAS as the No. 1 for HEP & NP, and No.2 for Basic Science
- We are waiting for the 2nd review by CAS later this year
- Waiting for the "call for proposals" by NDRC by the end of this year

NDRC: National Development and Reform commission

International Collaboration

- > CEPC will be an international project, following the HEP tradition
- Internationalization will distinguish CEPC from other proposals to NDRC, enhance the successful chance
- IHEP successfully organized large projects such as BESIII, Daya Bay and JUNO with ~50% non-Chinese members and international in-kind contributions of ~5%, ~30%, and ~15% respectively
 - BESIII has >600 members from 84 institutions in 17 countries and regions
 - > Daya Bay had >250 members from 40 institutions in 6 countries and regions
 - JUNO has >700 members from 72 institutions in 17 countries and regions
- > Based on the experience from above experiments, our plan for CEPC is the following:
 - Goal: international contributions at the level of ~10-30%
 - > Although the management system is yet to be settled, most likely IHEP will be the host lab
 - > A concept of the management structure has been endorsed by IAC, further discussion needed
 - Once CEPC is approved in China(~ CD0 in DOE), international collaboration can be formally started
 - Discussion with partners about the management
 - Form various committees
 - > Call for detector proposals, and select proposals
 - > Form international collaborations, deliver TDRs, sign MoUs, build detectors,....
 - Civil construction and most of the accelerator construction can start after the CD3 approval by NDRC, internationalized construction of detectors and other accelerator equipment may come a few years later

- CEPC addresses most pressing & critical science problems in particle physics, provides early Higgs(W,Z) factories to the world HEP community
- Accelerator design and technology R&D are reaching maturity, TDR completed, ready for construction in ~2 years
- Reference detector TDR is under preparation now, to be completed by mid of this year for the proposal of the 15th 5-year plan
- Call for collaborations and proposals once CEPC is (preliminary) approved (~CD0)
- We will work with the community to maximize the internationalization of CEPC, and support other projects worldwide

Approving process of NDRC projects

 Pre-proposals organized and reviewed by ministries (e.g. CAS), and submitted to NDRC 	1-10 years	Budget estimate	
 Proposals reviewed and selected by NDRC 	~1 year	Budget proposal	CD0
 Review of the feasibility study by CAS 	1-5 year	Budget & technical review	CD1+2
 Review of the Preliminary design by CAS & Budget review by NDRC 	1-5 year	Technical design & Final budget	CD3+4

NDRC organize proposals every 5 years in "5-year plan"