

Status and Open Questions Dark Matter and Sectors

Matthew McCullough (CERN) For the ESPP 2026 WG on Dark Matter and Dark Sector

23-27 JUNE 2025 Lido di Venezia

The Special Investigators

Aaron Chou - Chicago Caterina Doglioni* - Manchester Emanuele Castorina - Milan Francesca Calore - CNRS LAPTH Jocelyn Monroe* - Oxford Josef Pradler* - Vienna and Austrian Academy of Sciences Julia Katharina Vogel* – TU Dortmund Maksym Ovchynnikov* - CERN Monica D'Onofrio* - Liverpool Paolo Agnes* - Gran Sasso Science Institute Tina Pollmann – NIKHEF and Amsterdam Yohei Ema* - CERN

The Submissions - 114

If yes, which benchmark models?	If yes,
antimatter dark matter coupling, millicharged	antim
light DM, sterile neutrinos (categorization was yes (more in 112)	YES (b and fo
sexaquark via pbar-He3 annihilation	YES (a
QCD axion	YES (a
QCD axion, sub-GeV indirect detection in MeV gap, more general WISPs	YES (a
QCD axion via FLASH	YES (a
QCD axion with GRAHAL and MADMAX, WIMPs	heavy
and sub-GeV with DarkSide, XLZD, TESSERACT	super-
WIMPs with XENONnT,XLZD	light D
WIMPs with XLZD	YES (a
WIMPs with colliders, indirect with CTAO, dark	super-
bosons with antimatter expts???	heavy,
Heavy DM (CTA) - generic	YES (a
ULDM, PBH, stochastic bkg	no mo
Phase transitions, w/ (heavy) and w/o portal.	with c
PBH, stochastic bkg	sub-C
Light DM	and h
Alps	partic
generic support	reters
Light DM, sterile neutrinos	calar
heavy, ULDM, sub-GeV	dark n
heavy, ULDM, sub-GeV	light d
YES (but just mentioned as science case for FCC)	no mo

f yes, which benchmark models?	If yes, v
ntimatter dark matter coupling, millicharged	antimat
ES (but just mentioned as general science case	indirect
nd for FCC)	no mod
ES (as national priority, generic)	no mod
ES (as national priority, generic)	no mod
ES (as national priority, generic)	
ES (as consortium priority, generic)	LDM an
eavy (WIMP),	ALPs, h
uper-heavy	LDM (n
ght DM	nationa
ES (as national priority, generic)	LDM (st
uper-heavy (exotic compact objects, PBHs),	UDM (A
eavy, ULDM	categor
ES (as consortium priority, generic)	collider
o models, focus is complementarity/interplay	LDM (n
vith cevns	Lattice
ub-GeV dark matter scalar dark matter	Lattice
ind heavy neutral leptons via axion-like	QCD ax
particle	axion/A
efers to SBND publications on sensitivity to	ULDM,
ark sector particles such as a Higgs-Portal	Beamdu
calar [15], heavy axion-like particles [16, 17] or	Portals
ark photons that mediate interactions with	LDM (B
ght dark matter [18, 19]	Portals

no models, focus is describing scope of DRDs

f yes, which benchmark models?

ntimatter dark matter coupling, millicharged ndirect detection from annihilation in sun to models, national input to models, focus is complementarity to models, focus is compementarity

M and ULDM (no models) Ps, hidden sector (LDM, ULDM) M (no details) tional input, generic (no models) M (sterile neutrinos) OM (ALPs) tegorization was yes (indirect) llider technology (categorization was yes (?)) M (plot with sensitivity to inelastic DM) ttice QCD calulations D axion/ALPs ion/ALP/dark photon DM, WIMPs, sterile neutrino, FIPs, DP, amdump rtals M (BC2)

If yes, which benchmark models?

antimatter dark matter coupling, millicharged
LDM (inelastic DM)
Portals
Portals
LDM (inelastic DM)
Dark Higgs
Minimal DM, Portals, Alps
Minimal DM, Alps
Alps, UL DM
????
Yes, but superficial discussion.
Alps, light scalars
Light and heavy DM, dark photons
Alps, dark photons (categorization was yes, but superficial)
HNLs, light DM. (categorization was yes, but superficial)
Axion DM
Dark photons, ALPs
Yes, but summary of P5.
Yes, in supplementary material. See 2205.08553. WIMPs, scalar and lepton portal, simplified models.
Same models as 10 TeV COM lepton collider

Organised by relevance to benchmark models.

The Lessons We've Learned

Scale

Calculability

Calculability

Coupling Strength

Calculability

Avoiding Modern-Day Heliocentrism

Visible Matters

Visible, baryonic matter makes up 16% of all the matter in our Universe. 73% of visible matter is Hydrogen. 25% is Helium. All the rest: 2%.

So, to a good approximation, the majority of visible matter is in relatively uninteresting atoms. Particularly hydrogen.

But the phenomenology of visible matter is not, to a good approximation, the phenomenology of hydrogen!

Within that visible 16% we observe extraordinary complexity.

The visible sector is rich, whichever length scale you view it at.

Dark Matters

Historically assumed the <u>phenomenology</u> of the dark sector, including interactions with us, is also dominated by a single state.

Consider the rich phenomenology of the visible sector. Why should the dark sector be simple?

An Evolving Landscape

Knowing the Unknown

What is increasingly appreciated is that the phenomena driving interactions with the dark sector could be rich, diverse, complex.

It's not that we don't know where to look. Rather we know there are many many places to look!

Knowing the Unknown

Theoretical perspectives now typically motivated by portals:

- Higgs
- Dark Photon
- ALP
- Neutrino

These portals aren't to be taken as fundamental theories. They are intended to capture the diverse phenomena that could be mediated from complex sectors. Consider the pion, for instance.

Windows

The standard model provides examples of neutral particles which can comfortably be light and have arbitrarily weak interactions:

1ノ

Z

 π

Dark Sector

Z'

 \boldsymbol{a}

And a new, intriguing, portal...

$(A\phi + \lambda\phi^2)|H|^2$

Cosmic Horizons

Cosmology, such as structure formation, crucial to explore light dark sectors (Pradler).

Buen-Abad+ 2107.12377

Cosmic Horizons

Cosmology, such as structure formation, crucial to explore light dark sectors (Pradler).

Boyarsky+ 1807.07938

A Collision Course

ALPine Landscapes

Vast array of probes. Future colliders extend intensity to new frontiers. EIC to be added.

Dark Lights

Neutrino Portal

Elastic DM Photon Portal

Inelastic DM Photon Portal

Opening The Higgs Portal

Great deal of complementarity between colliders and direct/indirect detection.

Fate of the Ino

Pure Higgsino – 2o Sens	itivity Reach	Pure Wino –	2σ Sensitivity Reach
- Indirect Detection		- 90% Direct Detection Projection	
- MuC 10 TeV		- Indirect Detection Cored Profile	NFW Profile
- MuC 3 TeV soft track		- MuC 10 TeV	
- FCC-hh 85 TeV		- MuC 3 TeV	
- HL-LHC	2σ , Disappearing Tracks	- FCC-hh 85 TeV	
- MuC 10 TeV	Kinematic Limit: √5/2	- HL-LHC	2σ , Disappearing Tracks
- MuC 3 TeV	2σ , indirect Reach To be updated	- MuC 10 TeV	2σ, Indirect Reach
- CLIC1500			
- CLIC380		- CLIC380	
- FCC-ee		- FCC-ee	
- CEPC		- CEPC	-e-Line
	ESPP 2026: Preliminary		🖹 ESPP 2026: Preliminary
0-1 10 ⁰ M _X [TeV]	101		<i>M</i> _χ [TeV]

Great deal of complementarity between colliders and (present) indirect detection. Long live the Ino?

Fate of the Ino

Great deal of complementarity between colliders and (present) indirect detection. Long live the Ino?

Simplified Models

Scalar Sim	plified Models – 2o Sen	sitivity Reach	Axial-Vect	or Simplified Models – 2σ S	Sensitivity Reach
- FCC-hh 85 TeV (Dijet)			ECC-bb 85 TeV (Dijet)		
- HL-LHC (Dijet)		$t\bar{t}$ +MET g_{DM} = 1, g_Q = 1	- HL-LHC (Dijet)		Dijet $g_Q = 1/4$
- DD _n 10 ⁻⁴⁹ cm ² at~40 GeV M _{χ}			- FCC-hh 85 TeV		
- FCC-hh 85 TeV		Monoiet	- HL-LHC		Monojet $g_{DM} = 1, g_Q = 1/4$
- HL-LHC		$g_{DM} = 1, g_Q = 1$	- CLIC3000		$g_{DM} x g_E = 1/4$ Monophoton
- CLIC3000		$g_{DM} \times g_E = 1$	- CLIC380		
- LCF500		1	- LCF500		
- LCF250			- LCF250		
- FCC-ee			- FCC-ee		
- CEPC		ESPP 2026: Preliminary	- CEPC		ESPP 2026: Preliminary
10-1	10 ⁰ M _{Mediator} [TeV]	101	10-1	10 ⁰ M _{Mediator} [TeV]	101

Great deal of complementarity between colliders and direct detection, but comparison nuanced.... DD: Long term: XLZD, Oscura. Near: DarkSide and DAMIC. Muon collider yet to be added.

Conclusions

The theoretical landscape is maturing.

- More open-minded, less anthropocentric.
- Portals attempt to capture diverse phenomena.
- Need to hedge, through breadth of programme, for **future evolution** of pheno landscape.

It's not that we don't know where to look. It's that we do know there are many places we **should** look.

Let's look forward to a dark future together!

Backup

Beam Dump experiments A' production

- Bremsstrahlung $e^-Z \rightarrow e^-ZA'$ and $pZ \rightarrow pZA'$ (NA62, NA64, Faser, FPF, SHiP)
- Light mesons decays $M \rightarrow A' \gamma$ (NA62, Faser 2, SHiP)
- Meson mixing (NA62)

Theoretical Uncertainties: models in low-mass, low-coupling region affected by sizeable Th. Unc., which are treated in different ways by experiments

90% CL exclusion limits for Dark Photons in the plane mixing parameter ε versus Dark Photon mass. HL-LHC, CEPC, FCC-ee and FCC-hh curves correspond to 95% CL exclusion limits. LHeC curve correspond to N=10 expected A' decays and 0 background. The sensitivity of future colliders, mostly covers the large-mass, large-coupling range, and is fully complementary to the the low-mass, very low- coupling regime where beam-dump and fixed-target experiments are most sensitive. Belle II and LHCb upgrade provide additional coverage in the medium-mass, high-coupling region.

Annapaola's Slides BSM

Backup

Collider experiments A' production

- Radiative return, $e^-e^+/\mu^-\mu^+ \rightarrow A'\gamma$ (MuC, FCC-ee, CEPC, ILC)
- **Drell-Yan**, $q\bar{q} \rightarrow A'$ (HL-LHC, LHCb, FCC-hh)
- Associated production, $\mu^+\mu^- \rightarrow A'\mu^+\mu^-$, (MuC
- **Z decays**, $Z \rightarrow A' \mu^+ \mu^-$ (FCC-ee, CEPC)
- Heavy meson decays, $D^* \rightarrow DA'$ (LHCb)

High dark photon mass region: 90% CL exclusion limits for Dark Photons in the plane mixing parameter ε versus Dark Photon mass. HL-LHC, CEPC, FCC-ee and FCC-hh curves correspond to 95% CL exclusion limits. The sensitivity of future colliders mostly covers the large-mass, large-coupling range. Belle II and LHCb upgrade provide additional coverage in the medium-mass, high-coupling region.

Annapaola's Slides BSM

Then versus now. Thanks Monica!!!

Wino and higgsino: old vs new

From ESPP2020 to ESPP2026

- A reduced com energy for FCC-hh still make it possible the discovery of a higgsino DM
 - CTAO could discard or discover it much sooner indirectly
 - Indirect searches already in tension with wino hypothesis
- MuC results now available:
 - MuC higgsino in reach also for MC 3 TeV with new softtrack based feasibility studies

Simplified model benchmarks

From ESPP2020 to ESPP2026

- Minor impact from reduced com energy for FCC-hh
- MuC results now available but not yet in the plot:

Simplified models: scalar mediators

From ESPP2020 to ESPP2026

- Main changes in reach of DD - complementarity still very clear

Monica D'Onofrio, DM&DS at Collider and interplays

Simplified models: scalar mediators

Higgs portal models

Higgs Portal - Majorana DM

• Colliders do not change much

Minimal models: Dark photons

 Some improved analyses from LHCb covering regions in the low

Minimal models: ALPs

- ALPs searches at colliders very diverse depending on couplings
 - Improvements from FCC-hh new analysis, Exploitation of light-by-light UP collisions at high mass/intermediate couplings
 - New studies from FCC-ee Z-pole and LCF in low mass/low coupling are

Minimal models: Heavy Neutral Leptons

• ESPP2020 – electron dominance; ESPP2026 – muon dominance

