

PPG: Flavour physics group discussion

Discussion leader: Tim Gershon University of Warwick

Open Symposium on the European Strategy for Particle Physics 25th June 2025

Should flavour physics still be considered as a key element of the European Strategy?

• Answer must be yes, if

- we still believe there are new phenomena beyond the Standard Model to be unveiled at higher energy scales
 - virtual particles in quantum loops provide BSM sensitivity beyond the "direct" energy frontier
- measurements are not limited by theoretical uncertainties or experimental systematics
- This is certainly the case today
- n.b. the above is a model-independent argument and aligns with an effective field theory approach → many operators to probe & therefore measurements of many different observables are necessary
 - focus on most theoretically clean and where largest improvements are possible
 - most experiments in B and D physics cover a broad range of observables
- Understanding flavour crucial for several key open questions in our field

What is best experimental scenario for flavour physics?

Full exploitation of the HL-LHC

- LHCb Upgrade II (300/fb)
- Enlarged flavour physics programme at ATLAS and CMS (3/ab)
- Data taking completed by ~2041

Completion of SuperKEKB/Belle II

- 50/ab e⁺e⁻ collisions at Y(4S) resonance (likely to require interaction region upgrade)
- Data-taking completed by ~2042

Full FCC programme

- FCC-ee with
 - significant Z pole run
 - ability to vary \sqrt{s} ^ and ^
 - detectors optimised considering flavour
- FCC-hh with
 - dedicated flavour physics experiment
 - sufficient R&D lead-time

Complemented by dedicated kaon, pion, muon and EDM experiments

Theory discussed later

What would be lost without each of these elements?

Full exploitation of the HL-LHC

- Opportunity to exploit samples of O(10¹⁵) beauty and charm hadrons
- Range of precision measurements that are not expected to be superseded until FCC-hh (if ever)

Completion of SuperKEKB / Belle II

- World-best measurements of B and D decays with neutrals &/or missing particles
- Opportunities to exploit quantum entanglement in $Y(4S) \rightarrow B\overline{B}$ pairs

Full FCC programme

- Probe of observables not covered by other facilities
- Significant improvement in some key observables (e.g. τ LFV, $b \rightarrow sv\overline{v}$, $b \rightarrow s\tau^{+}\tau^{-}$)
- New opportunties to study flavour with on-shell W decays

Dedicated kaon, pion, muon and EDM_experiments

• Observables not covered by other facilities (e.g. $s \rightarrow dvv$, πLFU , μLFV , flavour-diagonal CPV)

What would be lost without each of these elements?

Full exploitation of
the HL-LHCCompletion of
SuperKEKB / Belle II

Full FCC programme

- Droha of chaomychilae not

Depends of course on what it is replaced by:

- Other e⁺e⁻ facility with similarly high lumi Z & WW programme
 - \rightarrow loss depends on lumi (including #IPs, and detector capability)
- Other e⁺e⁻ facility with no or much lower lumi Z programme

 → large majority of flavour physics lost (still some interesting flavour physics with on-shell W & t)
- LHeC
 - \rightarrow similar to above (minimal discussion of flavour as yet)
- hh facility
 - \rightarrow depends on detector requirements (i.e. \sqrt{s} , pile-up, timescale and potential for detector R&D)
- µ collider
 - $\rightarrow\,$ no Z programme but some new flavour opportunities

What do we need from theory?

- Support for continued theory improvements, in parallel to experiment, is essential
- Three key areas for flavour physics (and not only!)
 - Lattice QCD calculations
 - Interpretation of several measurements limited by knowledge of decay constants, form factors, ...
 - Heavy flavour phenomenology
 - Understanding uncertainties due to QCD effects, use and limitations of flavour symmetries, new ideas to make best use of experimental data
 - Interpretation and global fits
 - Use of flavour data to constrain BSM both in explicit models and model-independently.
 - Including combinations of flavour, Higgs and electroweak results "multi-microscope physics"
 - Of course including possible interpretations of positive signals

Further discussion points

- What is the future for kaon physics in, or outside, Europe?
- What is the best route to a further step-change in sensitivity in μ LFV? Dedicated or multi-purpose experiments?
- What synergies are there with μ collider R&D in development of higher intensity μ beams for flavour experiments?
- What is the best approach to push the frontier in EDM sensitivities? Should novel concepts (e.g. quantum technologies) be prioritised over development of tried-and-trusted methods?
- Importance of Super Tau Charm Facility, for BSM searches, for auxiliary inputs to other flavour measurements, and for other areas beyond flavour
- Role of small(er) scale experiments to benefit scientific breadth and diversity of field