

Open questions and experimental prospects: Hot and dense QCD & QCD connections (hadronic, nuclear and astrophysics)

Andrea Dainese (INFN Padova), Cristinel Diaconu (CPPM Marseille), Chiara Signorile-Signorile (MPP Munich)

on behalf of the Strong Interactions WG

The rich landscape of non-perturbative QCD

- Low momentum-exchange regime, Q<<10 GeV
- → strong coupling $\alpha_s(Q^2)$ becomes large
- → non-perturbative QCD

The rich landscape of non-perturbative QCD

Low momentum-exchange regime, Q<<10 GeV

- → strong coupling $\alpha_s(Q^2)$ becomes large
- → non-perturbative QCD

→ Many low-Q interactions: High Temperature Hot and dense QCD many-body system

→ Scale of hadronization and hadron mass Hadron formation, hadron mass, hadron structure and exotica

→ Scale of hadron size and interactions Processes in neutron stars, formation of light anti-nuclei in cosmic rays

Andrea Dainese | Strong Interactions WG

Facility, Experiments	Colliding systems, c.m.s. energy	Timeline	Precision QCD	Partonic dynamics in protons and nucleons	Hot and dense QCD	QCD con- nections (hadronic, nuclear, as- trophysics)
HL-LHC: ALICE 3, ATLAS & CMS pII, LHCb U2, LHCspin	pp 14 TeV AA 5.5 TeV pA 8.8 TeV	> 2035 (ALICE 3, LHCb U2)	$lpha_{ m s}(m_Z^2), lpha_{ m s}(Q^2), \ m_{ m t}, m_{ m W}$	(n)PDF, TMD, small <i>x</i> , intrinsic charm	Precision charm, beauty, hard and e.m. probes, $\mu_{\rm B}$ =0; time evolu- tion	Hadr. int., (hy- per/charm)nuclei, Exotica, Cosmic antinuclei, Neu- tron Star EoS
HL-LHC: FPF	LHC collisions, neutrino-nucleon	> 2031		(n)PDF, small <i>x</i> , intrinsic charm		Cosmic rays (v, modeling pri- mary interaction)
SPS: NA60+, NA61	pA, AA, 5-17 GeV	> 2030 (NA60+)		nPDF, medium/large <i>x</i>	Charm, dileptons, critical point?, $\mu_{\rm B}$ =200-450MeV	Cosmic antinu- clei, v
FAIR SIS-100: CBM	pA, AA, 2.5-5 GeV	> 2028			Hadrons, dilept., critical point?, $\mu_{\rm B}$ = 500-700 MeV	(Hyper)nuclei
SPS: AMBER pII	μ,π,Κ,p(250 GeV)-N	> 2030				K, π properties, spectroscopy, Cosmic antinuclei
MUonE	µ(160 GeV)-е	> 2030	g-2 (hadronic)			
HIE-ISOLDE upgrades	Radioactive ion beams	> 2029				Nucl. phys. Inputs NS EoS
KEK: Belle II upg.	ee 10 GeV	> 2035	$\alpha_{\rm s}(m_{ au}^2)$			Exotica (c,b)
STCF	ee 2-7 GeV	> 2033	$lpha_{ m s}(m_{ au}^2)$			Exotica (c)
EIC	ep, eA 28-140 GeV	> 2036	$\alpha_{\rm s}(m_{\rm Z}^2), \alpha_{\rm s}(Q^2)$	(n)PDF, TMD, GPD, medium/large x		Exotica (c,b)
LHeC	ep, eA 1.2 TeV	> 2043	$\alpha_{\rm s}(m_Z^2), \alpha_{\rm s}(Q^2)$	(n)PDF, TMD, GPD, small to large x		Exotica (c,b)
FCC	ee 90-365 GeV pp 85 TeV AA 33.5 TeV pA 53.4 TeV	> 2047 > 2074	$ \begin{array}{l} \alpha_{\rm s}(m_Z^2), \alpha_{\rm s}(Q^2), \\ m_{\rm t}, \Gamma_{\rm t}, m_{\rm W} \end{array} $	(n)PDF, TMD, small to large x	New probes of time evolution, early times, $\mu_{\rm B}=0$	Cosmic rays (modeling pri- mary interaction)

ESPP Inputs: hot and dense QCD & QCD connections

>30 Input Documents map to these two areas of Strong Interactions

(mostly) The realm of Hadron Machines

Hot and dense QCD

Phase diagram of strongly-interacting (QCD) matter

Heavy-ion collisions and the QGP

- Explore the deconfined phase of QCD matter \rightarrow quark-gluon plasma
- LHC Pb-Pb \rightarrow large energy density (initial $\epsilon > 10 \text{ GeV/fm}^3$) & large volume (~ 5000 fm³)

Visualization by J.E. Bernhard, arXiv:1804.06469

Quark-gluon plasma study at the LHC

QGP features in a nutshell:

- ✓ Energy density > 10 GeV/fm³
- ✓ Colour charge deconfined
- ✓ Strong energy loss for hard partons
- Expands hydro-dynamically like a very-low viscosity liquid

- Hadronises in thermal equilibrium
- ✓ Large (anti)baryon production
- Smooth evolution of collectivity down to pA and pp collisions (discovery at LHC! QGP?)

Example: from data to QGP fluid-dynamic properties

• Theory groups use **high-precision** LHC data to estimate the **properties of the QGP fluid** with a Bayesian procedure. Example: S. Bass et al, Nature Phys. 15(2019)1113

other form of matter

Current summary of quark-gluon plasma properties (LHC)

Audurier (LHCb), Cole (ATLAS), Dainese (ALICE), Lee (CMS), https://doi.org/10.1142/9789811280184_0005

ESPP Open Symposium, 25.06.2025

European Strategy

Main open questions in hot and dense QCD with broad impact on QCD and particle physics at large!

- Temporal evolution of QCD many-body system
- < 1 fm/c Onset of hydrodynamic regime (multi-parton \rightarrow "liquid")
 - QGP temperature and density vs time
- 1-10 fm/c Microscopic mechanisms of quark interactions in QGP
 - Approach to thermal equilibration (heavy quarks)
 - Mechanisms of hadron formation in dense QCD environment
 - General question in QCD; QGP = ideal testbed (deconfined heavy quarks)
 - Mechanism of chiral symmetry restoration in the QGP
 - Generates 99% of atomic mass $(m_{u,d}/m_p \sim 1\%)$
 - Emergence of collectivity in QCD: smaller collision systems down to pp
 - Critical endpoint in QCD phase diagram?

ESPP Open Symposium, 25.06.2025

Future research directions with heavy ions

Low energy collisions (SPS ~ 5-17 GeV, FAIR ~ 2-5 GeV):

- Caloric curve of QCD matter (temp. vs. c.m.s. energy)
- Search for the Critical Endpoint

Future research directions with heavy ions

Low energy collisions (SPS ~ 5-17 GeV, FAIR ~ 2-5 GeV):

- Caloric curve of QCD matter (temp. vs. c.m.s. energy)
- Search for the Critical Endpoint

High energy collisions (HL-LHC ~ 5.5 TeV):

 Time-evolution of a many-body QCD system: linking elementary QCD interaction to equilibration at macroscopic level

Systematic exploration of QGP properties - precision!

Future research directions with heavy ions

Low energy collisions (SPS ~ 5-17 GeV, FAIR ~ 2-5 GeV):

- Caloric curve of QCD matter (temp. vs. c.m.s. energy)
- Search for the Critical Endpoint

High energy collisions (HL-LHC ~ 5.5 TeV):

- Time-evolution of a many-body QCD system: linking elementary QCD interaction to equilibration at macroscopic level
- Systematic exploration of QGP properties precision!

Further future (FCC-hh ~ 35 TeV):

- New rare probes and time-scales of the QGP accessible
 - Thermal charm, boosted top decays, ...

Full physics exploitation of facilities with ion beams

- HL-LHC
 - Full exploitation (2020 ESPPU) requires:
 - Detector upgrades with frontier sensors, to extend physics reach
 - Maximisation of integrated luminosity for large ions
 - Possibility of short runs with light ions for specific goals (onset of QGP effects and of thermalisation, nuclear shapes & neutron skin) ____
- SPS/FAIR
 - With state-of-the-art detectors
 - Unprecedented high-rate fixed-target collisions
 - Energy and nuclei variations
- FCC-hh
 - Large energy and luminosity increase
 - Keep possibility to accelerate ions
 - maximise FCC science case and community

Run 5 LHC

Tested and validated

Tested, need

another test

SPS NA Run 4

or

A >> Lnn >> Run 5

Untested

Low energy collisions – fixed target

CERN SPS: new NA60+ experiment and NA61 upgrade FAIR SIS-100: new machine and CBM experiment

- NA60+/DiCE: dimuon spectrometer following a silicon pixel tracker (ALICE ITS3 MAPS)
- Letter of Intent positively reviewed by SPSC in 2023; • Proposal submitted in spring 2025
- Data taking ~ 2029-2036; scan of beam energy 20-150 GeV/nucleon

High energy - HL-LHC

Id68:ALICE Id106:NuPECC Id7:HITownM European Strategy

ALICE 3: next-generation heavy-ion detector

- \rightarrow Tracking precision $\times 4$: 4 µm at p_T = 1 GeV/*c*, "ultimate" Si-MAPS tracker
- → Acceptance × 4.5: $|\eta| < 4$, $p_T > 50$ MeV, with particle ID (Si-TOF, SiPM-RICH, Mu)
- \rightarrow Interaction rate $\times 5$ (pp $\times 25$)

ESPP Open Symposium, 25.06.2025

High energy - HL-LHC

Id106:NuPECC Id7:HITownM European Strategy **General purpose detectors:** LHCb Upgrade 2 and ATLAS+CMS phase II

Id82:LHCb Id170:ATLAS+CMS

for Particle

Id68:ALICE Id131:NA60+

Id7:HITownM

Thermal radiation: QGP temp. vs energy and vs time

Id68:ALICE Id131:NA60+

Id7:HITownM

Thermal radiation: QGP temp. vs energy and vs time

ALICE 3, CBM, NA60+: high-precision (<5%) temperature

Id68:ALICE Id131:NA60+

Id7:HITownM

Thermal radiation: QGP temp. vs energy and vs time

ALICE 3, CBM, NA60+: high-precision (<5%) temperature → mapping across phase diagram

Id68:ALICE Id131:NA60+

Id7:HITownM

Thermal radiation: QGP temp. vs energy and vs time

ALICE 3, CBM, NA60+: high-precision (<5%) temperature \rightarrow mapping across phase diagram ALICE 3: first access to time evolution of the temperature with thermal dileptons vs p_{T}

ESPP Open Symposium, 25.06.2025

Heavy-quark thermalisation in QCD matter

- Charm and beauty: perfect probes of interactions and of transport coefficients
 - Interaction strength and effect decreases with mass
 - Thermalisation time $\tau_{charm} \sim 1/3 \tau_{beauty}$, and $\sim QGP$ lifetime O(10) fm/c

European Strategy

Heavy-quark thermalisation in QCD matter

- Charm and beauty: perfect probes of interactions and of transport coefficients
 - Interaction strength and effect decreases with mass
 - Thermalisation time $\tau_{charm} \sim 1/3 \tau_{beauty}$, and $\sim QGP$ lifetime O(10) fm/c
- HL-LHC: precise study of degree of thermalisation with low- p_{T} charm and with beauty

Charm-anticharm azimuthal correlations ($\Delta \phi$)

PYTHIA 8.2, VS_NN = 5.5 TeV, 0-100% central

 $D^0 - \overline{D^0}$ azimuthal correlations, bkg-subtracted

unc. ± 1.8e-04 (indep. c-cbar contrib.)

width ± 18.0%. AS width ± 3.8% Unc. NS vield ± 19.3%. AS vield ± 3.4%

 $p_{\tau}^{D^0} > 4 \text{ GeV}/c, 2 < p_{\tau}^{\overline{D^0}} < 4, |y_{\tau}| < 4$

 $\Delta \phi$ (rad) \rightarrow "Rutherford experiment" for QGP

Full thermalisation

 \rightarrow Direct constraints on charm equilibration

ESPP Open Symposium, 25.06.2025

 $rac{1}{N_{D^{0}}}rac{d\Delta 0}{d\Delta \phi}$ (rad⁻¹)

10

CMS: 5-100 GeV/c

Significance(3 σ) 0 0 0 0 0 Charged hadrons CMS (p₁ < 50 GeV), 0.2 nb⁻¹ Pb-Pb $\sqrt{s_{NN}}$ = 5.52 TeV, 0-10% Proiection (p₋ > 50 GeV), 10 nb⁻¹ D⁰ (p₊ < 20 GeV), 0.2 nb⁻ $L_{int} = 35 \text{ nb}^{-1}$ D^{0} (p₋ > 20 GeV), 10 nb $B^+ \rightarrow \overline{D}^0 \pi^+, |\gamma| < 1.44$ B*. 10 nb Non-prompt J/w. 10 nt e[₹]0.8 10 Centrality 0-100% ¹⁰ p₋ (GeV) p_ (GeV/c)

pp + PbPb

Run 3+4 Projection

√s_{NN} = 5.02 TeV

 \rightarrow b quark interactions and (approach to) equilibration

20

Heavy-quark thermalisation in QCD matter

Hot and dense QCD benchmarks

- Charm and beauty: perfect probes of interactions and of transport coefficients
 - Interaction strength and effect decreases with mass

Id131:NA60+

Id68:ALICE

European Strategy

ESPP Open Symposium, 25.06.2025

Hot and dense QCD benchmarks

(Multi-)heavy-flavour hadron formation from QGP

- Sensitive to degree of thermal equilibration of heavy guarks
 - Mass-dependence with c and b quarks
- Multi-charm baryons
 - Require recombination of multiple charm quarks
 - Full thermalisation scenario: yield ~ $g_c^n \rightarrow x100$ (cc) -1000 (ccc) enhancement in Pb-Pb

European Strategy

Mass-dependence with c and b quarks Multi-charm baryons

Require recombination of multiple charm quarks

Hot and dense QCD benchmarks

Full thermalisation scenario: yield ~ $g_c^n \rightarrow x100$ (cc) -1000 (ccc) enhancement in Pb-Pb •

Ultimate high energy and lumi – FCC-hh

Heavy ions at FCC-hh: novel probes of the QGP

- FCC-hh HI performance: Pb-Pb $\sqrt{s_{NN}} \sim 35$ TeV $\sim 7 \times LHC \sqrt{s_{NN}}$
- >100 nb⁻¹/month in "ultimate" luminosity scenario: ~ 20-30 x LHC L_{int}
- QGP from LHC to FCC: volume x2, energy density x3, initial temperature ~1 GeV

Id209:FCC-QCD

Id7:HITownM European Strategy

QCD connections with hadronic, nuclear, astro(particle) physics

Very broad area \rightarrow Focus on aspects with strongest benefit from large-accelerator experiments

Nature of Neutron Star matter and their equation of state

Dimensions: R ~ 10 – 15 km M ~ 1.2 – 2.2 M_{\odot}

Outer crust: lons, electron gas, neutrons

Inner core: Neutrons? Protons? Hyperons (Y)? Kaon condensate? Quark matter?

Neutron stars: very dense, compact objects

- How does the equation of state of neutron star look like?
 - What are the constituents to consider?
 - How do they interact?

European Strategy

European Strategy

Nature of Neutron Star matter and their equation of state

Pressure vs. energy density of NS matter

Mass vs. Radius of NS

Nature of Neutron Star matter and their equation of state

Pressure vs. energy density of NS matter

- Strength of 2-body and 3-body hadronic interactions
- Nuclear incompressibility K₀ and other properties

Mass vs. Radius of NS

- Strength of 2-body and 3-body hadronic interactions
- Nuclear incompressibility K_0 and other properties

→ Precise laboratory measurements needed for sharp comparison with astrophysical data

European Strategy

NS: required inputs from strong interaction measurements

Pressure vs. energy density of NS matter

- Strength of 2-body and 3-body hadronic interactions
- Nuclear incompressibility K₀ and other properties

Femtoscopy at HL-LHC:

High-precision data on YN, YY and YNN (Ξ, Σ)

- Ongoing in ALICE
- ALICE 3 (large acceptance and pp lumi increase)
- Complementarity with JPARC-HI (Japan), FAIR

ISOLDE:

Nuclear properties away from stability valley

 <u>HIE-ISOLDE upgrade</u>: higher energy (10 MeV/n) and intensity (LINAC4) → larger production of exotic nuclei

High-precision mass and radii of n-rich nuclei Input for r-/s-processes (SN expl., stellar nucleosynthesis) Complementarity with FAIR, SPIRAL2-Ganil, ... QCD connections with astrophysics

Id89:CosmicRays European Strategy

Indirect Dark Matter searches (anti-nuclei) in cosmic rays

Searches of anti-nuclei from DM decays, e.g. $\chi_0\chi_0 \rightarrow \overline{p}$, \overline{d} , ${}^{3}\text{He}$ +X (AMS-02, GAPS, BESS), need "strong interaction" inputs from hadron collider and fixed-target experiments:

- Ordinary anti-nuclei hadroproduction by cosmics is a major background
- Anti-nuclei absorption in Space poorly constrained

QCD connections with astrophysics: benchmarks

Id235:PBC Id89:CosmicRays

Indirect Dark Matter searches (anti-nuclei) in cosmic rays

10⁴

 $L_{\rm int}$ (pb⁻¹)

 10^{3}

 10^{2}

10

QCD connections with astrophysics: benchmarks

Id23:FASER Id19:FPF Id224:pALHC Id201:Auger Id89:CosmicRays

European Strategy **Ultra-High Energy Cosmic Rays (UHECR):** primary neutrino flux and primary interaction modelling

Exotic hadrons: future goals

• Large number of exotic hadrons discovered in e⁺e⁻ and pp collisions

- Main open questions:
 - Nature of exotic hadrons? Constituents?
 - Do hybrids/glueballs exist?
 - Why do many exotic hadrons lack

flavour/isospin partners?

QCD connections with hadronic physics: benchmarks

Exotic hadrons: experimental opportunities

LHCb U2: ultimate precision for states spectroscopy and spectral function analysis

 Including T_{bc} and T_{bb}, which are expected to have large enough binding energies such that only weak decays are possible

ee, ep: extensive programs at Belle II, STCF, EIC, LHeC, FCC-ee, LCF

ALICE 3: use femtoscopy to search for exotic hadrons as D-D bound

ALICE 3, CMS, LHCb: use coalesce mechanism in HI collisions to constrain inner structure

European Strategy

Id68:ALICE

Id81:LHCb Id82:LHCb

ESPP Open Symposium, 25.06.2025

Exotic hadrons: lattice QCD approach

- Lattice QCD provides crucial information on exotic hadrons
 - predictive (quantifiable uncertainties) \rightarrow guide experimental searches
 - complementary to exp. : e.g. tune the quark masses, probe internal structure
- Example: T_{bb} from lattice \rightarrow strongly bound tetraquark

Future resource requirements:

- → Increasing need of computing resources
- → Access to CPU and storage (PBs)
- → Access to HPC centres
- → Training/synergy with computer science

Conclusions

- Very rich physics programme ahead in non-perturbative QCD:
 - − High-temperature QCD \rightarrow genuine many-body QCD system (elementary \rightarrow macro)
 - Hadron nature (exotica) and interactions → fundamental questions and mandatory studies for astro(particle)physics

large Community interest: >30 Input Documents

- HL-LHC: unique machine for these areas of QCD
 - \rightarrow Accomplishing the 'Full exploitation' recommended in 2020 requires...
 - → New detectors with frontier sensor technologies and maximising heavy-ion luminosity
- SPS, FAIR: high rates, versatility, and "LHC-driven" sensor technologies
 - \rightarrow Complement LHC (high baryon-density, hadron phys.), possibly extending to post-LHC era
- FPF, HIE-ISOLDE: perfect example of far-reaching QCD and of scientific synergy
- FCC-hh: novel studies in high-*T* QCD and closer to UHECR conditions

Thanks for your attention!

Thanks for the community inputs and the discussion in the parallel session

Thanks to the WG members for these areas: R. Arnaldi, A. Gérardin, V. Mantovani Sarti, M. Pappagallo, R. Snellings, U. Wiedemann

Hot and dense QCD benchmarks: QGP temperature

Experiment	When	Strengths / Uniqueness	Measurement	Physics insight
ALICE 3 @ HL-LHC	> 2035	Unique pointing resolution of few um (remove HF backgrounds); low material budget	Invariant mass spectrum of thermal dielectrons, differential in mass, pT, azimuthal angle	Temperature of QGP with accuracy of 1-2% (no backgrounds), compared to 10% ALICE 2. Temperature as a function of time during QGP evolution.
CBM @ SIS100	> 2028	Fill a region where no data are so far available, complement with existing measurements. With SIS100, cover sqrt(sNN) range where hadronic phase dominates	Dimuon and dielectron invariant mass spectra (1.5 < M < 2.5 GeV). Measurements will be obtained in an energy scan (3 < $\sqrt{s}_{_{NN}}$ < 5 GeV)	Study phase transition, searching for a flattening of T vs sqrt(s) < 5 GeV, signature of a first-order phase transition . Experimental precision on T of a few MeV
NA60+/DiCE @ SPS	> 2029	Fill a region where no data are so far available, complement with existing measurements. Cover sqrt(sNN) range where QGP onset is expected	Caloric curve with T extracted from the dimuon invariant mass spectra (1.5 < M < 2.5 GeV). Measurements will be obtained in an energy scan (6 < $\sqrt{s_{_{NN}}}$ < 17 GeV)	Study phase transition, searching for a flattening of T vs sqrt(s) < 17 GeV, signature of a first-order phase transition . Experimental precision on T of a few MeV (1-2%)
FCC-hh	>2060	x6-7 larger sqrt(sNN) and ~ x10 larger L_int	Quarkonium yields	Sensitivity to initial QGP temperature using Y(1,2,3s) melting and regeneration patterns - Y(1s) melting only at FCC?
			Total charm hadron yields and yield increase wrt pp scaling with Ncoll	Thermal charm production from gg->c-cbar in QGP when temperature ~1 GeV -> novel way to access initial QGP temperature

European Strategy

Hot and dense QCD benchmarks: heavy flavour HL-LHC

Experiment	When	Strengths / Uniqueness	Measurement	Physics insight
ALICE 3 @ HL-LHC	> 2035	Unique pointing resolution of few um Large acceptance in pT and eta, with particle ID	Precise measurement of beauty meson and baryon spectra and flow at pT>0	Degree of thermalization in QGP of heavy quarks with different masses (beauty vs charm)
			Multi-charm baryons (Xi_cc, Omega_cc)	Pure recombination hadrons: x100 enhancement in Pb-Pb Kinetic equilibration of deconfined charm quarks
			Rare charmonia: chi_c1,2, X(3872)	Suppression pattern for p-wave charmonia; Low-pT mid-y X -> Structure (molecular vs compact tetraquark)
LHCb U2 @ HL-LHC	> 2035	Forward eta acceptance 2-5, with PID	Precise measurement of beauty meson and baryon spectra and flow at pT>0, fwd y	Degree of thermalization in QGP of heavy quarks with different masses (beauty vs charm) - fwd-y only, more limited sensitivity
			Rare charmonia: X(3872)	Low-pT fwd-y X -> Structure (molecular vs compact tetraquark)
ATLAS/CMS II @ HL-LHC	>2030	Large eta acceptance, partly with PID (CMS), high pT and jet performance	Beauty and charm hadrons at medium-high pT	Energy loss and hadronization of b and c quarks
			t-tbar events in Pb-Pb: exploratory measurements	Jet quenching effect on (t->)W->qqbar; explore time-dependence with pT_top dependence
FCC-hh	>2060	x6-7 larger sqrt(sNN) and ~ x10 larger L_int	t-tbar events in Pb-Pb: full exploitation of new obs.	Access to time-dependence of jet quenching and QGP opacity with pT_top dependence to up ~ 1 TeV/c

Hot and dense QCD benchmarks: heavy flavour SPS

Experiment	When	Strengths / Uniqueness	Measurement	Physics insight
NA61/SHINE @ SPS	> 2029	Large acceptance and hadron ID at SPS, vertex detector, but limited interaction rate	D-Dbar azimuthal correlations SPS energy (but no experimental projections)	Study azimuthal correlations in Pb-Pb (in principle, there is no combinatorial background of uncorrelated c-cbar pairs)
NA60+/DiCE @ SPS	> 2029	Measurements performed at high muB, in an energy range, below top SPS energies, never explored so far	Quarkonium measurements (in the dimuon channel) performed via a beam energy scan between $6 < \sqrt{s_{_{NN}}} < 17 \text{ GeV}$	Onset of quarkonium suppression and possibility to correlate it with the temperature of the system measured via thermal dimuons, to identify the threshold temperature for the melting of the charmonium states
		At colliders, intrinsic charm effects should appear only at very forward rapidities, while at fixed-target, their contributions dominate at mid-rapidity, in a more accessible range	Intrinsic charm via J/Psi in p-Pb	Investigate the intrinsic charm component of the nucleon wavefunction , which should lead to an enhancement in the J/Psi production in p-Pb close to mid-rapidity
		Very few open charm studies at SPS energies (indirect measurement by NA60, upper limit by NA49 and first D0 measurement by NA61/SHINE)	Baryon and meson open charm states: integrated and differential cross sections, azimuthal distributions	Impact of a shorter-lived medium on charm →charm-quark thermalization and searches on features connected with collective behaviour Charm hadronization mechanisms at high muB investigated via the relative abundances of the different charm-hadron species

Phase transition in lattice QCD

Pressure density of ideal gases:

$$p = \frac{\varepsilon}{3} = n_{dof} \frac{\pi^2 T^4}{90} \implies \frac{\varepsilon}{T^4} \quad vs. \quad T \qquad \propto n_{dof} = n_b + \frac{7}{8} n_f$$

- Lattice QCD applicable at low μ_B
- p / T⁴ ~ n_{dof} changes rapidly around T_c
- Critical temperature $T_c \sim 155 \text{ MeV} (\sim 10^{12} \text{ K})$ $\rightarrow \varepsilon_c = 0.6 \text{ GeV/fm}^3$

 $n_{dof} = 3$

Below T_c : gas of pions

Above T_c : gas of g, u, d and $n_{dof} = 37$ anti-quarks

[PRD 90 094503 (2014)]

HTL NNLO

300

T[MeV]

400

500

HRG

200

lattice continuum limit

ج ع

Tracking precision vs acceptance

ALI-SIMUL-491785

ALICE 3 Particle Identification

e, π , K, p separation with TOF + RICH detectors, with specifications σ_t = 20 ps, σ_{θ} = 1.5 mrad

+ endcap TOF and RICH

ESPP Open Symposium, 25.06.2025 Andrea Dainese | Strong Interactions WG

European Strategy

QGP phase transition: chiral symmetry restoration

- In the massless limit, QCD Lagrangian is symmetric under chiral transformations between left- and right-handed states
- Chiral symmetry breaking, with the associated formation of quark-antiquark condensates, generates most (~99%) of the mass of the baryons, while the contribution of the mass generated by the Higgs field is almost negligible (bare u/d quark mass)
 - In QCD vacuum (T=0), symmetry is broken and chiral partners have different mass, e.g. $\rho_0 a_1$ mesons
 - QGP: chiral symmetry (partially) restored
 - $\rho_0 a_1$ masses get closer
 - Can be observed in $\rho^0 \rightarrow I^+I^-$ mass spectrum

Chirality = helicity for massless particles

ESPP Open Symposium, 25.06.2025

Id68:ALICE Id131:NA60+ Id7:HITownM

QGP phase transition: chiral symmetry restoration

• Di-lepton measurements in ALICE 3, NA60+, CBM will enable direct experimental access to chiral symmetry restoration in the QGP

Plans of ATLAS, CMS, LHCb for HIs in Runs 4-5

- Upgrades of ATLAS, CMS, LHCb will improve their performance and physics reach also in heavy-ion collisions
 - ATLAS and CMS complement ALICE with a strong high- p_T and jet programme
 - LHCb complements with heavy-flavour at forward rapidity and fixed target (SMOG)

ESPP Open Symposium, 25.06.2025

'Global' properties of the collisions: system volume from Hambury Brown Twiss interferometry

- Quantum effect: enhancement of correlation function for identical bosons, e.g. pairs of pions
- From Heisenberg's uncertainty principle:
 - $\Delta p \cdot \Delta x \sim r^* \cdot k^* \sim \hbar$
 - → extract source size from momentum correlation function

Elliptic flow by hadron species

• Non-central collisions: flow maps the geometrical elliptical shape into an azimuthal modulation in momentum distributions

- Mass ordering at low $p_{T} \rightarrow$ hydrodynamic flow, very small viscosity
- Even A=2 and A=3 light nuclei pushed by the flow
- Baryon vs. meson grouping at higher p_T
 → quark-level flow + recombination?

an Strateg

A big surprise at the LHC: 'heavy-ion physics' in pp collisions?

What is the smallest system (number of particles) for QGP formation?

European Strategy

From heavy-ions to p-nucleus and pp: flow-like effects

 Observation of collective effects in pp and p-Pb collisions: one of the few unexpected findings of the LHC

Mass ordering of elliptic flow

From heavy-ions to p-nucleus and pp: flow-like effects & 'hadrochemistry'

• Observation of collective effects in pp and p-Pb collisions: one of the few *unexpected* findings of the LHC

From heavy-ions to p-nucleus and pp: flow-like effects & 'hadrochemistry'

• Observation of collective effects in pp and p-Pb collisions: one of the few unexpected findings of the LHC

From heavy-ions to p-nucleus and pp: flow-like effects & 'hadrochemistry' & energy loss?

p-Pb nuclear modification factor ~1
 no suppression of yields

 But persistence of azimuthal asymmetry (v₂) to high p_T suggestive of final state interactions

From heavy-ions to p-nucleus and pp: flow-like effects & 'hadrochemistry' & energy loss?

suggestive of final state interactions