European Strategy for Particle Physics

23-27 JUNE 2025

Precision QCD and hadron/nuclear structure

European Strate

Andrea Dainese (INFN Padova), **Cristinel Diaconu (CPPM Marseille),** Chiara Signorile-Signorile (MPP Munich)

INFN

for the Strong Interactions Working Group WG2

andrea.dainese@pd.infn.it, diaconu@cppm.in2p3.fr, signoril@mpp.mpg.de

Preamble

- The strong force is everywhere and mainly responsible for the visible nuclear matter composition
- It drives vacuum (asymptotic freedom) as well as collective (confinement) phenomena accessible by experiments; and maybe the axion?
- The strong(est) fundamental coupling is the least known amongst the four forces $\delta \alpha \approx 10^{-10} \ll \delta G_{F} \approx 10^{-7} \ll \delta G \approx 10^{-5} \ll \delta \alpha_{s} \approx 1\%$

To rule out absolute stability to 3sigma confidence Mtop precision 250 MeV $\alpha_s(m_Z)$ precision below 0.00025"

[arXiv:1707.08124]

European

CPPM | CNRS/IN2P3 and Aix Marseille Université

The strong interactions in four questions

Strong Interactions WG: physics areas and experts

Conveners:

Andrea Dainese Cristinel Diaconu

Scientific Secretary:
 Chiara Signorile-Signorile

Precision QCD

David d'Enterria, Sven Olaf Moch

Internal structure of protons and nuclei

Nestor Armesto , Andy Buckley

Hot and dense QCD

Roberta Arnaldi, Raimond Snellings, Urs Wiedemann

QCD connections with hadronic, nuclear and astro(particle)physics

Antoine Gerardin, Valentina Mantovani Sarti, Marco Pappagallo

Many thanks to all contributors and in particular: David Dobrigkeit Chinellato, Gianluca Usai Jasmine Therese Brewer, Claire Gwenlan, Maria Ubiali, Thomas Cridge, Hannu Paukkunen Valerio Bertone, Michael Peskin, Pier Francesco Monni, Daniel Britzger, Anselm Vossen,, Win Lin, Marek Karliner, Fiorenza Donato, David Wilson

ESPP 2026 SI Submitted Input Documents

- 47 Input Documents was 35 for ESPPU 2020
 - All 2020 physics areas covered, in general more documents per area
 - Most of them from large collaborations and experiments

Methodology

- Inputs have been assigned to subareas
- Extra input collected
- Two open workshops: 14 and 28 Mai 2025
 - https://indico.cern.ch/event/1527574/

Many thanks to all involved people

Future Experiments

- According to the received input and further discussions in the preparatory WG2 open meetings
- If this was chemistry:

The "lab" is well equiped! $E_{process} \sim GeV \rightarrow 50 \text{ TeV} \sim 6 \text{ orders of magnitude}$

C. DIACONU CPPM | CNRS/IN2P3 and Aix Marseille Université

Facility, Experiments	Colliding systems, c.m.s. energy	Timelin	Precision QCD	Partonic dynamics in protons and nucleons	Hot and dense QCD	QCD con- nections (hadronic, nuclear, as- trophysics)
HL-LHC: ALICE 3, ATLAS & CMS pII, LHCb U2, LHCspin	pp 14 TeV AA 5.5 TeV pA 8.8 TeV	> 2035 (ALICE 3, LHCb U2)	$lpha_{ m s}(m_{ m Z}^2), lpha_{ m s}(Q^2), \ m_{ m t}, m_{ m W}$	(n)PDF, TMD, small x, intrinsic charm	Precision charm, beauty, hard and e.m. probes, $\mu_{\rm B}$ =0; time evolu- tion	Hadr. int., (hy- per/charm)nuclei, Exotica, Cosmic antinuclei, Neu- tron Star EoS
HL-LHC: FPF	LHC collisions, neutrino-nucleon	> 2031		(n)PDF, small <i>x</i> , intrinsic charm		Cosmic rays (neutrinos)
SPS: NA60+, NA61	pA, AA, 6-17 GeV	> 2030 (NA60+)		nPDF, medium/large x	Charm, dileptons, critical point?, $\mu_{\rm B}$ =200-450MeV	Cosmic antinu- clei, neutrinos
FAIR SIS-100: CBM	pA, AA, 2.5-5 GeV	> 2028			Hadrons, dilept., critical point?, $\mu_{\rm B}$ =500-700MeV	(Hyper)nuclei
AMBER	μ,π,K,p(250 GeV)-N	> 2030				K properties, spectroscopy, Cosmic antinuclei
MUonE	µ(160 GeV)-е	> 2030	g-2 (hadronic)			
HIE-ISOLDE upgrades	Radioactive ion beams	> 2029				Nucl. phys. Inputs NS EoS
KEK: Belle II upg.	ee 10 GeV	> 2035	$\alpha_{\rm s}(m_{ au}^2)$			Exotica (c,b)
STCF	ee 2-7 GeV	> 2033	$\alpha_{\rm s}(m_{ m t}^2)$			Exotica (c)
EIC	ep, eA 28-140 GeV	> 2036	$\alpha_{\rm s}(m_{\rm Z}^2), \alpha_{\rm s}(Q^2)$	(n)PDF, TMD, GPD, medium/large x		Exotica (c,b)
LHeC	ep, eA 1.2 TeV	> 2043	$\alpha_{\rm s}(m_{\rm Z}^2), \alpha_{\rm s}(Q^2)$	(n)PDF, TMD, GPD, small to large x		Exotica (c,b)
FCC	ee 90-365 GeV pp 85 TeV AA 33.5 TeV pA 53.4 TeV	> 2047 > 2074	$\alpha_{\rm s}(m_{\rm Z}^2), \alpha_{\rm s}(Q^2), \ m_{\rm t}, \Gamma_{\rm t}, m_{\rm W}$	(n)PDF, TMD, small to large <i>x</i>	New probes of time evolution, early times, $\mu_{\rm B}=0$	Cosmic rays (modeling pri- mary interaction)
LCF CLIC	ee 0.25-1 TeV ee 0.38-1.5 TeV	> 2050	$ \begin{array}{l} \alpha_{\rm s}(m_{\rm Z}^2),\alpha_{\rm s}(Q^2),\\ m_{\rm t},\Gamma_{\rm t},m_{\rm W} \end{array} $			
LEP3	ee 91-230 GeV	> 2047	$\alpha_{\rm s}(m_{\rm Z}^2)$			
Muon Collider	μμ 3-10 TeV	> 2050	$\alpha_{\rm s}(m_{\rm Z}^2), \alpha_{\rm s}(Q^2)$	PDF using sec. neutrino beam		

Future Experiments

- According to the received input and further discussions in the preparatory WG2 open meetings
- If this was chemistry:

The "lab" is well equiped! $E_{process} \sim 0.1 \text{ GeV} \rightarrow 10^2 \text{ TeV} \sim 6 \text{ orders of magnitude}$

C. DIACONU CPPM | CNRS/IN2P3 and Aix Marseille Université

Facility, Experiments	Colliding systems, c.m.s. energy	Timeline	Precision QCD	Partonic dynamics in protons and nucleons	Hot and dense QCD	QCD con- nections (hadronic, nuclear, as- trophysics)
HL-LHC: ALICE 3, ATLAS & CMS pII, LHCb U2, LHCspin	pp 14 TeV AA 5.5 TeV pA 8.8 TeV	> 2035 (ALICE 3, LHCb U2)	Benchn	narks	Precision charm, beauty, hard and e.m. probes, $\mu_{\rm B}$ =0; time evolu- tion	Hadr. int., (hy- per/charm)nuclei, Exotica, Cosmic antinuclei, Neu- tron Star EoS
HL-LHC: FPF	LHC collisions, neutrino-nucleon	> 2031	$\mathbf{u}_{S,I}$	(n)		Cosmic rays (neutrinos)
SPS: NA60+, NA61	pA, AA, 6-17 GeV	> 2030 (NA60+)		P	Charm, dileptons, critical point?, $\mu_{\rm B}$ =200-450MeV	Cosmic antinu- clei, neutrinos
FAIR SIS-100: CBM	pA, AA, 2.5-5 GeV	> 2028	M_{top}	D	Hadrons, dilept., critical point?, $\mu_{\rm B}$ =500-700MeV	(Hyper)nuclei
AMBER	μ,π,Κ,p(250 GeV)-N	> 2030		F		K properties, spectroscopy, Cosmic antinuclei
MUonE	µ(160 GeV)-е	> 2030	-			
HIE-ISOLDE upgrades	Radioactive ion beams	> 2029	Μ			Nucl. phys. Inputs NS EoS
KEK: Belle II upg.	ee 10 GeV	> 2035	•••٧٧			Exotica (c,b)
STCF	ee 2-7 GeV	> 2033	_			Exotica (c)
EIC	ep, eA 28-140 GeV	> 2036				Exotica (c,b)
LHeC	ep, eA 1.2 TeV	> 2043	-			Exotica (c,b)
FCC	ee 90-365 GeV pp 85 TeV AA 33.5 TeV pA 53.4 TeV	> 2047 > 2074	-		New probes of time evolution, early times, $\mu_{\rm B}$ =0	Cosmic rays (modeling pri- mary interaction)
LCF CLIC	ee 0.25-1 TeV ee 0.38-1.5 TeV	> 2050				
LEP3	ee 91-230 GeV	> 2047				
Muon Collider	μμ 3-10 TeV	> 2050				

Strong interactions and QCD: the coupling α_s European Strategy of Particle Physics

Is it possible to gain an order of magnitude in precision? When and how?

Measure the strong coupling α_s

- 9 methods (e+e-, ep, pp)
- The relation Observable=f(α_s) has to be known precisely
- Various methods span different energy scales
- Current world average:
 - $\alpha_{\rm s}({\rm m_Z}^2) = 0.1180 \pm 0.0009$
 - 0.76% uncertainty

α_s Precision Prospects: experiment and theory

CPPM | CNRS/IN2P3 and Aix Marseille Université

Lattice calculations α_s

Lattice: FLAG24 + PDG result (0.6% relative error) 0.5 ALPHA → expect constant improvements : 0.1% in 2045 ?

The computing and methodology remain important challenges – Step-scaling & decoupling are state-of-the-art techniques. – Stat. uncert.∝(computing power)2 reducible by ~1/2 every 10 yrs – pQCD observables needed at higher accuracy – Syst. uncerts. start playing a role: QED, dynamical charm mass,...

C. DIACONU CPPM | CNRS/IN2P3 and Aix Marseille Université

25/06/2025 11

α_{s} projected precision

- O(0.15%) stat. precision reachable at LHeC (EIC 0.5); LEP3 0.2%
- <0.1% (combining extractions) precision reachable at FCC-ee.
- Lattice 0.1% by 2045? •
- Theory limitations have to be overcome

M_{top} **Prospects**

- HL-LHC :
 - Precise top mass is essential for the SM consistency checks
 - mtop(pole) from ttbar+jet x-sections: 200 MeV (limit Λ_{OCD} for hadronic machines)
 - mtop(MC) from boosted tops: 400 MeV (theoretical interpretation?)
- FCC_{ee} LCF (LC/CLIC)
 - e+e- collisions from threshold scan $\sqrt{s} = 340$ GeV (FCC-ee)

Uncertainties from theory:

M_{top} Precision

Table 1.3: Experimental and theoretical uncertainties on m_t and Γ_t expected at HL-LHC, FCCee, and LC (CLIC results for 100 fb⁻¹ [15] scaled to 400 fb⁻¹). The FCC-ee systematic uncertainties are mostly parametric, of which $\pm 2.2 \text{ MeV}$ ($\pm 1.6 \text{ MeV}$) on m_t (Γ_t) are due to the $\alpha_s(m_Z^2)$ value known with 0.1% precision.

	Collider	Uncertainties						
		Experimental	Theoretical (mostly QCD)					
	HL-LHC	$\pm 200~{ m MeV}$	$\pm 400 \text{ MeV}$					
m _t	FCC-ee	$\pm 4.2~\text{MeV}$ (stat.) $\pm 4.9~\text{MeV}$ (syst.)	$\pm 35 \text{ MeV}$					
	LC (CLIC)	± 10 MeV (stat.)	$\pm 35 \text{ MeV}$					
Г	FCC-ee	± 10 MeV (stat.) ± 6 MeV (syst.)	± 25 MeV					
I t	LC (CLIC)	± 25 MeV (stat.)	$\pm 25 \text{ MeV}$					

QCD theory experiment FCC-ee LC 10 30 100 200 5 400 Δm_t [MeV] Log scale

e+e- factor 20-30 improvement in experimental precision HL-LHC

Important pQCD theory developments needed! σ(e+e-→ttbar) at threshold: N4LO at least

M_w precision prospects

- ~4 MeV in 2045 (HL-LHC)
 - +LHeC reduce PDFs+ α_s errors
 - precision: 3 MeV (QCD 1 MeV)
- $\mathcal{O}(0.1)$ MeV reachable with future e+eprojects (FCC_{ee})
- Previsioned theory uncertainties evolve flatter than experiment:
 - stalled at 2-3 MeV
 - Threshold scan x-section: δmW ≈ 5 MeV (-because missing higher-order EW & EW⊗QCD corrections
 - Inv. Mass 4j and jets+l boosted analyses: non-pQCD (Colour reconnection, hadronization) between final-state decay products introduces a δmW ≈ 1 MeV uncertainty.

Higgs and QCD

- Precision needed to fully exploit the (B)SM program at Higgs factories requires exquisite control of pQCD & non-pQCD: B(H→had)=80%
 - Studying BSM in **Higgs-gluon coupling** within
 - $\pm 0.7\%$ (exp) requires $a_s(mZ)$ within $\pm 0.1\%$:
 - **Identifying gluon jets** requires significantly improved gluon fragmentation
 - in parton shower (NNLL) MCs:
 - High-stats data samples to be exploited: e+e-→Z→qq(g), e+e-→H(gg)Z
 - Observing strange-Yukawa requires significantly improved quark & gluon hadronization
- ► Dedicated studies of huge/clean hadronic
 Z,W→jj samples are key to H→jj physics.
 - Jet tagging, fragmentation, hadronization, Parton showers at NⁿLL

Perspectives in Precision QCD

- The expected experimental accuracy of future colliders requires a significant increase in precision QCD calculation, well beyond the current state of the art
 - Including higher order in QCD (N⁵LO...), Partons Showers(N³LO...) Fragmentation.
- Lattice calculations will play a crucial role, but have to overcome computational and technical challenges
- Importance of high-performance computer tools
 - software/generators, formal calculations frameworks (FORM), innovation (QIT), AI for hadronization modelling et.

	Observable	Missing higher-order & power-suppressed corrections								
wisn-list	Hadronic Z width	$\mathscr{O}(\alpha_s^5), \mathscr{O}(\alpha^3), \mathscr{O}(\alpha_s^2\alpha^3), \mathscr{O}(\alpha_s^2\alpha^2)$								
α₅(mz) in e⁺e⁻	Hadronic W width	$\mathscr{O}(\alpha_s^5), \mathscr{O}(\alpha^2), \mathscr{O}(\alpha^3), \mathscr{O}(\alpha_s \alpha^2), \mathscr{O}(\alpha_s \alpha^3), \mathscr{O}(\alpha_s^2 \alpha^2)$								
	Hadronic τ width	$\mathscr{O}(\alpha_s^5)$								
	Hadronic event shapes (Z, W, H decays)	N ³ LO differential, N ^{3,4} LL resummation, power corrections								
	Inclusive jet rates 3-jet cross sections at N ³ LO, 4-jets at N ² LO, 5-jets at NLO									
	Lattice QCD results	$\mathscr{O}(\alpha_s^6)$ β -function; $\mathscr{O}(\alpha_s^5)$ heavy quark decoupling; $\mathscr{O}(\alpha_s^4)$ static potential								
$\alpha_s(mz)$ in latt. (α_s extractions; quark masses m_c, m_b) $\mathscr{O}(\alpha_s^3)$ lattice perturbation theory matching (lattice coupling)										
m. m. in stat	$\sigma(e^+e^- \rightarrow W^+W^-)$ vs. \sqrt{s}	EW N ² LO: $\mathscr{O}(\alpha^2)$, Mixed EW-QCD: $\mathscr{O}(\alpha_s \alpha^2)$, $\mathscr{O}(\alpha_s^2 \alpha)$								
IIIW,IIItop IN e'e	$\sigma(\mathrm{e^+e^-} \rightarrow \mathrm{t\bar{t}}) \ \mathrm{vs.} \ \sqrt{s}$	NRQCD: $\mathscr{O}(\alpha_s^5)$, Non-resonant: $\mathscr{O}(\alpha_s^5)$,								
		$O(\alpha_s^3)$ differential; QED: $\mathscr{O}(\alpha^3)$ at NNLL								
	$H \rightarrow b\bar{b}$ width	N ⁴ LO (massive b-quark); N ⁴ LO differential (massless b-quark)								
QCD in Higgs	$H \rightarrow gg$ width	N ⁵ LO (heavy-top limit), N ⁴ LO (massive top)								
		N ⁴ LO differential, N ³ LO differential (massive top)								
e⁺e⁻,e-p, p-p PS	MC simulations for $e^+e^- \rightarrow X$ processes	$N^{2,3}LO$ matched to $N^{2,3}LL$ PS.								
(\mathbf{n}_{2}) in DIS		Permille control of non-perturbative QCD effects (hadronization, CR,)								
	ep \rightarrow hadrons (PDF and α_s determination)	N ^{3,4} LO evolution equations and inclusive cross sections								
	$ep \rightarrow jets (\alpha_s determination)$	N ³ LO cross sections								

Inside the proton

C. DIACONU CPPM | CNRS/IN2P3 and Aix Marseille Université

25/06/2025 18

Structure Functions

212.170

PDFs: messengers → assuming factorisation

 σ = Probe(PDF) ***** Interaction ***** Target (PDF)

Probing the proton: longitudinal PDFs Kinematic plane for proton

European Strategy

- PDFs are measured in DIS
 - HERA e p Valence quarks, some sea, low \boldsymbol{X} gluon.
 - Fixed Target e,nu p/A
 - Flavour decomposition.
- Further complementary constrains
 - LHC Sea quarks, flavour decomposition,
 - medium-large X gluon.

PDFs state of the art

Low x and high x: more data needed

Several thousands of data points are understood with few (10-15) parameters and perturbative **QCD**

In more detail: Differences between PDF sets, profiling delicate, simultaneous PDF+SM parameter fits.

Internal structure of protons and nuclei

CPPM | CNRS/IN2P3 and Aix Marseille Université

Distinguish valence quark

- Sizeable impact from FPF@FCC (valence), close to FPF@HL-LHC.
- Large impact from MuCol (statistics only).

Collinear PDFs and new/precision physics

European Strategy for Particle Physics

2410.00963

- PDFs essential for precision physics studies:
- Dominant uncertainty of many SM parameters:
 - ATLAS α s (0.0005/0.0009), CMS M_W (4.4/9.9 MeV) and sin2 θ W (0.0027/0.0031).
- High mass (large x): sizable uncertainties, BSM can be hidden in PDF uncertainties.

Internal structure of protons and nuclei - benchmarks

EIC: NC, CC and jets in DIS, light- and heavy-favour ID

FPF: v NC and CC DIS **FPF@FCC** v NC and CC DIS + charm.

LHeC: NC, CC and jets in DIS, heavy flavour ID

FCC-eh: NC, CC and jets in DIS, heavy flavour ID

FCC-hh: W, Z, DY, jets and dijets, single and pair top, isolated γ , D, B, quarkonia, light hadrons

MuCol: NC and CC DIS

- Small x : Saturation more visible in nuclei: GBW, scaled by A^{1/3}~6 for a Pb nucleus.
 - PPS2 at CMS in the HL-LHC, diffractive observables at the EIC and LHeC, photon-photon at LEP3/FCCee/CEPC/LC, FCC-hh and FCC-eh, ...

Kinematic planes for nuclei

nCTEQ15HIX

Q = 9.5 GeV

0.2

0.4

 \boldsymbol{x}

0.6

0.6

C. DIACONU CPPM | CNRS/IN2P3 and Aix Marseille Université EPPS21

Q = 9.5 GeV

0.2

0.4

 \boldsymbol{r}

0.6

nPDFs LHeC and EIC

[J.PHYS.G 48 (2021) 11, 110501]

European Strategy

28

Nuclear PDFs : constrains from FPF (FCC)

10¹

European Strategy

TMDs

- TMD factorisation appears in two-scale problems, e.g., Q and q_T in DY.
- TMDs contain perturbative & non-perturbative pieces; linked to collinear PDFs/FFs.
- Numerous sets/approaches, large perturbative accuracy (N4LL, required by data).
- Potential impact in precision measurements (e.g. • p_T(Z) 2203.05394)

	DIS & DY	SIDIS	$pA \rightarrow hX$	$pA \rightarrow \gamma \operatorname{jet} X$	Dijet in DIS	Dijet in <i>pA</i>
$f_1^{g[+,+]}$ (WW)	×	×	×	×	\checkmark	\checkmark
$f_1^{g[+,-]}(\text{DP})$	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark
Gluon unpol. FCC-h and lin. EIC, pol. LHeC,		EIC, LHeC	LHC, FCC-h	h	EIC, LHeC	LHC, FCC-hh
	DIS & DY	SIDIS	$pA \rightarrow hX$	$pA \rightarrow \gamma \text{ jet } X$	Dijet in DIS	Dijet in <i>pA</i>
. 1 al 1 1						

1601.01813

European Strategy

	DIS & DY	SIDIS	$pA \to hX$	$pA \rightarrow \gamma \text{ jet } X$	Dijet in DIS	Dijet in <i>pA</i>
$h_1^{\perp g[+,+]}$ (WW)	×	×	×	×	\checkmark	\checkmark
$h_1^{\perp g[+,-]}$ (DP)	×	×	×	×	×	\checkmark

GPDs

Experiment red = ESPP submissions	Observable	Access to European Strategy
HL-LHC in collider and fixed-target node	Exclusive quarkonium production and TCS in UPCs	Quark and gluon GPDs
HCspin	TSSA in UPCs	
EIC	DVCS, exclusive VM production	Quark and gluon GPDs
HeC	DVCS, exclusive VM production	Quark and gluon GPDs
FAIR	N+N→N+π(90°)+B	Transition GPDs
Electron-Ion Collider in China	DVCS, DVMP	Quark and gluon GPDs
CLAS12 luminosity upgrade	Proton, neutron and nuclear DVCS, TCS, DVMP	Quark and gluon GPDs
SoLID	DVCS, TCS, DDVCS, exclusive meson production on polarised proton and nuclear targets	Quark and gluon GPDs
ILab22	DVCS,	Quark and gluon GPDs
4 Current pol	arized DIS data:	· · · · · · · · · · · · · · · · · · ·

Lattice: state-of-the-art and challenges

- Lattice QCD :1st-principles PDFs, TMDs and GPDs. Challenges:
- 2+1(+1) flavors (physical m π for some quantities).

- signal-to-noise ratios, extrapolation to physical m π
- uncertainties for large and small x;
- include in global fits

Comparing different projects

Quantity or question/ experiment	LHC in fixed target mode D, B, quarkonium , light hadrons	(HL)LHC in collider mode D, B, quarkonium, light hadrons, UPCs, DY	Alice FoCal Photons and jets	SHiP v flux from charm, NC and CC DIS	EIC NC, CC and jets in DIS, light and heavy flavour ID, exclusive diffraction	FPF ν flux from charm, NC and CC DIS	LHeC NC, CC and jets in DIS, heavy flavour ID, exclusive diffraction	FCC-ee/ LEP3/ CEPC/LC FFs of light and heavy quarks, jets, $\gamma\gamma$	MuCol ν flux from muons	FCC-hh D, B, quarkonium, light hadrons, UPCs, DY
PDFs		Most information available	Simultaneous fits of proton and nuclei	Simultaneous fits of proton and nuclei; F ₄ , F ₅	Covered by HERA	Simultaneous fits of proton and nuclei; F ₄ , F ₅			Simultaneous fits of proton and nuclei	Kinematic reach
nPDFs		Most information available	Region overlapping with current pPb							Kinematic reach
TMDs		DY, jets	Little PID			No prospects	Little PID in current project	FFs needed for PDFs, and TMD in jets		DY, jets
GPDs		Currently UPCs	No prospects			Little PID in current project				Currently UPCs
Small- <i>x</i> dynamics	Large x needed for small x			Large x needed for small x	Kinematic reach	Kinermatic reach		үү	Large x needed for small x	

Dark green: Highest precision/breadth; Light green: strong/focussed contributions

C. DIACONU

CPPM | CNRS/IN2P3 and Aix Marseille Université

; White: no contribution.

European Strateg

Future: PDFs impact on physics observable

Conclusions

- The strong coupling is the least known amongst the four forces, "the permille plan":
 - Reaching 0.1% requires FCCee (10¹² Z bosons), Lattice, LHeC
- Precision stress tests of the SM (EW, Higgs Yukawas/BSM, top) require NⁿLO+NⁿLL pQCQ and significant progress in NP-QCD (had, color rec.)
- Hadron structure is a fundamental scientific question and limits important EW measurements and searches
 - DIS machines EIC, LHeC will refine the measurements and step into unexplored areas
 - The phase space will be further explored processes/experiments (neutrinos)
- The strong force is an unique laboratory for the interface between perturbative and non-perturbative and collective effects (low x/saturation, nPDFs, HI)
- A very dynamic field of research
 - Significant progress expected and necessary in the next 20-40 years
 - A common vision for QCD theory and experiment needs to be developed

C. DIACONU CPPM | CNRS/IN2P3 and Aix Marseille Université

Backup

Expe	rimental Collaborations			Preci sion QCD	Inter nal struc ture	Hot and dens e QCD	Con necti ons (hadr ,nucl ,astr)		European Strate for Particle Physic
G	Input for the EUROPEAN STRATEGY FOR PARTICLE PHYSICS UPDATE 2026	A. Eve Colleboration					Х		
0	compiled by THE ISOLDE COLLABORATION COMMITTEE	A: Exp Collaboration	ISOLDE	N					
205	The Belle II Experiment at SuperKEKB	A: Exp Collaboration	KEK Belle II	Х			Х		
68	Input from the ALICE Collaboration	A: Exp Collaboration	LHC ALICE		Х	Х	Х		
170	Highlights of the HL-LHC physics projections by ATLAS and CMS	A: Exp Collaboration	LHC ATLAS+CMS	Х	Х				
23	Prospects and Opportunities with an upgraded FASER Neutrino Detector during the HL-LHC era: Input to the EPPSU	A: Exp Collaboration	LHC FASER		Х		Х		
19	The Forward Physics Facility at the Large Hadron Collider	A: Exp Collaboration	LHC FPF		Х		Х	Collab	
81	Discovery potential of LHCb Upgrade II	A: Exp Collaboration	LHC LHCb				Х	oratio	
82	Heavy ion physics with LHCb Upgrade II	A: Exp Collaboration	LHC LHCb		Х	Х	Х	n	
213	LHCspin: a Polarized Gas Target for LHC	A: Exp Collaboration	LHC LHCspin		Х				
245	MUonE Contribution to the European Strategy: status of the project	A: Exp Collaboration	mu CERN MUonE	Х					
131	European Strategy for Particle Physics 2026: the NA60+/DiCE experiment at the SPS	A: Exp Collaboration	SPS NA60+/DiCE			Х			
171	Proposal from the NA61/SHINE Collaboration for the update of the European Strategy for Particle Physics	A: Exp Collaboration	SPS NA61/SHINE			х	х		
231	Super Tau Charm Facility	A: Exp Collaboration	STCF China	Х			Х		

C. DIACONU CPPM | CNRS/IN2P3 and Aix Marseille Université

Futu	re Colliders			Preci sion QCD	Inter nal struc ture	Hot and dens e QCD	Con necti ons (had r,nuc I,astr)		European Strateg for Particle Physics
114	Synergies between a U.Sbased Electron-Ion Collider and European Research in Particle Physics	B: Future Colliders	eh: EIC USA	х	х				
214	The Large Hadron electron Collider (LHeC) as a bridge project for CERN	B: Future Colliders	eh: LHeC	х	х				
209	FCC: QCD physics	B: Future Colliders	FCC	Х	Х	Х	Х		
227	Prospects for physics at FCC-hh	B: Future Colliders	FCC	Х	Х	Х	Х		
233	FCC Integrated Programme Stage 1: The FCC-ee	B: Future Colliders	FCC	Х				B:	
241	The FCC integrated programme: a physics manifesto	B: Future Colliders	FCC	Х	Х	Х	Х	Futur	
247	FCC Integrated Programme Stage 2: The FCC-hh	B: Future Colliders	FCC	Х	Х	Х	Х	е	
141	The ECFA Higgs/Electroweak/Top Factory Study	B: Future Colliders	FCC/LC/CLIC/MuCol	х				Collid	
275	Status of the International Linear Collider	B: Future Colliders	ILC	Х				ers	
188	LEP3: A High-Luminosity e+e- Higgs & Electroweak Factory in the LHC Tunnel	B: Future Colliders	LEP3	Х					
152	United States Muon Collider Community White Paper for the European Strategy for Particle Physics Update	B: Future Colliders	Muon Collider		х				
207	The Muon Collider	B: Future Colliders	Muon Collider		х				

								European
Community (OCD crocific)			Preci sion QCD	Inter nal struc ture	Hot and dens e QCD	Conn ectio ns (hadr ,nucl, astr)		for Particle
Community (QCD SPECIFIC)								
224 nucleus collisions at the LHC	C: Community (specific)	HI at HL-LHC		Х	Х	Х		
2 Light Ion Collisions at the LHC	C: Community (specific)	HI Light ions LHC		х	х	х		
Conclusions of the Town Meeting: Heavy Ion and QGP Physics	C: Community (apositio)				Х			
	C. Community (specific)					V		
55 Kaon Physics: A Cornerstone for Future Discoveries	C: Community (specific)	Kaon Phyiscs				Х		
29 Strategy for the Future of Lattice QCD	C: Community (specific)	Lattice QCD		х	х	х	C: Community	
Nuclear Physics and the European Particle Physics Strategy	C: Community (specific)	NUPECC		Х	Х	Х	(specific)	
235 CERN	A: Exp Collaboration	Phyiscs Beyond Colliders	Х	х	х	х		
89 Precision cross-sections for advancing cosmic-ray physics	C: Community (specific)	Cross sections for cosmics				Х		
Statement of the Pierre Auger Collaboration as input for the 201 2026 European Particle Physics Strategy		HI for cosmics (ALIGER)				х		
heory / Specific								
174 Phase-One LHeC	D: Theory / Specific	Personal input LHeC/HL- LHC	Х	х				
Computer Algebra for Precision Calculations in Particle Physics: 33 the FORM project	D: Theory / Specific	QCD theory/computing	Х					
Cusp Spectroscopy, Hyperon-Nucleon Scattering, and Femtoscopy: Pioneering Tools for Next-Generation Hadron						х	D: Theory / Specific	
35 Interaction Studies	D: Theory / Specific	QCD theory/computing						
Quantum Information meets High-Energy Physics: Input to the	D: Theory / Specific	Quantum Computing	Х			Х		

C. DIACONU

CPPM | CNRS/IN2P3 and Aix Marseille Université

Natio	nal (QCD specific)			Preci sion QCD	Inter nal struc ture	Hot and dens e QCD	Con necti ons (hadr ,nucl ,astr)	
5	Prospective report of the French QCD community to the ESPPU 2025 with respect to the program of the LHC Run 5 and beyond and future colliders at CERN	E: National (specific)	France QCD	х	х	х		
126	Input to ESPPU by the German Astroparticle Community	E: National (specific)	Germany Astroparticle				Х	
183	Input of the German Nuclear and Hadron Physics Community to the ESPPU 2026 Regarding the Programs at CERN, at FAIR, and Related Activities	E: National (specific)	Germany Hadronic and Nuclear			х	х	E: National
117	The INFN National Scientific Committee for Theoretical Physics	E: National (specific)	Italy Theory	Х		Х	Х	(specific)
51	Ultra-relativistic Heavy-Ion Collisions: Inputs of the Italian community for the ESPP 2026	E: National (specific)	Italy HI	•		Х		
76	Input on the update of the European Strategy for Particle Physics by the INFN Nuclear and Hadron Physics Community	E: National (specific)	Italy Nuclear Phys			х	x	
246	U.S. interest in high-energy nuclear physics at the LHC	E: National (specific)	US LHC HI community			Х		

Benchmark measurements

2 Strong Interactions

The benchmark measurements in the area of the strong interaction are reported in the following for the four main physics research directions. Clearly, this is not an exclusive list of the observables and measurements that the working group will cover. The input documents are anticipated to have a much broader coverage, which will be taken into account. The list of benchmarks will be used to summarise and highlight the complementarity and strengths of the future measurements at existing (e.g. SPS, HL-LHC) and proposed colliders (leptonic, hadronic, electron–hadron). The presentation of results will be organised by the working group in communication with the contact persons of submitted inputs.

- Precision QCD
 - $\alpha_S(m_Z)$ and its Q^2 dependence;
 - Strong interaction effects for precision measurements of top and W masses (see comments at the end of the section);
 - * Comment on top and W masses: while these are formally EW parameters, the strong-interaction aspects are important for their experimental and theoretical determination. For example, we propose to report the expected experimental performance for the following approaches to t and W mass measurements.
 - ee collisions: m_t from threshold scan around $\sqrt{s} = 340$ GeV; m_W from threshold scan for W^+W^- production (leptonic decays);
 - ep collisions: *m_t* from heavy-quark DIS (top-quark structure function measurements); *m_W* from inclusive DIS (charged-current structure function measurements);
 - pp collisions: m_t from $t\bar{t}$ production rates, multi-differential in $m_{t\bar{t}}, y_{t\bar{t}}; m_W$ from p_T^{ℓ} distributions.
- · Inner structure of protons and nuclei
 - Longitudinal and transverse proton $PDF(x, Q^2)$: parton flavours, Bjorken-*x* and Q^2 ranges for which new constraints and reduction of uncertainties are expected;
 - Longitudinal and transverse nuclear PDF(x, Q^2); same as above;

- Hot and dense QCD
 - Heavy-flavour and quarkonium hadron production (rare states, kinematic coverage): expected novel access to low-cross-section open and hidden heavy-flavour hadrons, multi-differential observables (such as correlations), transverse momentum and rapidity ranges;
 - QGP transport coefficients (heavy quarks, jets): expected precision for observables that constrain the transport coefficients that characterise parton energy loss and heavy-quark interactions in the QGP;
 - QGP thermal radiation, sensitivity to temperature: expected precision for measurements of thermal radiation and parameters that map to the temperature of the hot and dense system formed in heavy-ion collisions at different centre-of-mass energies and regions of the QCD phase diagram;
- · QCD connections with hadronic, nuclear and astro(particle) physics
 - Constraints on nature of exotic hadrons from spectroscopy and h-h correlations; expected measurements that can help understanding the structure of exotic heavy-flavour hadrons (e.g. compact tetraquark vs. hadron molecule), including direct measurements of yields, resonant states, kinematic distributions in different collision systems, and hadron-hadron momentum correlation functions that have sensitivity to bound states;
 - Precision on anti-nuclei production and absorption relevant for cosmic-ray physics: production of light anti-nuclei (e.g. \bar{p} , \bar{d} , ${}^{3}\bar{H}e$) that constrain production processes and kinematic distributions in primary cosmic-ray interactions; annihilation cross sections for anti-nuclei on nuclei, relevant for the propagation of cosmic anti-nuclei in space (e.g. from Dark Matter decays);

