European Strategy for Particle Physics

PLENARY: Electroweak Physics

The Electroweak physics landscape beyond the LHC: Open questions and exploration at future colliders Monica Dunford - KIP Heidelberg

23-27 JUNE 2025 Lido di Venezia

The physics we are after

Origin of flavour

Leptons

Matter and Antimatter asymmetry

Higgs boson

What we need to get there?

Breaking electroweak symmetry

Evolution of the cosmos

Establish the Higgs mechanism

 W^{\cdot}

Forces

Stability of the Universe

Additional particles?

Precision Higgs

Precision Masses

Precision Top

SM consistency tests

Breaking Electroweak symmetry

Vector boson polarisation

Higgs selfcoupling

Extended Higgs sector

Outline

- Higgs couplings
- Тор ullet
- Higgs self-coupling lacksquare
- Weak couplings

Breaking electroweak symmetry

Evolution of the cosmos

Establish the Higgs mechanism

Additional phenomenon?

Additional particles?

Composite Higgs?

Stability of the Universe

Origin of flavour

Matter and Antimatter asymmetry

The High-Lumi LHC The upcoming Higgs factory

TRIN O

0

0

0

0

This of the of

Run 2Run 3:Run 1We are here •

HL-LHC: 14 TeV 6000 fb-1 (ATLAS+CMS)

	# of exp.	Z-pole (91.2 GeV)	WW (160 GeV)	Higgs (230-250 GeV)	Top (365 GeV)	Higher er
FCC-ee	4	205 ab ⁻¹ (total, all IP) 4 years (of operation)	19 ab ⁻¹ 2 years	11 ab ⁻¹ 3 years	3 ab ⁻¹ 5 years	
Linear collider	2	0.07 ab ⁻¹ 1 years		3 ab-1 3 years	CLIC: 4.4 ab ⁻¹ 10 years	550 GeV: 1 TeV+: 4- 10 yea
LEP3	2	53 ab ⁻¹ 5 years	5 ab ⁻¹ 4 years	2.5 ab ⁻¹ 6 years		
FCC-hh	4					84.6 T 30 ab
LHeC	1					1.2 Te 1 ab 6 yea
Muon	2					3-10 T 1-10 a 8 yea

Higgs Production: electron-positron colliders

everything follows.

Higgs total cross section and width

Precision on total xsect: 0.3% FCC, 0.8% LC, 0.6% LEP3

events / 0.50 GeV

Z leptonic recoil [GeV]

- Assumes that
 - Statistical uncertainties dominate
 - Backgrounds controlled to better than 1% (and large control samples available to constrain them)
 - All experimental and luminosity uncertainties are smaller than statistical uncertainties
 - Theory uncertainties from missing higher orders - extensions of existing methods likely sufficient to make them subdominant

Higgs at electron-positron machines

HL-LHC: 21 MeV FCC-ee: 3 MeV Linear collider: 12 MeV LEP3: 15 MeV

Higgs mass estimates

'Stats dominated' sets the design requirements on detector performance: momentum resolution, jet energy resolution, impact parameter resolution etc

Take the challenge!

Impact parameter resolution of 3um, momentum resolution of 0.1%, particle flow jet energy resolution of 2-3 GeV

Invisible, 1st/2nd generations, rare couplings

- Higgs to invisible limit of 0.05%
- Excellent b/c-tagging performance yields
 1.5 (2.5)% FCCee (LC) precision for Hcc
- Some rare decays (like H→µµ) don't improve compared to HL-LHC
- FCCee: Potential access first generation
 - Needs 4 MeV precision on Higgs mass, reduce beam spread, 5 years of running

Higgs couplings: hadron-hadron machines

Higgs couplings: hadron-hadron machines

Take the challenge!

- Pile-up of 1000, need precise timing information at 5ps
- Assumptions and caveats:
 - Assume couplings like HZZ are measured at the per-mille level at FCCee
 - Differential information is powerful but rarely used in comparisons
 - Hadron colliders may have superior sensitivity to many energy-dependent operators - Current studies ^{10²} are insufficient to compare an FCChh-only option

Invisible, 2nd generations, rare couplings

- Higgs to invisi
- Excellent sens and heavy fina
- Differential me couplings (like

Uses $H \rightarrow \mu \mu \mu \mu$ from FCCee to estimate cross section

Higgs couplings: electron-hadron

Use electron to distinguish the NC process

- Up to 50% improvement to HL-LHC Higgs couplings via better PDFs
- Strong near-term sensitivity to some Higgs coupling
 - HWW: 0.7% LHeC, 0.8% (0.3%) at FCCee 250 GeV (w/365 GeV)
 - First measurement of Hcc at 3%

Higgs couplings: muon colliders

Submission 184

- Effectively a vector boson collider
- % to %% precision on Higgs couplings.
 Difficulties measuring top-yukawa. No modelindependent determination of absolute couplings
- Control of beam-induced-backgrounds needed (many studies include these already)
- Challenges are forward muon tagging and increasing acceptance while mitigating beaminduced-backgrounds

- In top physics, HL-LHC has definitive measurement for 2-3 decades
 - HL-LHC: 200 MeV, FCC-ee: 6 MeV, Linear collider: 20-40 MeV

Leptons

Top quark has connections everywhere

Largest coupling to the Higgs Input for vacuum stability, EW baryogensis

e+e- scans around the top threshold yield excellent mass/width precision

ACCELERATING SCIENCE

Top physics at threshold and beyond

- Lepton colliders vs. hadron colliders have • complementary sensitivity to top operators
 - i.e. 2-lepton+2-quark operators vs. 4-quark operators
- A large energy lever arm (i.e. LC at 550 GeV and beyond) breaks degeneracies between operators
- Runs with two beam polarization effectively doubles the number of observables and further breaks degeneracies
- Breaking degeneracies via differential observables has not been fully explored

Top physics at threshold and beyond

- Top Yukawa
 - At lepton colliders, ttH production opens at energies above 480 GeV
 - At hadron machines, ratios like ttH and ttZ cancel theory uncertainties, assumes ttZ coupling known to 1% from FCCee (top run)
- LHeC: can provide a series of top precision measurements, i.e. Wtb coupling

 Electron/positron collider: stats limited. Implies small selection and reconstruction biases, small background uncertainties, etc. Selection

More fundamental advancements in theory techniques and tools needed

Higgs Self-Coupling

Region with strong first-order phase transition

HL-LHC expected Higgs selfcoupling uncertainties

1.8

Hadron collider

Lepton collider

Higgs Self Coupling: electron-positron colliders

Uncertainty on λ at the SM value

Challenges below threshold

Size of the modification goes like

 $\sigma_{ZH}^{\text{NLO}} \approx \sigma_{ZH}^{\text{NLO,SM}} (1 + 0.014 \,\delta \kappa_3)$

- To be competitive, ZH cross section needs to be measured with an accuracy below 1%
- Need to disentangle deviations from other possible Expected uncertainty on $\sigma(vvHH) \approx 22 \%$ contributions. Different center-of-mass energies CLIC 1.5 TeV. Note: these have not been helps updated to include modern taggers, etc. 21

HL-LHC: 27% FCCee+HL-LHC: ~15% LC (at 550 GeV): 11-18%

Challenges above threshold

- Major challenges are jet assignment, jet • energy resolution and flavour tagging
- HH total production xsec sensitive to BSM besides the triple coupling. More observables are needed to disentangle

Ultimate precision of 3-5% with 30ab⁻¹

Similar final states to hadron machines -• without pile-up and QCD backgrounds

Precision of <5% at 10 TeV

Quarks

More particles with weak couplings?

ACCELERATING SCIENCE

Maura, Stefanek, You, arXiv:2412.14241

EW Precision measurements: electron-positron colliders

- At Z-pole
 - Z mass, width, alpha (circular only), sigma_had
 - Leptonic/hadronic asymmetries •
 - Partial widths and universality tests
- At WW threshold or above:
 - W mass, width, branching ratios
- Muon colliders probe EW but via VV scattering •

Left-right asymmetry for LCs (beam polarisation)

$$A_{LR} = \frac{1}{P_{\text{eff}}} \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \approx \mathcal{A}_e$$

- Direct sensitivity to Zee chiral coupling asymmetry. Chiral observables (asymmetries) are measured better at LCs by $P/A_e \sim 6$ for a given luminosity
- Polarisation via tau decays can also be used by both •

Available to circular and linear

$$A_{FB}^{f} = \frac{\sigma_{F} - \sigma_{B}}{\sigma_{F} + \sigma_{B}} = \frac{3}{4}\mathcal{A}_{e}\mathcal{A}_{f}$$

Dominant uncertainties

- For the most part, systematics dominated
- Most of the systematics are limited by the statistics of the calibrations samples
 - i.e. sample size used to determine the luminosity
- More fundamental advancements in theory techniques and tools needed

Observable	present			FCC-ee	FCC-ee	Comm
	value	±	uncertainty	Stat.	Syst.	leading unc
$m_{\rm Z}$ (keV)	91 187 600	±	2000	4	100	From Z line sha Beam energy cali
$\Gamma_{\rm Z}$ (keV)	2 495 500	±	2300	4	12	From Z line sha Beam energy cali
$\sin^2 \theta_{\rm W}^{\rm eff} (\times 10^6)$	231,480	±	160	1.2	1.2	From $A_{FB}^{\mu\mu}$ at Beam energy cal
$1/\alpha_{\rm QED}(m_{\rm Z}^2)~(\times 10^3)$	128 952	±	14	3.9	small	From $A_{\rm FB}^{\mu\mu}$ c
				0.8	tbc	From $A_{FB}^{\mu\mu}$ QED&EW uncert. de
$R_{\ell}^{ m Z}~(imes 10^3)$	20767	±	25	0.05	0.05	Ratio of hadrons to Acceptance for
$lpha_{ m S}(m_{ m Z}^2)~(imes 10^4)$	1 196	±	30	0.1	1	Combined $R_{\ell}^{\rm Z}, \Gamma_{\rm tot}^{\rm Z},$
$\sigma_{ m had}^0~(imes 10^3)~(m nb)$	41 480.2	±	32.5	0.03	0.8	Peak hadronic cross Luminosity measu
$N_{\rm v}(imes 10^3)$	2996.3	±	7.4	0.09	0.12	Z peak cross s Luminosity measu
$R_{ m b}~(imes 10^6)$	216 290	±	660	0.25	0.3	Ratio of $b\overline{b}$ to l
$A_{ m FB}^{ m b,0}~(imes 10^4)$	992	±	16	0.04	0.04	b-quark asymmetry at From jet
$A_{ m FB}^{ m pol, au}$ (×10 ⁴)	1 498	±	49	0.07	0.2	au polarisation asy $ au$ decay
τ lifetime (fs)	290.3	±	0.5	0.001	0.005	ISR,
τ mass (MeV)	1776.93	±	0.09	0.002	0.02	estimator bias, IS
τ leptonic ($\mu v_{\mu} v_{\tau}$) BR (%)	17.38	±	0.04	0.00007	0.003	PID, π^0 eff
$m_{\rm W}$ (MeV)	80 360.2	±	9.9	0.18	0.16	From WW thresho Beam energy cali
$\Gamma_{\rm W}$ (MeV)	2 085	±	42	0.27	0.2	From WW thresho Beam energy cal
$lpha_{ m S}(m_{ m W}^2)~(imes 10^4)$	1 010	±	270	2	2	Combined R_{ℓ}^{W} ,
$N_{\rm v}~(imes 10^3)$	2 920	±	50	0.5	small	Ratio of invis. to l in radiative Z
$m_{\rm top}~({\rm MeV})$	172 570	±	290	4.2	4.9	From $t\overline{t}$ threshold QCD uncert. do
Γ_{top} (MeV)	1 420	±	190	10	6	From $t\bar{t}$ threshold QCD uncert. do
$\lambda_{ m top}/\lambda_{ m top}^{ m SM}$	1.2	±	0.3	0.015	0.015	From $t\bar{t}$ threshold QCD uncert. do
ttZ couplings		±	30%	0.5–1.5 %	small	From $\sqrt{s} = 365$ G

ent and ertainty pe scan bration pe scan bration Z peak ibration off peak on peak ominate leptons leptons $\sigma_{\rm had}^0$ fit section irement sections irement nadrons Z pole charge mmetry physics τ mass R, FSR ficiency old scan ibration old scan ibration Γ^{W}_{tot} fit eptonic returns old scan ominate old scan ominate old scan ominate GeV run

The W mass (and the Top mass)

• W mass analysis methodology varies depending on the data sample

> HL-LHC: 3-5 MeV FCC-ee: 0.2 MeV Linear collider: 1.5 MeV LEP3: 1 MeV LHeC+HL-LHC: 2-3 MeV

FCCee

Energies up to top threshold

Easy transition between Z, WW, ZH

% to %% level precision on Higgs couplings (except top), stats limited

Best precision on Higgs couplings of all e+e- options

Possible 1st generation couplings

TeraZ run for precision EW

Combined precision top results

FCChh

High luminosity

%% level precision on Higgs w/FCCee, ttH production

> % level precision on Higgs self-coupling

Access to rare decays and high pT distributions with strong BSM potential

Di-boson measurements at high energy

LC 250 GeV, CLIC 380 GeV

x3 ZH (x1000 Z-pole) less luminosity

Polarisation enhances sensitivity

Less precision on Higgs couplings

Less precision on EW observables

Access to top with CLIC 380 GeV

550 GeV and 1+ TeV

Access to direct HH and ttH production

> Di-boson measurements at high energy

Excellent top progam with large energy span and polarisation

No hadron option

LEP 3

- x4 less luminosity compared to FCCee
- Short-term energy changes w/reduced lumi
- Precision Higgs couplings, worse w.r.t. FCCee
- Systematics increase for EW measurements
- No high energy run
 - Impacts Higgs width via lack of VBF H
 - No top program

LHeC

- Improved PDFs and strong coupling
- Excellent Higgs coupling on Hcc, Hbb, HWW
- Interesting top physics (i.e. via single top production)
- Competitive near-term W mass determination

FCChh

- Large luminosities and energy reach
- Excellent self-coupling sensitivity
- Sensitivity to top operators, differential distributions, di-bosons
- Reduced or no e+e- could affect Higgs results
- Insufficient inputs to compare its full sensitivity on its own

Muon collider

- Energy reach w/clean final states
- %% level precision on Higgs couplings
- Probes EW physics via high-energy processes (i.e. VV): difficult to compare at the measurement level

ults vity

The physics we are after \leftrightarrow What we need to get there

Breaking electroweak symmetry

Establish the Higgs mechanism

Evolution of the cosmos

Stability of the Universe

Additional phenomenon?

Additional particles?

Matter - Antimatter asymmetry

Origin of flavour Composite Higgs?

Precision \leftrightarrow Energy

- Ultimately a BSM-specific question
 - Innovation in detectors and theory needed to match data statistics

Precision \leftrightarrow Breadth

- Precise single measurements vs a broader set
- Source of new physics is unknown

Precision \longleftarrow Flexibility What will the HL-LHC and future physics bring? How adaptable are these programs?

Photo Credits

- All photo credits are CERN. Exceptions below
- S5: Robert Hradil, Monika Majer/ProStudio22.ch (HL-LHC)
- 28) Linear collider