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Introduction: the magnetic moment of a lepton

The magnetic moment µ of a charged object parameterizes
the torque that a static magnetic field exerts on it.

For a charged spin-1/2 particle:

µ = g
e

2m
S

g is the well-known gyromagnetic factor.

In QFT the response of a charged lepton (say a muon µ) to a static and uniform e.m.
field is encoded in (k = p1 − p2)

⟨µ(p2)|Jν
em(0)|µ(p1)⟩ = −ieū(p1)Γν(p1, p2)u(p2)

Lorentz invariance and e.m. current conservation constrain Γν -structure:

Γν(p1, p2) = F1(k2)γν +
i

2mµ
F2(k2)σνρkρ + P-violating terms
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The muon anomalous magnetic moment

Gyromagnetic factor gµ related to form-factors F1(k2) and F2(k2) through
gµ = 2 [F1(0) + F2(0)]

• Electric charge conservation =⇒ F1(0) = 1.

• At tree level in the SM: F2(0) = 0 =⇒ gµ = gDirac
µ ≡ 2.

The muon anomalous magnetic moment:

aµ =
gµ − 2

2
= F2(0)

non-zero only at loop level. Contributions from all SM (and BSM) fields. E.g.

If very precisely measured can be a crucial probe of the completeness of the SM. Is it? 2



Latest update (August ’23) from FNAL experiment

gµ − 2 @BNL (up to 2006) =⇒ transfer to Fermilab =⇒ gµ − 2 @Fermilab

20.0 20.5 21.0 21.5 22.0 22.5

BNL

FNAL Run-1

FNAL Run-2/3

FNAL Run-1 + Run-2/3

Exp. Average

a × 10
9

1165900

aexp
µ = 116 592 059(22) × 10−11 [0.19ppm] Congratulations!!

Results from Run-4/5/6 expected in 2025 3



Why did we pick the muon (and not e, τ) ?

Electron anomalous magnetic moment is measured with even higher precision
(x1000):

aexp
e = 1 159 652 180.73(28) × 10−12 [0.0002 ppm]

However, NP contributions expected to be

=⇒ aA
ℓ ∝ m2

ℓ /m2
A

m2
µ/m2

e ≃ 43 000

aτ would have a much higher enhancement but not measured as accurately. . .

aτ = 0.0009+0.0032
−0.0031 [CMS 2023, arXiv:2406.03975]

The CMS’s result (γγ → ττ) dramatically improved the precision w.r.t. previous
measurements.
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Can we match, on the theory side, the experimental accuracy on aµ?
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The Muon g − 2 Theory Initiative

The muon g − 2 TI has been established in 2017 with the aim of matching
the precision of the SM-theory prediction for aµ with the experimental one.

https://muon-gm2-theory.illinois.edu

• Composed by experts in lattice QCD, dispersive approach, perturbative
calculations, . . .

• First white paper out in ’20 [Physics Reports 887 (2020)]. Second out in a few
months!!

• Last TI meeting at KEK (Tsukuba, Japan). 6



The muon magnetic moment in the SM

aµ can be decomposed into QED, weak and hadronic contributions

aµ = aQED
µ︸ ︷︷ ︸

>99.99%

+ aweak
µ + ahad

µ︸︷︷︸
non-perturbative

• The QED contribution to aµ is completely dominant. LO (1-loop)
contribution evaluated by J. Schwinger in 1948

=⇒ aQED,1−loop
µ = α

2π

• Since Schwinger’s calculation many more QED-loops included... 7



The QED contribution aQED
µ

Two-loops QED contributions to aµ

To match experimental accuracy ∆aexp
µ ≃ O(10−10) several orders in the

perturbative α expansion need to be considered

aQED
µ =

α

2π
+

∞∑
n=2

Cn
µ

(
α

π

)n

• Number of Feynman diagrams quickly rises with n: 1, 7, 72, 891, 12672, ...

• Heroic effort to compute them up to five-loops [T. Aoyama et al. PRLs, 2012]

C6
µ

(
α

π

)6
≃ C6

µ × 10−16 requires unnaturally large C6
µ ≃ O(106) to be relevant!!

aQED
µ = 116 584 718.931(104) × 10−11 ✓
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The weak contribution aweak
µ

aweak
µ defined as the sum of all loop diagrams containing at least a W, H, Z.

• Smallest of the three contributions due to Fermi-scale suppression:

aweak
µ ∝ α2

W

m2
µ

M2
W

≃ O(10−9)

Sample of one-loop weak diagrams:

• At target precision of ∼ 0.1 ppm two-loops calculation is sufficient [Czarnecki et
al PRD (2006), Gnendiger et al PRD (2013)].

aweak
µ = 153.6(1.0) × 10−11 ✓
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The hadronic contribution ahad
µ

Contributions to ahad
µ at target accuracy of O(10−10):

ahad
µ = aHVP−LO

µ︸ ︷︷ ︸
O(7×10−8)

+ aHlbl
µ︸︷︷︸

O(10−9)

+ aHVP−NLO
µ︸ ︷︷ ︸
O(10−9)

+ aHVP−NNLO
µ︸ ︷︷ ︸
O(10−10)

HVP-LO =⇒ ⇐= Hlbl

• NLO and NNLO HVP contributions relevant at target accuracy. At NLO:

• However, they can obtained from same non-perturbative input of aHVP−LO
µ .

Hence we shall discuss only the latter.
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How important are hadronic contributions?

The uncertainty in the theory prediction for aµ dominated by the hadronic
contribution, despite its smallness

Dominant source of uncertainty is aHVP−LO
µ

• Hadronic contributions are fully non-perturbative.

• Two main approaches to evaluate them:

Dispersive approach:

• Relates full aHVP−LO
µ to e+e− → hadrons

cross-section via optical theorem.

• For Hlbl (only) low-lying intermediate-states
contributions can expressed in terms of
transition form-factors TFFs.

Lattice QCD:

• Only known first-principles SM method to
evaluate both aHVP

µ and aHlbl
µ .

• In the past the accuracy of the predictions
were not good enough. The situation has
recently changed. 11



The hadronic light-by-light contribution

aHlbl
µ occurs at O(α3). Related to 2 → 2 (generally virtual) photons scattering

It involves the fourth-rank VP tensor:

T ⟨0|JµJνJρJσ |0⟩ = Πµνρσ(k1, . . . , k4)

• In the dispersive framework [Colangelo et al. JHEP09 (2015)] one isolates the
dominant intermediate-states contributions:

• parameterized by transition form-factors TFFs. For dominant π0-pole contr.

i

∫
d4xeiqxT ⟨0|Jµ(x)Jν(0)|π0(p)⟩ = ϵµναβqαpβFπ0γ∗γ∗ (q2, (q − p)2)

TFFs from dispersion relations (using available exp. input) or recently from LQCD. 12



The hadronic light-by-light on the lattice

The cleanest, assumptions-independent, way of computing aHlbl
µ is given by Lattice

QCD. The lattice QCD input is the 4-point correlation function of e.m. currents

Πµνρσ(x, y, z, w) = T ⟨0|Jµ(x)Jν(y)Jρ(z)Jν(w)|0⟩

• Long distance contribution very noisy. Noise rapidly increases reaching mphys
π .

• Clever tricks employed to reduce computational cost. Lattice input can be
compressed into

iΠ̂ρ,µνλσ(x, y) =
∫

dz zρ⟨0|Jµ(x)Jν(y)Jσ(z)Jλ(0)|0⟩

aHlbl
µ =

mµe6

3

∫
d4 y

∫
d4 x L[ρ,σ],µνλ(x, y)︸ ︷︷ ︸

QED kernel

i Π̂ρ,µνλσ(x, y)︸ ︷︷ ︸
QCD input

• So far three lattice Collaborations have fully computed aHlbl
µ :

RBC/UKQCD (’21, ’23), MAINZ (’22) and BMW (’24)
13



Summary of current status for aHlbl
µ

taken from RBC/UKQCD ’24 ePrint:2411.06349 [1]

This work=RBC/UKQCD

taken from BMW ’24 ePrint:2411.11719 [2]

This work=BMW

• LQCD calculations of aHlbl
µ in line with the dispersive result from WP ’20 (and

with smaller uncertainties).

• LQCD calculations of aHlbl;π0
µ in reasonable good agreement with dispersive

ones.

• 10% accuracy goal for aHlbl
µ achieved!.
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The LO hadronic-vacuum-polarization (HVP) contribution

aHVP−LO
µ is the largest of the hadronic contributions.

• Until ’20 LQCD calculations above percent level accuracy.

• However, aHVP−LO
µ is related to σ(γ∗ → hadrons) through optical theorem. . .

• In terms of the e+e− → hadron cross-section or actually the R-ratio:

R(E) =
σ(e+e−(E) → hadrons)
σ(e+e−(E) → µ+µ−)

• one has a very simple formula for aHVP−LO
µ

aHVP−LO
µ =

∫ ∞

mπ

dE R(E) K̃(E)︸ ︷︷ ︸
analytic function 0

0.5

1

1.5

2

2.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
µ
K̃
(E

)
×

10
7

E [GeV] 15



aHVP−LO
µ from the dispersive approach (I)

The central idea is to replace R(E) → Rexp(E) and use previous formula.
e+e− → hadrons measured since ’60 in various experiments

Inclusive measurement of Rexp(E) obtained summing more than fourty
exclusive channel measurements (comb. of various exp. , dominated by π’s).

WP ’20, pre-CMD3

Two main groups involved in the analysis: DHMZ, KNT.
DHMZ = Davier-Hoecker-Malaescu-Zhang, KNT = Keshavarzi-Nomura-Teubner 16



aHVP−LO
µ from the dispersive approach (II)

Combination of DHMZ and KNT results gives:

aHVP−LO
µ [disp.] = 6931(40) × 10−11 [WP ’20]

Replacing the theoretical prediction with the experimental R(E) is OK if:

• All relevant decay channels identified.

• No underestimated uncertainty in any of the
relevant channels (ISR & hadron/lepton VP
insertion subtracted properly?).

• No NP contamination in the measurement
(e.g. e+e− → A∗

NP → hadrons).

17



The CMD-3 result

A new measurement of e+e− → π+π− with CMD detector at VEPP-2000 in 2023,
found significant deviations from previous measurements

• At the moment the situation of exp. e+e− → hadrons needs to be clarified.

• However since 2020 the situation changed since LQCD calculations have
reached the level of precision (< 1%) required. 18



The g − 2 puzzle: let’s start from scratch (WP’20)

• Using aHVP
µ from dispersive analysis as in WP ’20 a > 5σ discrepancy present.

• In WP’20 precision of lattice result not good enough.

• Final value (quoted as ”SM”) was obtained from dispersive approach.
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aHVP−LO
µ from lattice QCD

On the lattice, evaluating aHVP−LO
µ is much easier than aHlbl

µ .

The QCD input is the 2-point Euclidean correlation function of e.m. currents:

C(t) =
1
3

∫
d3x ⟨0|Ji

em(t, x)Ji
em(0)|0⟩ Ji

em =
2
3

ūγiu −
1
3

d̄γid −
1
3

s̄γis +
2
3

c̄γic

aHVP−LO
µ =

∫ ∞

0
dt K(t)︸︷︷︸
analytic kernel

C(t) K(t)
t≫m−1

µ→ t2 [Enhancement of C(t) tail]

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

0.5 1 1.5 2 2.5 3 3.5

C(t ≫ a) ∼ e−2mπt C(t)
∆C(t) ∼ e−mπt

[G. Parisi, 1984]

a
3
C
(t
)

u
d
−

qu
ar

ks

t [fm]

Large times noisy

Main difficulties for subpercent accuracy:
• S/N problem at large times.

• Large lattice volumes V = L3 required to
fit the light ππ states.

• Isospin-breaking effects α3, α2(md − mu)
needs to be computed at target accuracy.
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BMWc crosses the Rubicon [Nature 593 (2021)]

• Order of magnitude improvement in stat. accuracy

• Large lattice volumes up to L ≃ 11 fm

• Seven lattice spacings to control UV cut-off effects.

Modern algorithms and new methods

Adaptative solvers & eigendeflation
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The aµ discrepancy after BMWc’s result 2020-2021

• BMWc’s result is 2.1σ larger then aµ[disp.].

• . . .and only 1.7σ smaller than FNAL+BNL results.

• To scrutinize e+e− data in ’22-’24 many LQCD collaborations
started to look at the so-called Euclidean-time window

22



The Euclidean windows to test e+e− → hadrons

To perform stringent tests of R(E) we are not bound to aHVP−LO
µ∫ ∞

0
dt K(t) C(t)︸ ︷︷ ︸

lattice, SM

= aHVP−LO
µ =

∫ ∞

Mπ

dE K̃(E) Rexp(E)︸ ︷︷ ︸
dispersive, experimental⇓ ⇓∫ ∞

0
dt K(t) C(t) Θw(t)︸ ︷︷ ︸

lattice, SM

= aw
µ =

∫ ∞

Mπ

dE K̃(E) Rexp(E) Θ̃w(E)︸ ︷︷ ︸
dispersive, experimental

0.0
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• ΘSD + ΘW + ΘLD = 1. w = {SD, W, LD} probe R(E) at different energies.

• aSD/W very precise on the lattice =⇒ may enhance differences with Rexp(E). 23



The short- and intermediate-distance windows

In 22-24 several LQCD results for aW
µ and aSD

µ . Many appeared before CMD3.

intermediate-distance =⇒ E ≲ 1 GeV (ππ, πππ)

230 235 240 245 250 255

Rexp(E)

before CMD3

aW
µ × 1010

Fermilab/HPQCD/MILC-24

BMW-24

RBC/UKQCD-23

ETM-22

Mainz/CLS-22

BMW-20

short-distance =⇒ Large E ≳ 1GeV

67 68 69 70 71 72 73 74

Rexp(E)

before CMD3

aSD
µ × 1010

Fermilab/HPQCD/MILC-24

BMW-24

ETM-22

Mainz/CLS-22

• Many more lattice results for (dominant) ℓ-quark contribution. All in line ✓.
• A big achievement for the lattice community.

• Striking tension with Rexp(E)-based results for aW
µ which is dominated by

e+e− → ρ → π+π−. High-energy part of R-ratio in line with experiments. 24



What about computing R(E) directly on the lattice?

Can we compute R(E) directly on the lattice?

C(t) =
1

12π2

∫ ∞

0
dE e−Et R(E) E2

• Inverting the previous relation to obtain R(E) from C(t) (our lattice input) is
an ill-posed problem if. . .

• . . . C(t) affected by statistical uncertainties and known only at a discrete and
finite number of times (typical situation encountered in lattice calculation).

• But. . . this is not the end of the story.

• We have a new numerical technique, the Hansen-Lupo-Tantalo (HLT) method,
which allows us to obtain on the lattice an energy-smeared version of R(E).
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The energy-smeared R−ratio

In PRL 130 (2023) we (ETM) exploited the HLT method to evaluate on the lattice:

Rσ(E) =
∫ ∞

0
dω R(ω) N(E − ω, σ)︸ ︷︷ ︸

Gaussian

Rσ(E) is a ”sort of” energy-binned version of R(E) (with bin-size ∼ σ).

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

E [GeV]
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2.50

2.75

3.00

R
σ
(E

)

σ =0.63 GeV

Rexp(E)

Rexp
σ (E)

Rσ(E)

• In the low-energy region, for σ ≃ 0.6 GeV, we observe a ≈ 3σ (or 2.5 − 3%)
deviation w.r.t. e+e− experimental results.

• Similar conclusions as from aW
µ =⇒ higher SM value w.r.t. Rexp(E) results

around the ρ resonance.
26



Quick update by ETMC

We (ETM) started improving on the R-ratio using the new generation of LQCD
vector-vector correlators (higher precision due to Low-Mode-Averaging techniques).
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• New dataset still blinded. Huge reduction of error w.r.t. previous work.

• We are able to achieve good precision for smearing down to 250 MeV.

• Results so far obtained on two lattice spacing ensemble (B64 and C80).1
1I am grateful to F. Margari for providing me with the plots of the energy-smeared R-ratio

derived from the new generation of data.
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The long-distance window: 2024 results

In ’24 many LQCD results appeared for the long-distance contributions (none of them
published as of today).

• BMW-24: The BMW Coll. reported an update of their previous result for aHVP−LO
µ . New

results obtained by combining LQCD data for the Euclidean VV-correlator and dispersive
results. The latter are used in the large time region t > 2.8 fm [ePrint:2407.10913].

• RBC/UKQCD-24: The RBC/UKQCD Coll. reported a calculation of the light-connected
contribution to aLD

µ [ePrint:2410.20590].

• Mainz/CLS-24: The MAINZ/CLS Coll. reported an almost full calculation of aHVP−LO
µ

(only some subleading IB diagrams missing) [ePrint:2411.07969].

• Fermilab/HPQCD/MILC-24: The Fermilab/HPQCD/MILC Coll. reported a calculation of
the light-connected contribution to aLD

µ [ePrint:2412.18491].

The light-connected contribution to aLD
µ is the most challenging on the lattice:

• Affected by large finite-size effects (two pions in a box).

• Shows non-linear cut-off effects if the lattice discretization adopted suffers from significant
distortion of the pion-spectrum.

• Large statistical uncertainty (exponentially decreasing S/N).
28



The BMW-24 result

[ Plots taken from the BMW-24 paper ePrint:2407.10913 ]

• Results shifted 1σ upward w.r.t. BMW-20.

• Reduced uncertainty partially/mainly due to the use of data-driven results for
t ≳ 2.8 fm.

• Replacing the tail of the LQCD VV-correlator with the dispersive one motivated
by agreement between experiments in the very low-energy region (incl. CMD3).

• Contribution of data-driven tail is ≃ 28 × 10−10, not a small effect! 29



The Mainz/CLS-24 result

[ Plot taken from the Mainz/CLS paper ePrint:2411.07969 ]

• Mainz/CLS LQCD result is aLO−HVP
µ = 724.9(5.0)stat(4.9)syst × 1010

• Slightly larger than BMW-20 and (to lesser extent) BMW-24 which is based on
both LQCD and data-driven methods.

• The aLO−HVP
µ by Mainz/CLS leads to a total aµ = (gµ − 2)/2, in line with the

world-average of exp. results. 30



aLD
µ (ℓ) from RBC/UKQCD and Fermilab/HPQCD/MILC

aLO−HVP
µ = aSD

µ + aW
µ + aLD

µ

aLD
µ = aLD

µ (ℓ) + aLD
µ (s) + aLD

µ (c) + aLD
µ (disc.) + IB − effects

[ Figure taken from Fermilab/HPQCD/MILC-24 , ePrint:2412.18491]

• Three lattice results available for aLD
µ (ℓ).

• Separation between isoQCD (mu − md = αem = 0) and IB contributions is
conventional. Indications that scheme ambiguities lead to larger diff. for aLD

µ .
• Fermilab/HPQCD/MILC result lower than RBC/UKQCD and Mainz/CLS but...
• ...results shown obtained in different isoQCD-schemes. (one is not really

comparing apple to apple).
• Important that all collaboration provide results in a given isoQCD-scheme.
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Status of the ETM calculation

We (ETM) have recently produced results for aLO−HVP
µ (s) and aLO−HVP

µ (c)

Taken from ePrint:2411.08852 (ETM)
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aLO−HVP
µ (s) = (53.57 ± 0.63) × 10−10 , aLO−HVP

µ (c) = (14.56 ± 0.13) × 10−10

We will publish our results for aHVP−LO
µ (ℓ) in a few months.
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Summary

Where are we?

aHVP−LO
µ

• BMW gave an update of their ’20 paper,
using an hybrid approach which combines
LQCD data and dispersive results.

• Mainz/CLS produced a new and almost
complete result for aHVP−LO

µ which is
slightly higher than BMW-20 and leads to an
aµ compatible with Fermilab exp.

• Two additional collaborations produced
results for aLD

µ (ℓ).

• It is conceivable that the SM value of
aHVP−LO

µ in the next WP update will be
entirely based on lattice results.

• Warning: None of the new results reviewed
has been published!

e+e− → hadrons

• Lattice QCD has signalled an inconsistency
between previous e+e− → hadron
measurements and the SM value.

• NP, unknown systematic in measurements?

• The new CMD-3 result can provide an
explanation.

• The situation needs to be clarified.
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Thank you for the attention
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