# Status of Theory Calculations of the Muon Anomalous Magnetic Moment

Giuseppe Gagliardi, Università di Roma Tre

LNF - January 29th 2025





## Introduction: the magnetic moment of a lepton



The magnetic moment  $\mu$  of a charged object parameterizes the torque that a static magnetic field exerts on it.

For a charged spin-1/2 particle:

$$\boldsymbol{\mu} = g \frac{e}{2m} \boldsymbol{S}$$

g is the well-known gyromagnetic factor.

In QFT the response of a charged lepton (say a muon  $\mu)$  to a static and uniform e.m. field is encoded in  $(k=p_1-p_2)$ 

$$\langle \mu(p_2) | J_{\text{em}}^{\nu}(0) | \mu(p_1) \rangle = -i e \bar{u}(p_1) \Gamma^{\nu}(p_1, p_2) u(p_2)$$

Lorentz invariance and e.m. current conservation constrain  $\Gamma^{\nu}\text{-structure:}$ 

$$\Gamma^{\nu}(p_1,p_2) = F_1(k^2)\gamma^{\nu} + \frac{\imath}{2m_{\mu}}F_2(k^2)\sigma^{\nu\rho}k_{\rho} + \text{P-violating terms}$$

1

#### The muon anomalous magnetic moment

Gyromagnetic factor  $g_\mu$  related to form-factors  $F_1(k^2)$  and  $F_2(k^2)$  through  $g_\mu=2\,[F_1(0)+F_2(0)]$ 

- Electric charge conservation  $\implies F_1(0) = 1$ .
- At tree level in the SM:  $F_2(0) = 0 \implies g_\mu = g_\mu^{\text{Dirac}} \equiv 2.$



non-zero only at loop level. Contributions from all SM (and BSM) fields. E.g.



If very precisely measured can be a crucial probe of the completeness of the SM. Is it? 2

#### Latest update (August '23) from FNAL experiment



 $g_{\mu} - 2$  @BNL (up to 2006)  $\implies$  transfer to Fermilab

 $\implies$ 

 $g_{\mu} - 2$  @Fermilab



 $a_{\mu}^{\exp} = 116\,592\,059(22) \times 10^{-11}$  [0.19ppm]

Congratulations!!

Results from Run-4/5/6 expected in 2025

## Why did we pick the muon (and not $e, \tau$ )?

Electron anomalous magnetic moment is measured with even higher precision (x1000):

 $a_e^{\exp} = 1\,159\,652\,180.73(28) \times 10^{-12}$  [0.0002 ppm]



 $a_{\tau}$  would have a much higher enhancement but not measured as accurately...  $a_{\tau} = 0.0009^{+0.0032}_{-0.0031} \qquad [\text{CMS 2023, arXiv:2406.03975}]$ 

The CMS's result ( $\gamma\gamma \rightarrow \tau\tau$ ) dramatically improved the precision w.r.t. previous measurements.

Can we match, on the theory side, the experimental accuracy on  $a_{\mu}$ ?

#### The Muon g-2 Theory Initiative

The muon g - 2 TI has been established in 2017 with the aim of matching the precision of the SM-theory prediction for  $a_{\mu}$  with the experimental one.

https://muon-gm2-theory.illinois.edu

- Composed by experts in lattice QCD, dispersive approach, perturbative calculations, . . .
- First white paper out in '20 [Physics Reports 887 (2020)]. Second out in a few months!!

The anomalous magnetic moment of the muon in the Standard Model

T. Aoyama<sup>1,2,3</sup>, N. Asmussen<sup>4</sup>, M. Benayoun<sup>5</sup>, J. Bijnens<sup>6</sup>, T. Blum<sup>7,8</sup>, M. Bruno<sup>9</sup>, I. Caprini<sup>10</sup>, C. M. Carloni Calame<sup>11</sup>, M. Ce<sup>9,12,13</sup>, G. Colangelo<sup>†14</sup>, F. Curciarello<sup>15,16</sup>, H. Czyż<sup>17</sup>, I. Danilkin<sup>12</sup>, M. Davier<sup>†18</sup>, C. T. H. Davies<sup>19</sup>, M. Della Morte<sup>20</sup>, S. I. Eidelman<sup>+21,22</sup>, A. X. El-Khadra<sup>+23,24</sup>, A. Gérardin<sup>25</sup>, D. Giusti<sup>26,27</sup>, M. Golterman<sup>28</sup>, Steven Gottlieb<sup>29</sup>, V. Gülpers<sup>30</sup>, F. Hagelstein<sup>14</sup>, M. Hayakawa<sup>31,2</sup>, G. Herdoíza<sup>32</sup>, D. W. Hertzog<sup>33</sup> A. Hoecker<sup>34</sup>, M. Hoferichter<sup>†14,35</sup>, B.-L. Hoid<sup>36</sup>, R. J. Hudspith<sup>12,13</sup>, F. Ienatov<sup>21</sup>, T. Izubuchi<sup>37,8</sup>, F. Jegerlehner L. Jin<sup>7,8</sup>, A. Keshavarzi<sup>39</sup>, T. Kinoshita<sup>40,41</sup>, B. Kubis<sup>36</sup>, A. Kupich<sup>21</sup>, A. Kupic<sup>42,43</sup>, L. Laub<sup>14</sup>, C. Lehner<sup>†26,37</sup>, L. Lellouch<sup>25</sup>, I. Logashenko<sup>21</sup>, B. Malaescu<sup>5</sup>, K. Maltman<sup>44,45</sup>, M. K. Marinković<sup>46,47</sup>, P. Masiuan<sup>48,49</sup> A. S. Mever<sup>37</sup>, H. B. Mever<sup>12,13</sup>, T. Mibe<sup>11</sup>, K. Miura<sup>12,13,3</sup>, S. E. Müller<sup>50</sup>, M. Nio<sup>2,51</sup>, D. Nomura<sup>52,53</sup>, A. Nyffeler<sup>†12</sup>, V. Pascalutsa<sup>12</sup>, M. Passera<sup>54</sup>, E. Perez del Rio<sup>55</sup>, S. Peris<sup>48,49</sup>, A. Portelli<sup>30</sup>, M. Procura<sup>56</sup>, C. F. Redmer<sup>12</sup>, B. L. Roberts<sup>†57</sup>, P. Sánchez-Puertas<sup>49</sup>, S. Serednvakov<sup>21</sup>, B. Shwartz<sup>21</sup>, S. Simula<sup>27</sup>, D. Stöckinger<sup>58</sup>, H. Stöckinger-Kim<sup>58</sup>, P. Stoffer<sup>59</sup>, T. Teubner<sup>160</sup>, R. Van de Water<sup>24</sup>, M. Vanderhaeghen<sup>12,13</sup>. G. Venanzoni<sup>61</sup>, G. von Hippel<sup>12</sup>, H. Wittig<sup>12,13</sup>, Z. Zhang<sup>18</sup>, M. N. Achasov<sup>21</sup>, A. Bashir<sup>62</sup>, N. Cardoso<sup>47</sup>, B. Chakraborty<sup>63</sup>, E.-H. Chao<sup>12</sup>, J. Charles<sup>25</sup>, A. Crivellin<sup>64,65</sup>, O. Deineka<sup>12</sup>, A. Denig<sup>12,13</sup>, C. DeTar<sup>66</sup>, C. A. Dominguez<sup>67</sup>, A. E. Dorokhov<sup>68</sup>, V. P. Druzhinin<sup>21</sup>, G. Eichmann<sup>69,47</sup>, M. Fael<sup>70</sup>, C. S. Fischer<sup>71</sup>, E. Gámiz<sup>72</sup>, Z. Gelzer<sup>23</sup>, J. R. Green<sup>9</sup>, S. Guellati-Khelifa<sup>73</sup>, D. Hatton<sup>19</sup>, N. Hermansson-Truedsson<sup>14</sup>, S. Holz<sup>36</sup>, B. Hörz<sup>74</sup>, M. Knecht<sup>25</sup>, J. Koponen<sup>1</sup>, A. S. Kronfeld<sup>24</sup>, J. Laiho<sup>75</sup> S. Leupold<sup>42</sup>, P. B. Mackenzie<sup>24</sup>, W. J. Marciano<sup>37</sup>, C. McNeile<sup>76</sup>, D. Mohler<sup>12,13</sup>, J. Monnard<sup>14</sup>, E. T. Neil<sup>77</sup>, A. V. Nesterenko<sup>68</sup>, K. Ottnad<sup>12</sup>, V. Pauk<sup>12</sup>, A. E. Radzhabov<sup>78</sup>, E. de Rafael<sup>25</sup>, K. Rava<sup>79</sup>, A. Risch<sup>12</sup> A. Rodríguez-Sánchez<sup>6</sup>, P. Roig<sup>80</sup>, T. San José<sup>12,13</sup>, E. P. Solodov<sup>21</sup>, R. Sugar<sup>81</sup>, K. Yu. Todyshev<sup>21</sup>, A. Vainshtein<sup>82</sup> A. Vaquero Avilés-Casco<sup>66</sup>, E. Weil<sup>71</sup>, J. Wilhelm<sup>12</sup>, R. Williams<sup>71</sup>, A. S. Zhevlakov<sup>78</sup>



Last TI meeting at KEK (Tsukuba, Japan).

#### The muon magnetic moment in the SM

 $a_{\mu}$  can be decomposed into QED, weak and hadronic contributions

$$a_{\mu} = \underbrace{a_{\mu}^{\text{QED}}}_{>99.99\%} + a_{\mu}^{\text{weak}} + \underbrace{a_{\mu}^{\text{had}}}_{\text{non-perturbative}}$$

 The QED contribution to a<sub>µ</sub> is completely dominant. LO (1-loop) contribution evaluated by J. Schwinger in 1948





Since Schwinger's calculation many more QED-loops included...

# The QED contribution $a_{\mu}^{\text{QED}}$



To match experimental accuracy  $\Delta a_{\mu}^{\exp} \simeq \mathcal{O}(10^{-10})$  several orders in the perturbative  $\alpha$  expansion need to be considered

$$a_{\mu}^{\rm QED} = \frac{\alpha}{2\pi} + \sum_{n=2}^{\infty} C_{\mu}^n \left(\frac{\alpha}{\pi}\right)^n$$

- Number of Feynman diagrams quickly rises with n: 1,7,72,891,12672,...
- Heroic effort to compute them up to five-loops [T. Aoyama et al. PRLs, 2012]

 $C^{6}_{\mu} \left(\frac{\alpha}{\pi}\right)^{6} \simeq C^{6}_{\mu} \times 10^{-16} \text{ requires unnaturally large } C^{6}_{\mu} \simeq \mathcal{O}(10^{6}) \text{ to be relevant!!}$   $a^{\text{QED}}_{\mu} = 116\,584\,718.931(104) \times 10^{-11} \checkmark$ 

# The weak contribution $\underline{a}_{\mu}^{\text{weak}}$

 $a_{\mu}^{\text{weak}}$  defined as the sum of all loop diagrams containing at least a W, H, Z.

• Smallest of the three contributions due to Fermi-scale suppression:

$$a_\mu^{
m weak} \propto lpha_W^2 rac{m_\mu^2}{M_W^2} \simeq \mathcal{O}(10^{-9})$$

Sample of one-loop weak diagrams:



• At target precision of  $\sim 0.1$  ppm two-loops calculation is sufficient [Czarnecki et al PRD (2006), Gnendiger et al PRD (2013)].

$$a_{\mu}^{\text{weak}} = 153.6(1.0) \times 10^{-11} \checkmark$$

# The hadronic contribution $a_{\mu}^{had}$



NLO and NNLO HVP contributions relevant at target accuracy. At NLO:



- However, they can obtained from same non-perturbative input of  $a_{\mu}^{\rm HVP-LO}.$  Hence we shall discuss only the latter.

# How important are hadronic contributions?

The uncertainty in the theory prediction for  $a_{\mu}$  dominated by the hadronic contribution, despite its smallness



Dominant source of uncertainty is  $a_{\mu}^{\rm HVP-LO}$ 

- Hadronic contributions are fully non-perturbative.
- Two main approaches to evaluate them:

#### Dispersive approach:

- Relates full  $a_{\mu}^{\rm HVP-LO}$  to  $e^+e^- \rightarrow$  hadrons cross-section via optical theorem.
- For Hlbl (only) low-lying intermediate-states contributions can expressed in terms of transition form-factors TFFs.

#### Lattice QCD:

- Only known first-principles SM method to evaluate both  $a_{\mu}^{\text{HVP}}$  and  $a_{\mu}^{\text{Hlbl}}$ .
- In the past the accuracy of the predictions were not good enough. The situation has recently changed. 11

### The hadronic light-by-light contribution

 $a_{\mu}^{\text{Hlbl}}$  occurs at  $\mathcal{O}(\alpha^3)$ . Related to  $2 \rightarrow 2$  (generally virtual) photons scattering



It involves the fourth-rank VP tensor:

$$T\langle 0|J^{\mu}J^{\nu}J^{\rho}J^{\sigma}|0\rangle = \Pi^{\mu\nu\rho\sigma}(k_1,\ldots,k_4)$$

 In the dispersive framework [Colangelo et al. JHEP09 (2015)] one isolates the dominant intermediate-states contributions:



• parameterized by transition form-factors **TFFs**. For dominant  $\pi^0$ -pole contr.

$$i\int d^4x e^{iqx} T\langle 0|J^{\mu}(x)J^{\nu}(0)|\pi^0(p)\rangle = \epsilon^{\mu\nu\alpha\beta}q_{\alpha}p_{\beta}F_{\pi^0\gamma^*\gamma^*}(q^2,(q-p)^2)$$

TFFs from dispersion relations (using available exp. input) or recently from LQCD. <sup>12</sup>

### The hadronic light-by-light on the lattice

The cleanest, assumptions-independent, way of computing  $a_{\mu}^{\rm Hlbl}$  is given by Lattice QCD. The lattice QCD input is the 4-point correlation function of e.m. currents

$$\Pi^{\mu\nu\rho\sigma}(x,y,z,w) = T\langle 0|J^{\mu}(x)J^{\nu}(y)J^{\rho}(z)J^{\nu}(w)|0\rangle$$

- Long distance contribution very noisy. Noise rapidly increases reaching  $m_{\pi}^{\rm phys}$ .
- Clever tricks employed to reduce computational cost. Lattice input can be compressed into

$$\hat{\Pi}^{\rho,\mu\nu\lambda\sigma}(x,y) = \int dz \, z^{\rho} \langle 0|J^{\mu}(x)J^{\nu}(y)J^{\sigma}(z)J^{\lambda}(0)|0\rangle$$
$$a^{\text{HIbl}}_{\mu} = \frac{m_{\mu}e^{6}}{3} \int d^{4} \, y \int d^{4} \, x \underbrace{\mathcal{L}_{[\rho,\sigma],\mu\nu\lambda}(x,y)}_{\text{QED kernel}} i \underbrace{\hat{\Pi}^{\rho,\mu\nu\lambda\sigma}(x,y)}_{\text{QCD input}}$$

So far three lattice Collaborations have fully computed a<sup>Hlbl</sup><sub>µ</sub>:

RBC/UKQCD ('21, '23), MAINZ ('22) and BMW ('24)

# Summary of current status for $a_{\mu}^{\text{Hlbl}}$

taken from RBC/UKQCD '24 ePrint:2411.06349 [1]

#### This work=RBC/UKQCD

taken from BMW '24 ePrint:2411.11719 [2]

This work=BMW



- LQCD calculations of  $a_{\mu}^{\rm Hbl}$  in line with the dispersive result from WP '20 (and with smaller uncertainties).
- LQCD calculations of  $a_{\mu}^{\rm Hlbl;\pi^0}$  in reasonable good agreement with dispersive ones.
- 10% accuracy goal for  $a_{\mu}^{\text{Hlbl}}$  achieved!.

### The LO hadronic-vacuum-polarization (HVP) contribution

 $a_{\mu}^{\rm HVP-LO}$  is the largest of the hadronic contributions.

- Until '20 LQCD calculations above percent level accuracy.
- However,  $a_{\mu}^{\rm HVP-LO}$  is related to  $\sigma(\gamma^* 
  ightarrow$  hadrons) through optical theorem...

$$\operatorname{Im}_{V = \pi^{+}\pi^{-}, \phi, J/\Psi, \dots} \propto \sum_{V} \left| \operatorname{res}_{\pi^{+}\pi^{-}, \phi, J/\Psi, \dots} \right|^{2}$$

- In terms of the  $e^+e^- \rightarrow$  hadron cross-section or actually the R-ratio:

$$R(E) = \frac{\sigma(e^+e^-(E) \to \text{hadrons})}{\sigma(e^+e^-(E) \to \mu^+\mu^-)}$$

• one has a very simple formula for  $a_{\mu}^{\rm HVP-LO}$ 

$$a_{\mu}^{\rm HVP-LO} = \int_{m_{\pi}}^{\infty} dE \, R(E) \underbrace{\tilde{K}(E)}_{\rm analytic function}$$



# $a_{\mu}^{\rm HVP-LO}$ from the dispersive approach (I)

The central idea is to replace  $R(E) \rightarrow R^{\exp}(E)$  and use previous formula.

 $e^+e^- 
ightarrow$  hadrons measured since '60 in various experiments





BABAR @ SLAC STANFORD



CMD3 @ VEPP-2000 NOVOSIBIRSK

Inclusive measurement of  $R^{\exp}(E)$  obtained summing more than fourty exclusive channel measurements (comb. of various exp. , dominated by  $\pi$ 's).

| W1 20, prc-civiD5              |                                                  |              |
|--------------------------------|--------------------------------------------------|--------------|
|                                | DHMZ19                                           | KNT19        |
| $\pi^{+}\pi^{-}$               | 507.85(0.83)(3.23)(0.55)                         | 504.23(1.90) |
| $\pi^{+}\pi^{-}\pi^{0}$        | 46.21(0.40)(1.10)(0.86)                          | 46.63(94)    |
| $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ | 13.68(0.03)(0.27)(0.14)                          | 13.99(19)    |
| $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$ | 18.03(0.06)(0.48)(0.26)                          | 18.15(74)    |
| $K^{+}K^{-}$                   | 23.08(0.20)(0.33)(0.21)                          | 23.00(22)    |
| $K_S K_L$                      | 12.82(0.06)(0.18)(0.15)                          | 13.04(19)    |
| $\pi^0 \gamma$                 | 4.41(0.06)(0.04)(0.07)                           | 4.58(10)     |
| Sum of the above               | 626.08(0.95)(3.48)(1.47)                         | 623.62(2.27) |
| [1.8, 3.7] GeV (without cc)    | 33.45(71)                                        | 34.45(56)    |
| $J/\psi$ , $\psi(2S)$          | 7.76(12)                                         | 7.84(19)     |
| [3.7,∞) GeV                    | 17.15(31)                                        | 16.95(19)    |
| Total $a_{\mu}^{HVP, LO}$      | $694.0(1.0)(3.5)(1.6)(0.1)_{\phi}(0.7)_{DV+QCD}$ | 692.8(2.4)   |

W/P '20 pro CMD3

Two main groups involved in the analysis: DHMZ, KNT.

DHMZ = Davier-Hoecker-Malaescu-Zhang,



KNT = Keshavarzi-Nomura-Teubner

# $a_{\mu}^{\rm HVP-LO}$ from the dispersive approach (II)

Combination of DHMZ and KNT results gives:

$$a_{\mu}^{\text{HVP-LO}}[\text{disp.}] = 6931(40) \times 10^{-11}$$
 [WP '20]

Replacing the theoretical prediction with the experimental R(E) is OK if:

- All relevant decay channels identified.
- No underestimated uncertainty in any of the relevant channels (ISR & hadron/lepton VP insertion subtracted properly?).
- No NP contamination in the measurement (e.g.  $e^+e^- \rightarrow A^*_{NP} \rightarrow$  hadrons).



# The CMD-3 result

A new measurement of  $e^+e^- \rightarrow \pi^+\pi^-$  with CMD detector at VEPP-2000 in 2023,

found significant deviations from previous measurements



- At the moment the situation of exp.  $e^+e^- \rightarrow$  hadrons needs to be clarified.
- However since 2020 the situation changed since LQCD calculations have reached the level of precision (< 1%) required.

### The g-2 puzzle: let's start from scratch (WP'20)



- Using  $a_{\mu}^{\text{HVP}}$  from dispersive analysis as in WP '20 a  $> 5\sigma$  discrepancy present.
- In WP'20 precision of lattice result not good enough.
- Final value (quoted as "SM") was obtained from dispersive approach.

#### $a^{\mathrm{HVP-LO}}$ from lattice QCD

On the lattice, evaluating  $a_{\mu}^{\text{HVP-LO}}$  is much easier than  $a_{\mu}^{\text{HIbl}}$ .

The QCD input is the 2-point Euclidean correlation function of e.m. currents:

$$C(t) = \frac{1}{3} \int d^3x \, \langle 0 | J^i_{\rm em}(t, \mathbf{x}) J^i_{\rm em}(0) | 0 \rangle \qquad J^i_{\rm em} = \frac{2}{3} \bar{u} \gamma^i u - \frac{1}{3} \bar{d} \gamma^i d - \frac{1}{3} \bar{s} \gamma^i s + \frac{2}{3} \bar{c} \gamma^i c$$



#### Main difficulties for subpercent accuracy:

[Enhancement of C(t) tail]

- S/N problem at large times.
- Large lattice volumes  $V = L^3$  required to fit the light  $\pi\pi$  states.
- Isospin-breaking effects  $\alpha^3, \alpha^2(m_d m_u)$ needs to be computed at target accuracy.

# BMWc crosses the Rubicon [Nature 593 (2021)]

# Leading hadronic contribution to the muon magnetic moment from lattice QCD

Sz. Borsanyi, Z. Fodor <sup>CD</sup>, J. N. Guenther, C. Hoelbling, S. D. Katz, L. Lellouch, T. Lippert, K. Miura, L. Parato, K. K. Szabo, F. Stokes, B. C. Toth, Cs. Torok & L. Varnhorst

Nature 593, 51-55 (2021) Cite this article

21k Accesses | 403 Citations | 962 Altmetric | Metrics

- Order of magnitude improvement in stat. accuracy
- Large lattice volumes up to  $L\simeq 11~{
  m fm}$
- Seven lattice spacings to control UV cut-off effects.





$$10^{10} \times a_{\mu}^{\text{LO-HVP}} = 707.5(2.3)_{\text{stat}}(5.0)_{\text{sys}}[5.5]_{\text{tot}}$$
 2

# The $a_{\mu}$ discrepancy after BMWc's result 2020-2021



- BMWc's result is 2.1 $\sigma$  larger then  $a_{\mu}$ [disp.].
- ...and only  $1.7\sigma$  smaller than FNAL+BNL results.
- To scrutinize e<sup>+</sup>e<sup>-</sup> data in '22-'24 many LQCD collaborations started to look at the so-called Euclidean-time window



### The Euclidean windows to test $e^+e^- \rightarrow$ hadrons

To perform stringent tests of R(E) we are not bound to  $a_{\mu}^{\rm HVP-LO}$ 



•  $\Theta^{SD} + \Theta^{W} + \Theta^{LD} = 1$ .  $w = \{SD, W, LD\}$  probe R(E) at different energies.

•  $a^{\text{SD/W}}$  very precise on the lattice  $\implies$  may enhance differences with  $R^{\exp}(E)$ .

#### The short- and intermediate-distance windows

In 22-24 several LQCD results for  $a_{\mu}^{\rm W}$  and  $a_{\mu}^{\rm SD}$ . Many appeared before CMD3.



- Many more lattice results for (dominant) ℓ-quark contribution. All in line ✓.
- A big achievement for the lattice community.
- Striking tension with  $R^{\exp}(E)$ -based results for  $a^{W}_{\mu}$  which is dominated by  $e^+e^- \rightarrow \rho \rightarrow \pi^+\pi^-$ . High-energy part of R-ratio in line with experiments.

## What about computing R(E) directly on the lattice?

Can we compute R(E) directly on the lattice?

$$C(t) = \frac{1}{12\pi^2} \int_0^\infty dE \, e^{-Et} \, R(E) \, E^2$$

- Inverting the previous relation to obtain R(E) from C(t) (our lattice input) is an ill-posed problem if...
- ... C(t) affected by statistical uncertainties and known only at a discrete and finite number of times (typical situation encountered in lattice calculation).
- But... this is not the end of the story.
- We have a new numerical technique, the Hansen-Lupo-Tantalo (HLT) method, which allows us to obtain on the lattice an energy-smeared version of R(E).

### The energy-smeared *R*-ratio

In PRL 130 (2023) we (ETM) exploited the HLT method to evaluate on the lattice:

$$R_{\sigma}(E) = \int_{0}^{\infty} d\omega \, R(\omega) \underbrace{N(E - \omega, \sigma)}_{\text{Gaussian}}$$

 $R_{\sigma}(E)$  is a "sort of" energy-binned version of R(E) (with bin-size  $\sim \sigma$ ).



- In the low-energy region, for  $\sigma \simeq 0.6$  GeV, we observe a  $\approx 3\sigma$  (or 2.5 3%) deviation w.r.t.  $e^+e^-$  experimental results.
- Similar conclusions as from  $a^{\rm W}_{\mu} \implies$  higher SM value w.r.t.  $R^{\rm exp}(E)$  results around the  $\rho$  resonance.

# Quick update by ETMC

We (ETM) started improving on the R-ratio using the new generation of LQCD vector-vector correlators (higher precision due to Low-Mode-Averaging techniques).



- New dataset still blinded. Huge reduction of error w.r.t. previous work.
- We are able to achieve good precision for smearing down to  $250\ {\rm MeV}.$
- Results so far obtained on two lattice spacing ensemble (B64 and C80).

 $^1{\rm I}$  am grateful to F. Margari for providing me with the plots of the energy-smeared R-ratio derived from the new generation of data.

In '24 many LQCD results appeared for the long-distance contributions (none of them published as of today).

- BMW-24: The BMW Coll. reported an update of their previous result for  $a_{\mu}^{\rm HVP-LO}$ . New results obtained by combining LQCD data for the Euclidean VV-correlator and dispersive results. The latter are used in the large time region t > 2.8 fm [ePrint:2407.10913].
- RBC/UKQCD-24: The RBC/UKQCD Coll. reported a calculation of the light-connected contribution to a<sup>LD</sup><sub>µ</sub> [ePrint:2410.20590].
- Mainz/CLS-24: The MAINZ/CLS Coll. reported an almost full calculation of a<sup>HVP-LO</sup><sub>μ</sub> (only some subleading IB diagrams missing) [ePrint:2411.07969].
- Fermilab/HPQCD/MILC-24: The Fermilab/HPQCD/MILC Coll. reported a calculation of the light-connected contribution to a<sup>LD</sup><sub>µ</sub> [ePrint:2412.18491].

The light-connected contribution to  $a_{\mu}^{LD}$  is the most challenging on the lattice:

- Affected by large finite-size effects (two pions in a box).
- Shows non-linear cut-off effects if the lattice discretization adopted suffers from significant distortion of the pion-spectrum.
- Large statistical uncertainty (exponentially decreasing S/N).

# The BMW-24 result





- Results shifted  $1\sigma$  upward w.r.t. BMW-20.
- Reduced uncertainty partially/mainly due to the use of data-driven results for  $t\gtrsim 2.8~{\rm fm}.$
- Replacing the tail of the LQCD VV-correlator with the dispersive one motivated by agreement between experiments in the very low-energy region (incl. CMD3).
- Contribution of data-driven tail is  $\simeq 28 \times 10^{-10}$ , not a small effect!

# The Mainz/CLS-24 result



• Mainz/CLS LQCD result is  $a_{\mu}^{\rm LO-HVP} = 724.9(5.0)_{\rm stat}(4.9)_{\rm syst} \times 10^{10}$ 

- Slightly larger than BMW-20 and (to lesser extent) BMW-24 which is based on both LQCD and data-driven methods.
- The  $a_{\mu}^{\rm LO-HVP}$  by Mainz/CLS leads to a total  $a_{\mu} = (g_{\mu} 2)/2$ , in line with the world-average of exp. results.

# $a_u^{ ext{LD}}(\ell)$ from RBC/UKQCD and Fermilab/HPQCD/MILC

$$a_{\mu}^{\rm LO-HVP} = a_{\mu}^{\rm SD} + a_{\mu}^{\rm W} + \frac{a_{\mu}^{\rm LD}}{\mu}$$

$$a_{\mu}^{\mathrm{LD}} = a_{\mu}^{\mathrm{LD}}(\ell) + a_{\mu}^{\mathrm{LD}}(s) + a_{\mu}^{\mathrm{LD}}(c) + a_{\mu}^{\mathrm{LD}}(\mathrm{disc.}) + \mathrm{IB} - \mathrm{effects}$$



- Three lattice results available for  $a_{\mu}^{\rm LD}(\ell)$ .
- Separation between isoQCD  $(m_u m_d = \alpha_{em} = 0)$  and IB contributions is conventional. Indications that scheme ambiguities lead to larger diff. for  $a_{\mu}^{LD}$ .
- Fermilab/HPQCD/MILC result lower than RBC/UKQCD and Mainz/CLS but...
- ...results shown obtained in different isoQCD-schemes. (one is not really comparing apple to apple).
- Important that all collaboration provide results in a given isoQCD-scheme.

# Status of the ETM calculation

We (ETM) have recently produced results for  $a_{\mu}^{\rm LO-HVP}(s)$  and  $a_{\mu}^{\rm LO-HVP}(c)$ 

Taken from ePrint:2411.08852 (ETM)



We will publish our results for  $a_{\mu}^{\rm HVP-LO}(\ell)$  in a few months.

## Summary



- BMW gave an update of their '20 paper, using an hybrid approach which combines LQCD data and dispersive results.
- Mainz/CLS produced a new and almost complete result for  $a_{\mu}^{\rm HVP-LO}$  which is slightly higher than BMW-20 and leads to an  $a_{\mu}$  compatible with Fermilab exp.
- Two additional collaborations produced results for  $a_{\mu}^{\rm LD}(\ell).$
- It is conceivable that the SM value of  $a_{\mu}^{\rm HVP-LO}$  in the next WP update will be entirely based on lattice results.
- Warning: None of the new results reviewed has been published!

- Lattice QCD has signalled an inconsistency between previous  $e^+e^- \to {\rm hadron}$  measurements and the SM value.
- NP, unknown systematic in measurements?
- The new CMD-3 result can provide an explanation.
- The situation needs to be clarified.

# Thank you for the attention