

Triple-GEMs@CMS experiment

A. Cagnotta – F. Confortini – C. Di Fraia – <u>L. Favilla</u> – A.O.M. Iorio – B. Rossi

Scuola Superiore Meridionale

The Phase-2 Upgrade of the CMS Muon Detectors

- □The muon system is challenged by high particle rates in the forward region of the CMS detector
 - Inst. Lumi: $2 \times 10^{34} cm^{-2} s^{-1}$ (LHC) $\rightarrow 5 \div 7.5 \times 10^{34} cm^{-2} s^{-1}$ (HL-LHC)
 - Pileup: 60 (LHC) \rightarrow 140 \div 200 (HL-LHC)
 - Several upgrades taking place to handle such a harsh environment \rightarrow link to CMS-TDR-016
- □Main purpose:
 - $|\eta| < 2.4 \rightarrow$ Enhance identification and triggering capabilities
 - $|\eta| > 2.4 \rightarrow$ Extend muon identification and triggering
- $\hfill Three new GEM detectors:$
 - LS2: **GE1/1** (1.5 < $|\eta|$ < 2.2)
 - LS3: GE2/1 (1.6 < $|\eta|$ < 2.4) & ME0 (2.0 < $|\eta|$ < 2.8)
- □CMS Napoli group involved in:
 - GE1/1 operation
 - GE2/1 and ME0 construction & commissioning
 - High-Voltage Power System design & mantainance

Triple-GEM technology

□The Gaseous Electron Multipliers (GEMs):

- high-rate capability in harsh environments
- thin polymer foil metal coated on both sides
- holed pattern $(50 100mm^{-2})$
- $\Box How$ it works:
 - 1) electron/ion pairs production
 - 2) electrons driven towards the holes \rightarrow secondary ionizations
 - 3) leave multiplication region and transfers into the lower gap
 - 4) collection by an electrode or injected into a second multiplying stage

□Characteristics:

- Gain: $10^4 \div 10^5$ in triple-stage
- Spatial resolution: $\sim 100 \mu m$
- Time resolution: ~ 10ns

6/01/2025

DRIFT

GEM

TRANSFER

16/01/2025

<u>Triple-GEM@INFN - Sezione di Napoli</u>

- \Box 10×10 cm^2 triple-GEM detector (ArCO₂ 70:30)
- □ High-Voltage board:
 - CAEN A1515TG power supply
 - voltage difference between one electrode and the previous one starting from the ground
 - currents sustained by the board itself to compensate any voltage drop/change occurring
 - voltage resolution: $\sim 20 mV$
 - current resolution: $\sim 1nA$

$\hfill \Box$ We are able to:

- Fully characterize a triple GEM and its performances
- Perform physics studies (electric field optimization)
- Use it as test bench for custom made pico-ammeter
- Testing power system components to bring to CERN

<u>PICO@INFN – Sezione di Napoli</u>

□ Pico:

- High-Voltage monitoring instrument for triple-GEMs
- capable of measuring currents and voltages
- current resolution: ~ 10pA
- voltage resolution: ~ 10mV
- sampling rate: up to 400Hz (1Hz for HV board)

□ Performed:

- current and voltage calibrations
- resolution estimation

<u>Currents vs. Electric Fields</u>

 $\hfill\square$ For the studies, we have used:

- a $10 \times 10 cm^2$ triple-GEM detector (ArCO₂ 70:30)
- A1515 board as power supplier
- Fe55 X-rays (5.9keV) source (370MBq)
- PICO

□ Procedure:

- Fixed all electric fields except one
- Measuring currents when changing the selected field

Channel	Voltage (V)		Electric Field (kV/cm)	
DRIFT	Vary	850	Vary	2.8
G1T	400	Vary	80.0	Vary
G1B	350		3.5	
G2T	400		80.0	
G2B	700		3.5	
G3T	400		80.0	
G3B	450		4.5	

6/01/2025

<u>Pico installation into CMS experiment</u>

□ Older version already used in CMS & magnet test@North Area:

- understanding of the experimental conditions inducing discharges and short circuits in a GEM foil
- established safety procedure during mangnetic field ramps
- link to article

🛛 Goal:

- install new version this year
- in depth study of discharges
- hit-rate/discharge correlation

Background study@CMS with Run3 data

 \Box Optimal muon reconstruction is fundamental \rightarrow high trigger quality

- ensured by redundancy
- threat: background rate

Hit Rate = $\frac{1}{n \cdot \Delta t \cdot A} \sum_{bx=bx_1}^{n} N_{hits}(bx, \Delta t)$ □ Correlation between instantaneous luminosity, hit-rate and monitored currents

Background in RPC sector@CMS with Run3 data

 $\hfill\square$ The background study is a well established procedure in the RPC sector

- Possibility to study detector upgrade effects: visible decrease in the DELAYED and INCLUSIVE backgrounds in the negative endcap due to the New Forward Shielding (NFS)
- Projection to HL-LHC target luminosity to have a glance of the expected hit-rate → Are our detectors ready?

Presented by L. Favilla@RPC2024

16/01/2025

Brief Summary

□ Napoli group deeply involved into CMS Muon activities

- Focus on GEM & RPC @ CMS Muon System since long time
- □ Gas Electron Multipliers
 - GE1/1 operation
 - GE2/1 and ME0 construction & commissioning
 - High-Voltage Power System design & mantainance
 - Development of custom-made pico-ammeter for discharge study
- □ Resistive Plate Chambers (RPCs)
 - Background study

BACKUP

Discharges and Short Circuits

□Why Triple-GEMs?

• High gain thanks to multiple amplification layers, without approaching the electrical breakdown of a single GEM foil \rightarrow Reduced discharge probability

DA DISCHARGE:

- uncontrolled or excessive release of electric charge within the detector;
- caused by strong localized electric field (exceeding the ability of the gas to remain stable);
 10 MQ: 6.4 nF (1 discharges)
 10 MQ: 6.4 nF (10 discharges)
- breakdown occurring at the Raether limit: $Q \sim 10^7 \div 10^8 e$.

 \Box They can be triggered by:

- sharp edges;
- micro-particles remaining after the production;
- dirty spots.

 \Box Can lead to:

- the formation of a SHORT CIRCUIT;
- damage to channels of the front-end electronics.

□How to recognize a discharge:

• Spike in current above the baseline current.

Background and discharges

□ Would be interesting to study discharge rate with respect to background hit-rate

PICO would be fundamental to have a proper discharge rate calculation

Presented by S. Calzaferri@ICHEP 2024

System Schematic

16/01/2025

L. Favilla - INFN Group 1

Measuring offline background in RPC

Hit Rate =
$$\frac{1}{n \cdot \Delta t \cdot A} \sum_{bx=bx_1}^{bx_n} N_{Clusters}(bx, \Delta t)$$

where:

 $\Box bx = RPC$ bunch crossing

 $\Box n$ = total number of RPC bunch crossings in a readout window (n = 5, $bx \in [-2,2]$)

 $\Box \Delta t$ = time window of a single bunch crossing ($\Delta t = 25ns$)

 $\Box A$ = effective area of the RPC subdetector, removing the surface associated to noisy or silent strips

 $\Box N_{Clusters}(bx, \Delta t) =$ number of clusters occurring in the bunch crossings bx in the time window Δt , not involving noisy or silent strips

- □ 4 fill regions:
 - \rightarrow Colliding bunches (C)
 - \rightarrow Non-Colliding bunches (NC)
 - \rightarrow Pre-Beam bunches (PB)
 - \rightarrow Beam-Abort bunches (BA)
- □ 3 kinds of background:

$$\rightarrow B_{INCLUSIVE} = \frac{N_{PB}B_{PB} + N_{C}B_{C} + N_{NC}B_{NC} + N_{BA}B_{BA}}{N_{PB} + N_{C} + N_{NC} + N_{BA}}$$

$$\rightarrow B_{DELAYED} = \frac{N_{PB}B_{PB} + N_{NC}B_{NC} + N_{BA}B_{BA}}{N_{PB} + N_{NC} + N_{BA}}$$

$$\Rightarrow B_{PROMPT} = B_{COLLIDING} - B_{DELAYED}$$

Hit Rate vs. Inst. Luminosity per background

RPC offline hit rate vs. Instantaneous Luminosity per background (RE-4/2 S06,RE+4/2 S06):

- □ Visible decrease in the **DELAYED** and **INCLUSIVE** backgrounds in the negative endcap due to the NFS
- □ Increase in the **PROMPT** background: does not depend on the NFS since both endcaps show the same trend → possible arising systematic effect, due to the different filling schemas.

Barrel shielding and New Forward Shielding

RPC offline hit rate vs. eta (RB4 for 2023 and 2024):

- □ On the left plot, barrel shielding combined with the new beam-pipe result in a decrease in the **DELAYED** and **INCLUSIVE** background up to $\sim 50\%$ across all 5 wheels with respect to 2018.
- □ On the right plot, also the NFS is affecting the measured hit rate: wheels -2 and -1 experience a reduction in the hit rate up to ~ 80%, while wheels 0, +1 and +2 have a reduced background of the same percentage as 2023, with respect to 2018 data.

23/10/2024

B

Barrel shielding and New Forward Shielding

RPC offline hit rate vs. eta (RE4 for 2023 and 2024):

- On the left plot, the barrel shielding combined with the new beam-pipe result in a progressive reduction in the hit rate for all three backgrounds considered when moving outwards from the beam-pipe (i.e. when decreasing $|\eta|$).
 - \rightarrow Such effect is symmetric between negative and positive endcaps.
- □ On the right plot, this reduction is not symmetric anymore, because of the presence of the NFS: reduction of the background level up to values ~ 40% with respect to 2018 data.

23/10/2024

What's a noisy strip nowadays?

- 1. Fix a fill and a chamber
- 2. We have the rate for all strips in that chamber
- 3. Calculate the change of rate per time interval for each strip $(\Delta R(t))$ $\Delta R(strips_j, t_i) = R(strips_j, t_i) - R(strips_j, t_{i-1})$
- 4. Strips with standard deviation of this change of rate $(\sigma_{\Delta R \ (t)})$ greater than 1 kHz is considered to be **NOISY**
- 5. Will be removed from the hit rate counting

Plots taken from Horacio's presentation

