

Scattering and Neutrino Detector at the LHC Scuola Superiore Meridionale

Search for neutrino interactions in the SND@LHC emulsion target Riunione Gruppo 1 - Napoli

Fabio Alicante

Scuola Superiore Meridionale and INFN Napoli 16/01/2025

Emulsion Data reconstruction in SND@LHC

1. Emulsion films scanning (online cluster processing).

- 2. Correct microscope stage effects.
- 3. Link two layers of each emulsion film.
- 4. Align consecutive films.
- 5. Reconstruct tracks and vertices.

Local effects and corrections!

Track reconstruction

- High track-density environment: $2 \div 4 \times 10^5$ tracks/cm².
- Long-track reconstruction efficiency $\ge 90 \%$.
- Position resolution of 200 nm. Angular resolution of 1.2 mrad.

Vertex reconstruction

Interaction with secondary vertex

Sub-micron impact parameter of track at 1ry and 2ry vertices

Primary vertex	Secondary Vertex
Impact par	ameters (µm)
0.58	0.04
0.79	0.12
1.06	0.17
0.33	0.29
0.05	
0.46	
1.77	
1.00	
0.29	

Shower tagging

Find highest bins in the cumulative base-tracks distribution.

Bins are enhanced for 0 angle showers (muon bremsstrahlung).

Shifting strategy

In order to find **(TX, TY) inclined shower**, shifts on x and y are applied on the emulsion plates. SX(pl) = (1000+350) * pl * TX, SY(pl) = (1000+350) * pl * TY.

Loop over TX and TY for given step. Find highest peak at some TX and TY combination.

C LHC

Shower tagged with low angle

1000

Tagged shower II

100

Tagged shower III

Shower tagged with 8 mrad

Conclusions and next step

- ✓ High efficiency and resolution achieved in SND@LHC emulsion detector.
- ✓ Clean and genuine vertices reconstructed.
- ✓ Electromagnetic showers easily tagged exploiting the emulsion granularity.
- ✓ High-Pt shower tagging strategy proved to work.
- Grasp the ν_e showers distinguishing features from Monte Carlo simulations.
- Increase data reconstruction and shower-vertex hunting.

Back-up slides

Feasibility study

4 MC $\nu_e CC$ interactions (with different electron slope) in 1cm².

Applying manual shifts

Tagged bin is enhanced, other showers are spread out.

Muon MC shift

For every shifted cumulative plot, shower tagging is performed (one bin in the Tmap).

Muon simulation shift map

Computing all the TX, TY combinations. Z axis are the entries in the tagged bin.

X0, Y0 tagged showers

Background rejection

If we discard the combinations with ~0 shift Primary electron slope from ν_e interactions:

Angle	% e
±2	94
±4	82
± 6	72
±8	62
±10	55

Data shift map

Peak finding is performed on the XY shift map after applying scipy.ndimage.gaussian_filter.

With skimage.feature.peak_local_max the TX TY that maximized the XY peak is found.

34 cm² of RUN1 W2 B1 analyzed

Candidate I

Shifted plot

Neutrino expectations

J.

Data considered is from emulsion run1 wall 2 brick 1
 Exposure of 9.5 fb⁻¹, closest brick to beam axis
 Neutrino interactions expected in this brick:

ν	$\boldsymbol{\nu_e}~\boldsymbol{\mathcal{C}}\boldsymbol{\mathcal{C}}$	$oldsymbol{ u}_{\mu} oldsymbol{C} oldsymbol{C}$
4.3	0.7	2.6

Peaks found

Angle	#peaks	True showers
> ±10	17	0
±10	5	1
± 8	16	8
	38	9

(TX, TY):
(-10, 0),
(-8, 0),
(-8, 0),
(-8, -2),
(-8, 0),
(-8, 0),
(-8, 0),
(-8, 0),
(-8, -2)

Pathologic peaks I

Multiple zero angle showers crossing the same tagged circle.

Pathologic peaks II

Zero angle shower entering from the side. Extra peak, not tagged in (0, 0) shift.

Longitudinal profile

Position, maximum plate, starting and ending plate, nseg are saved

Background subtraction is considered

First and Last bin above 10% of total segments

3rd stage: base-tracks in 300µm tagged cylinders are analyzed

Some variables can be evaluated and studied for signal, background and data

Nuecc simulation

Complete efficiency study ongoing...

X0, Y0 tagged showers

TX, TY tagged showers

ERN

Rank bin

Number of entries in the bin tagged.

Search is done with $50 \mu m$ bins in $300 \mu m$ radius.

50 highest bins in the nue MC are lower than muon MC and data.

This method is efficient to tag small angle showers:

- cumulative plot enhances bin population.

F. Alicante | 19th SND@LHC Collaboration Meeting

27

MC electron slope

Primary electron slope from ν_e interactions. 90 % within $\pm 50 \, mrad$ Slope vs Energy correlation: higher energy electrons have smaller slope.

Shift in $\pm 50 \, mrad$ range with $2 \, mrad$ step: 2601 combinations!

MC slope x

MC slope y

Computing all the TX, TY combinations. Z axis is the tagged rankbin.

X0, Y0 tagged showers

TX, TY tagged showers

Base-tracks background evaluation

A. Counting base-tracks in no-shower regions

B. Sparse measurements

C. Poisson-like evaluation

Candidate III

Shower is reconstructed with an injector and parameters: cylinder radius = $100 \,\mu m$, max d = $50 \,\mu m$, max dt = 0.03

Noise-free showers

Tagging only clusters above 5σ of the Poisson fit.

Spherocity

The variable well discriminates sig and bkg Data behaves as background Some events are in the tail

Evaluation of TPR and FPR:

- Signal efficiency
- Bkg misclassified as sig

S =