Status of PADME activity

Paolo Iengo, Paolo Massarotti, Givi Sekhniaidze

Positron Annihilation into Dark Matter Experiment (PADME)

Positrons from the DAFNE LINAC up to 550 MeV, O(0.5%) energy spread Repetition rate up to 49 Hz, macro bunches of up to 300 ns duration Intensity must be limited below ~ 3 × 10⁴ POT / spill against pile-up Emittance ~ 1 mm x 1.5 mrad @ PADME

Past operations:

Run I e⁻ primary, target, e⁺ selection, 250 µm Be vacuum separation [2019]

Run II e⁺ primary beam, 125 µm Mylar[™] vacuum separation, 28000 e⁺/bunch [2019-20]

Run III dipole magnet off, ~3000 e⁺/bunch, 47 scan points s^{1/2} ~ 17 MeV [2022]

Positron Annihilation into Dark Matter Experiment (PADME)

The X17 anomaly

01/16/2025

Recent results from MEGII

7Li target for L1(P, y or y- \rightarrow ee)8Be transition

- Using:
 - M_{X17} = 16.97(22) MeV and R_{18.1} = 6 10⁻⁶
 - Scaling R_{17.6} = 0.46 R_{18.1}
- ATOMKI: X17 produced at 1.030 MeV and not at 0.440 MeV
 - → p-value : 6.2% (1.5σ)
 - ATOMKI observation excluded at 94%
- J.L.Feng et al.: X17 produced both at 1.030 MeV and at 0.440 MeV
 - → p-value : 1.8% (2.1σ)

X17 anomaly after MEGII result

On the Atomki nuclear anomaly after the MEG-II result

D. Barducci,^a D. Germani,^b M. Nardecchia,^b S. Scacco,^b C. Toni^{c,d}

- ^a Dipartimento di Fisica Enrico Fermi, Università di Pisa and INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
- ^bUniversità degli Studi di Roma La Sapienza and INFN Section of Roma 1, Piazzale Aldo Moro 5, 00185 Roma, Italy
- ^cDipartimento di Fisica e Astronomia 'G. Galilei', Università di Padova and INFN Sezione di Padova, Via F. Marzolo 8, 35131 Padova, Italy

^dLAPTh, Université Savoie Mont-Blanc et CNRS, 74941 Annecy, France

	$R_{ m Be} \; [10^{-6}]$	$ $ $R_{ m He}$	$R_{\rm C} \ [10^{-6}]$
Atomki	$6 \pm 1 [1, 2]$	$ 0.2 \pm 0.03 [3, 4]$	$3.6 \pm 0.3 [5]$
MEG-II	< 5.3 at 90% CL [38]		
Combined	5.5 ± 1.0		

Table 2. Experimental values at 1σ for the normalized decays rates from Atomki and the upper limit from MEG-II considering a mass value of 16.85 MeV for the X boson. We associate to the Atomki Helium experimental value a relative uncertainty equal to the Beryllium one, as this information is not reported by Atomki. The Atomki and MEG-II results in the Beryllium case are combined as explained in the text.

constraints from SINDRUM searches. Assuming future MEG-II results completely rule out the Beryllium anomaly, we have reconsidered the possibility of a pure CP-even scalar X state, a hypothesis previously dismissed due to its incompatibility with the Beryllium signal. Our results indicate that a pure CP-even scalar X can account for the Atomki anomalies in ⁴He and ¹²C, while remaining consistent with other experimental constraints.

01/16/2025

At PADME, X17 produced through resonant annihilation in diamond target:

Scan around E(e⁺) ~ 283 MeV

Beam-energy spread ~0.25%, $\delta E(e^+) \sim 0.7 \text{ MeV} \rightarrow \text{center of mass steps of 20 keV made}$ Measure two-body final state yield N₂

Master formula for each scan point at c.m. energy s^{1/2} :

 $N_2(s) = N_{POT}(s) \times [B(s) + S(s; M_X, g) \varepsilon_S(s)] \text{ vs } N_2(s) = N_{POT}(s) \times B(s)$

Fundamental inputs:

N_{POT}(s) number of e⁺ on target from beam-catcher calorimeter

B(s) background yield expected per POT

S(s; M_X, g) signal production expected for {mass, coupling} = {M_X, g}

 $\epsilon_{s}(s)$ signal acceptance and selection efficiency

s^{1/2} measured from magnetic field (Hall probe) run by run

N₂(s) kept blind in the analysis

• Total systematic error per point 0.7 -- 0.9% at the moment

- Common errors working as a "scale" for the yield due to N_{POT} and B + S $\epsilon_{\rm S}\,$ are at 5%

Source	Expected uncertainty	Comment
N ₂ (s)	0.47-0.42% per point	statistical
B(s)	~ 0.5% per point	systematic
S(s; Mx, g)	< 3%	systematic
ε _s (s)	~ 0.5% per point	systematic
N _{POT}	0.5% per point	systematic
Data quality	TBD	systematic

X17 search with PADME Run-III

Analysis still blind, expected sensitivity performed using MC

147 nuisance parameters: true values of N_{POT}, B, ϵ_s + signal shape and absolute scale

CLs limit with Tevatron-like likelihood [ATL-PHYS-PUB-2011-11/CMS NOTE-2011/005]

Full toy-of-toys for expected UL [130 pseudo-events, 200 toy events for each pseudo-event for each 20 keV-step mass and coupling]

Improving sensitivity: Nee/Nyy

 The results from PADME RUN III will be dominated by PoT systematics, two clusters acceptance acceptance systematics

Exploit a different normalization channel which could possibly cancel part of the systematic effects

- Natural candidate: $e^+e^- \rightarrow \gamma \gamma$
 - Same 2 body kinematics: similar ECal illumination, systematics due to bad ECal crystals largely cancels
- Back on the envelope estimation: need knowledge of N_{vv} at 0.5 % for each scanning point
 - \circ σ(e⁺e⁻→γγ)_{E=300 MeV} ~ 2 mb, Acc (e⁺e⁻→γγ) ~ 10 % ⇒ O(10k) γγ events per 10¹⁰ PoT
 - Need 4 times higher statistics per scan point
 - Less scan points due to the widening of X17 lineshape because of the electronic motion
 - Higher intensity by a factor of 2
- Need good separation between charged and neutral final states

Increase sensitivity by:

- 1. Normalising to gamma-gamma final states, no use of N_{POT} whatsoever
- 2. Achieving an improved cancellation of systematic errors: data quality, selection efficiencies
- 3. Increasing the statistics per point by x4: run twice the time with half the scan points

Gains:

- Total statistical-systematic uncertainty down by x2, to 0.5%
- The purely statistical error on Nobs passes from 0.4% to 0.2%
- Fundamental improvement: the a-priori errors become statistical (γγ data counts) → can extrapolate vs s^{1/2} bringing down the expected error by a factor of 5 or more

Becomes a no-nuisance with 4 times the statistics

Point 1 above requires a detector upgrade

New tagger based on Micromegas detector

The Micromegas detector

PadMMe detector:

- 65 cm x 65 cm
- TPC operation with 2 RO planes (2 views per plane) front-to-front
- Central drift cathode (stainless steel mesh)
- Single gas gap 10 cm long
- Gas mixture based on fast gas Ar:CF4:Iso=88:10:2; signals read using an APV-based frontend

PADME Micromegas: prototype test at BTF

Proof of principle with old prototype chambers (from ATLAS) ay BTF on 05/24: TMM 5cm drift gap 10x10cm² + ExMeMM 5cm drift gap (40x50 cm²)

- Ar:CF4:lso (88:10:2)
- \bullet Ex-Me chamber tilted by 22°
- Very narrow O(mm) positron beam
- Electronics: APV
- HV settings (nominal): TMM Amp: 460 V, Drift: 3 kV Ex-Me Amp: 490 V, Drift: 3 kV

PADME Micromegas: prototype test at BTF

Proof of principle with old prototype chambers (from ATLAS) ay BTF on 05/24: TMM 5cm drift gap 10x10cm² + ExMeMM 5cm drift gap (40x50 cm²)

- Ar:CF4:Iso (88:10:2)
- Ex-Me chamber tilted by 22°
- Very narrow O(mm) positron beam
- Electronics: APV
- HV settings (nominal): TMM Amp: 460 V, Drift: 3 kV Ex-Me Amp: 490 V, Drift: 3 kV

The Micromegas detector for PADME

PadMMe detector:

- 3 HV sections following expected occupancy
- Resistive DLC (diamond-carbon-like) layer
- 2 detectors with different RO electrodes design under construction
 - Diamond-like interconnected pads with pitch of 1.1 mm
 - 'Standard' 2D strip readout with pitch of 1.1 mm (spare/back-up)

01/16/2025

The CERN-INFN Sputtering machine

The **CID** (CERN-INFN-DLC) sputtering machine, a **joint project between CERN and INFN**, is used for preparing the **base material of the detector**. The potential of the DLC sputtering machine is:

- Flexible substrates up to 1.7×0.6m²
- Rigid substrates up to 0.2×0.6m²

In **2023**, the activity on CID focused on the **tuning** of the **machine on small foils: good** results in terms of **reproducibility and uniformity**.

In 2024, the challenge is the sputtering of large foils:

The Micromegas detector for PADME

PadMMe detector status:

- All material procured in 2024
- DLC produced in-house at CERN (CERN-INFN machine)
- PCB produced at ELTOS
- Micro-mesh 18/45 um pre-stretched on frame
- First detector (strip-type) assembled at LNF in November

The Micromegas detector for PADME

PadMMe detector status:

- All material procured in 2024
- DLC produced in-house at CERN (CERN-INFN machine)
- PCB produced at ELTOS
- Micro-mesh 18/45 um pre-stretched on frame
- Second detector (diamond-type) assembled and under preliminaty tests at LNF

Conclusions and outlook

- The search for X17 is still a relevant matter in DM searches
- PADME Run-III analysis close to unblinding
- Run-VI in preparation with Micromegas tracker
- Two detectors (1 main + 1 back-up) built and under evaluation; some issues during construction being addressed
- Relevant contribution of the (tiny) Napoli group in the Micromegas construction and operation
 - Detector design
 - Production follow-up and QC
 - Development and optimisation of VMM-based DAQ

Thank you