

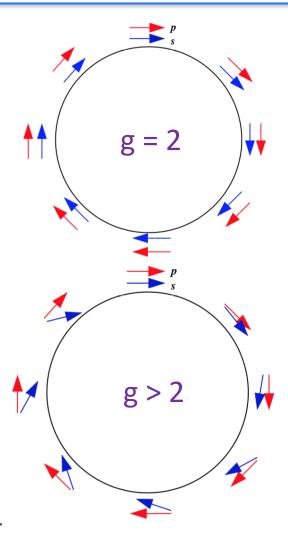




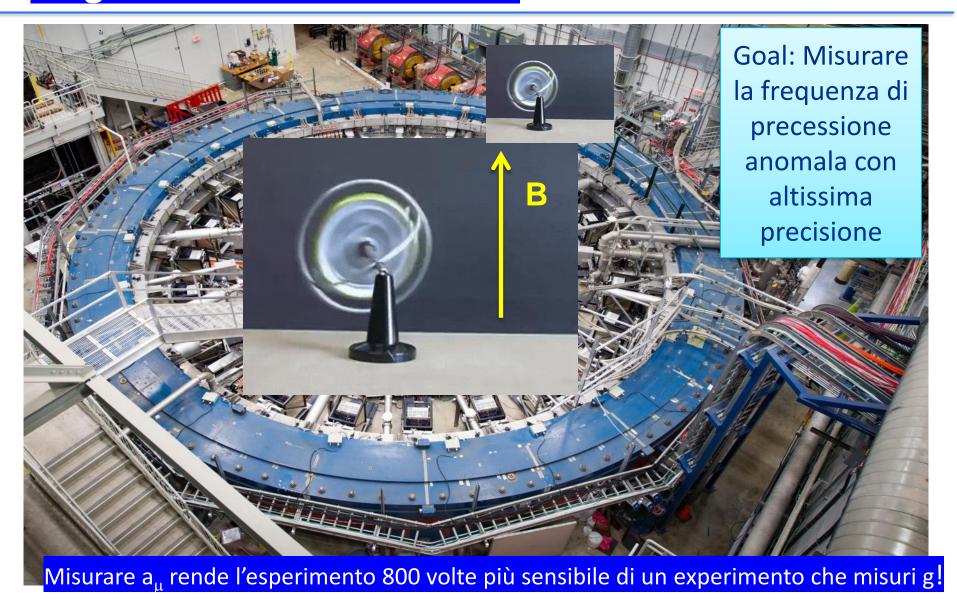
## Stato di g-2 al Fermilab

Michele Iacovacci, 16 Gennaio 2025 – Riunione annuale GR1-Na



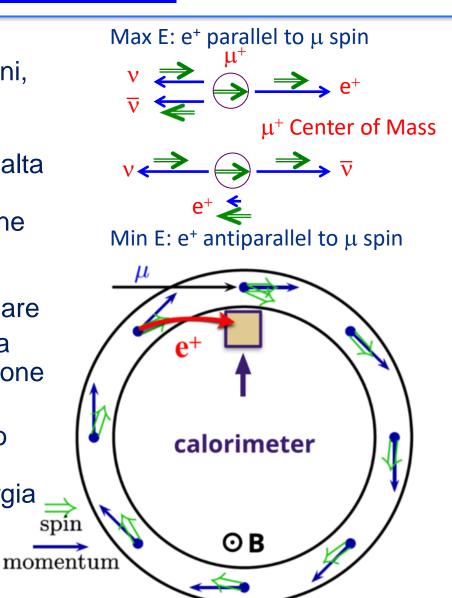



## Perché un anello di accumulazione con B uniforme?


- Il muone con momento p (freccia rossa) e spin s
   (freccia blu) subisce la rivoluzione del ciclotrone e la
   precessione di spin in un campo magnetico B ( si
   assume che s e p siano perpendicolari a B)
- La differenza tra le velocità angolari della precessione di spin  $\omega_S$  e rivoluzione ciclotrone  $\omega_c$  è

$$\vec{\omega}_a = \vec{\omega}_s - \vec{\omega}_c = -\left(\frac{g_\mu - 2}{2}\right) \frac{q\vec{B}}{m} = -a_\mu \frac{q\vec{B}}{m}$$

- Se g = 2 esattamente, i vettori di spin e momento rimarrebbero bloccati insieme  $\rightarrow \omega_a = 0$
- Invece lo spin precede più velocemente e, alle condizioni del Fermilab, fa una rotazione aggiuntiva di 12° per giro. Dopo circa 30 giri si riallinea all'impulso.

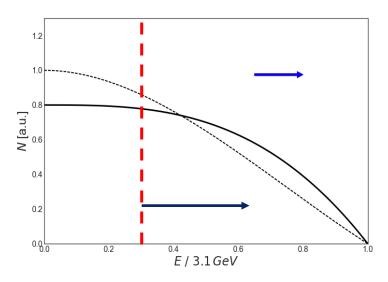


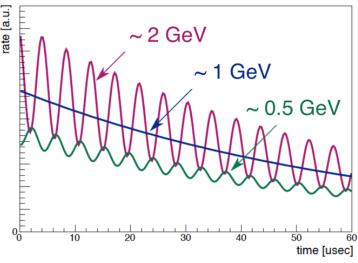

## Magnete di BNL a Fermilab



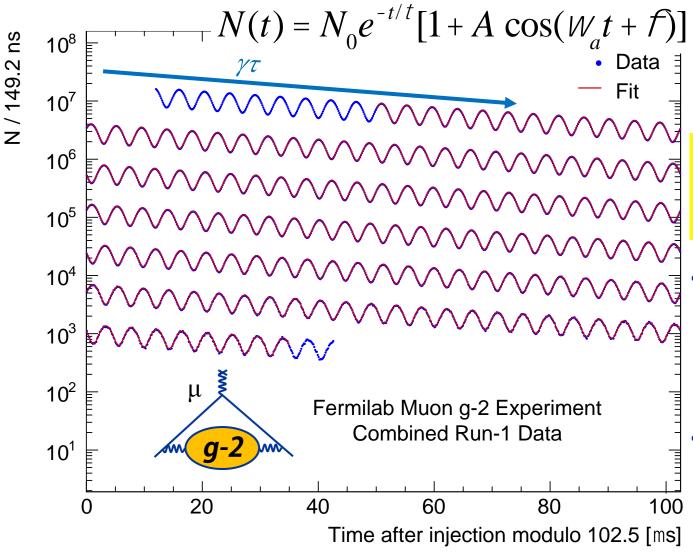
## Come misuriamo lo spin del muone

- Muoni polarizzati quasi al 100%, provenienti dal decadimento di pioni, vengono iniettati nell'anello di accumulazione
- I muoni decadono ed i positroni di alta energia sono emessi preferenzialmente lungo la direzione dello spin del muone a causa dell'elicità dei neutrini e della conservazione del momento angolare
- Misurare gli elettroni di alta energia equivale a misurare lo spin del muone al momento del decadimento
- Calorimetri in posizione fissa lungo l'anello di accumulazione (raggio interno dell'anello) misurano l'energia il tempo di arrivo dei positoni di decadimento





## Cosa vedono I calorimetri

 Il numero di positroni visti dai calorimetri è modulato dalla frequenza di precessione anomala


$$N(t) = N_0 e^{-t/t} \left( 1 + A \cos(W_a t + j) \right)$$

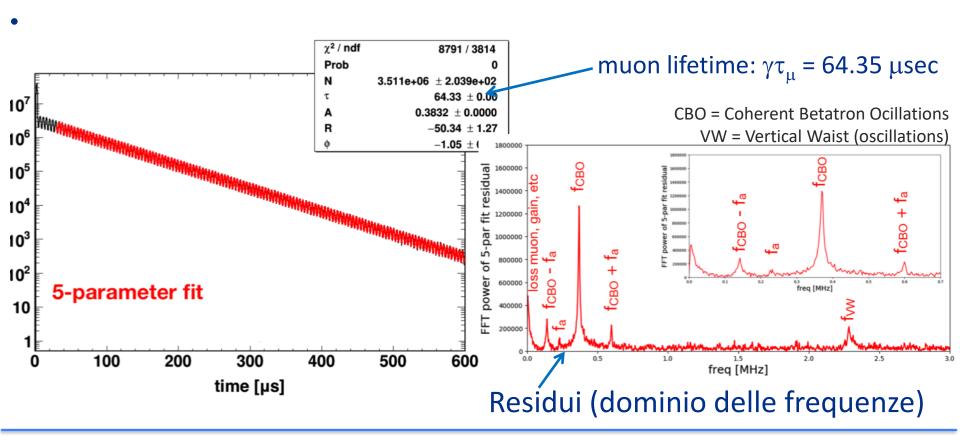
 L'ampiezza della modulazione dipende dall'energia di soglia del positrone: l'asimmetria A (E<sub>thr</sub>) può essere positiva, nulla o negativa



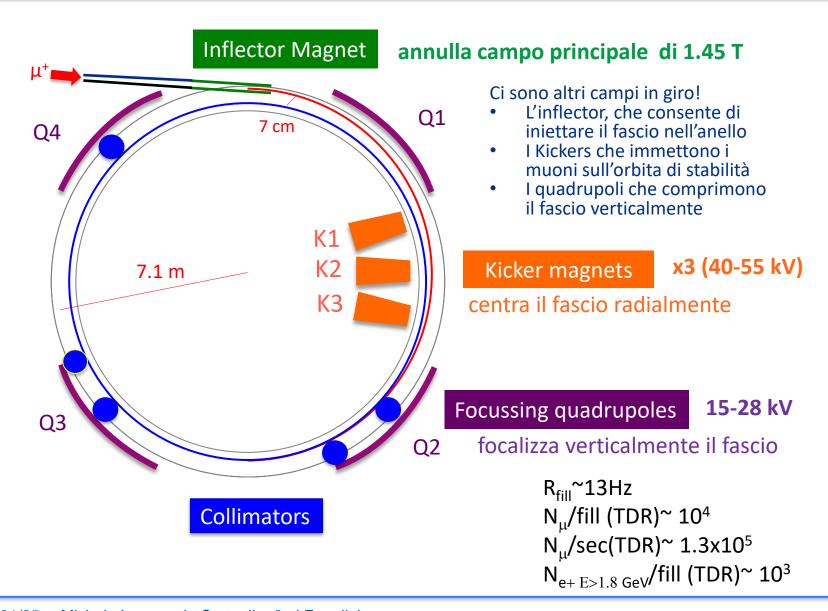


#### Run1 Wiggle Plot - Figura di merito




- Statistica del RUN1  $8.2 \times 10^9 e^+$
- $\gamma \tau_u = 64.4 \, \mu s$
- $\omega_a : \tau_a = 4.37 \, \mu s$
- $\omega_{c}$ :  $\tau_{c}$  = 149 ns
- decadimento
   esponenziale
   modulato dalla
   precessione dello
   spin
- l'asse x "si avvolge"
   ogni 100 μs per un
   totale di ~700 μs →
   ~11 volte il tempo
   di vita del muone

## Misura di ω<sub>a</sub> : fit a 5 parametri


Si parte con:

$$N_{ideal}(t) = N_0 \exp(-t/\tau_{\mu}) [1 + A\cos(\omega_a t + \varphi)]$$

 Questa funzione è chiaramente non adeguata, infatti si osservano risonanze ben definite nei residui

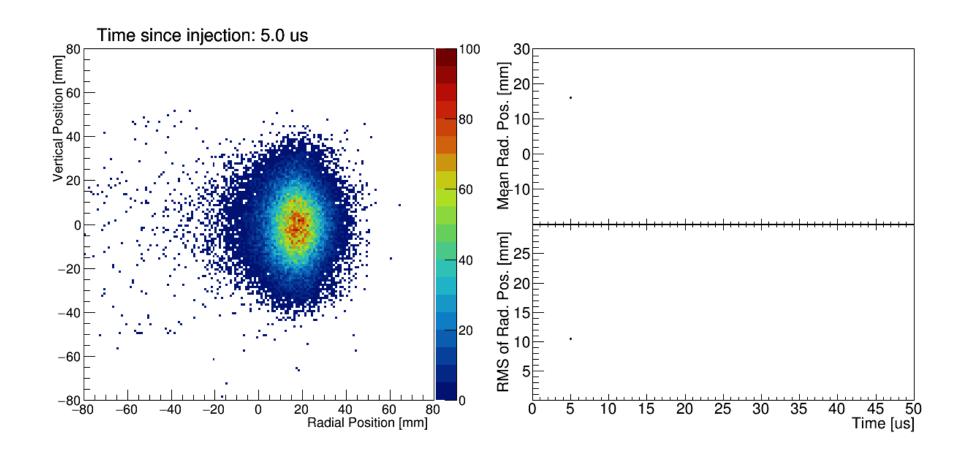


## Cos'altro manca?



## L'equazione per l'anomalia si complica un pò...

- È necessario tener conto del campo elettrico dei quadrupoli
- Il campo elettrico stesso induce una precessione dello spin
  - Si può ridurre scegliendo  $\gamma$  = 29.3, "il momento magico"

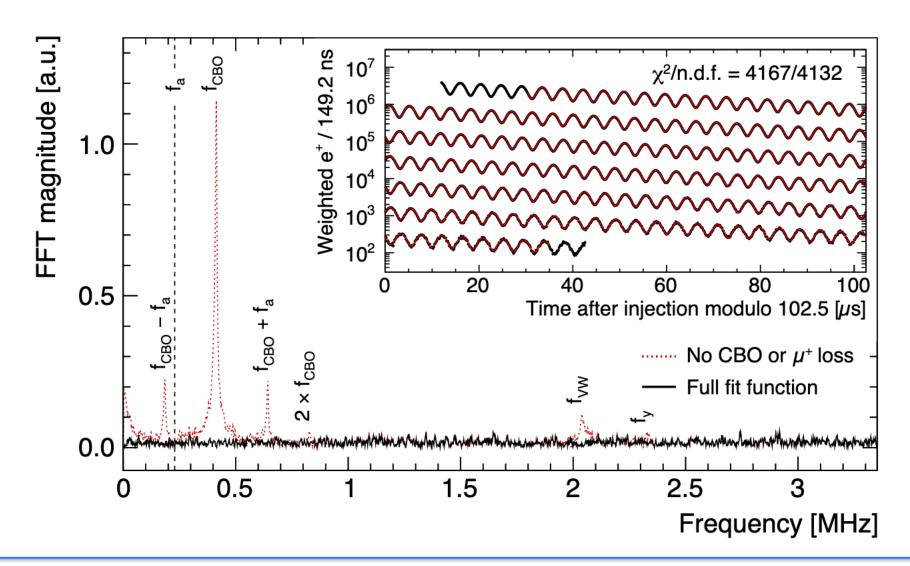

#### Electric field correction

$$\vec{\omega}_a \equiv \vec{\omega}_s - \vec{\omega}_c = -\frac{q}{m_\mu} \left[ a_\mu \vec{B} - a_\mu \left( \frac{\gamma}{\gamma + 1} \right) (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \left( a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$
Pitch correction
$$0, \text{ for } \gamma = 29.3,$$

$$v = 99.94\% \text{ c}$$

- Quindi il fascio di muoni si muove sia verticalmente che orizzontalmente
  - In sincronia all'inizio → oscillazioni coerenti di betatrone (CBO)
  - Il movimento di betatrone porta a una correzione della frequenza poiché i muoni non sempre viaggiano perpendicolarmente al campo magnetico
- Di questi effetti va tenuto conto sia per l'accettanza dei calorimetri che per le perturbazioni ad  $\omega_a$

## Visualizzare la CBO con I tracciatori




## La funzione completa di fit a 22 parametri

 $\omega_{y}$ ,  $\omega_{VW}$  vertical oscillations  $\omega_{CBO}$ ,  $\omega_{2CBO}$  radial oscillations

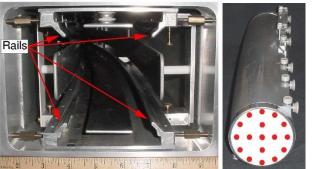
$$\begin{split} N_0 \, e^{-\frac{t}{\gamma \gamma}} \, (1 + A \cdot A_{BO}(t) \cos(\omega_a \, t + \phi \cdot \phi_{BO}(t) \,) \,) \cdot N_{\mathrm{CBO}}(t) \cdot N_{\mathrm{VW}}(t) \cdot N_y(t) \cdot N_{2\mathrm{CBO}}(t) \cdot J(t) \\ A_{\mathrm{BO}}(t) &= 1 + A_A \cos(\omega_{\mathrm{CBO}}(t) + \phi_A) e^{-\frac{t}{\gamma_{\mathrm{CBO}}}} \\ \phi_{\mathrm{BO}}(t) &= 1 + A_{\phi} \cos(\omega_{\mathrm{CBO}}(t) + \phi_{\phi}) e^{-\frac{t}{\gamma_{\mathrm{CBO}}}} \\ N_{\mathrm{CBO}}(t) &= 1 + A_{\mathrm{CBO}} \cos(\omega_{\mathrm{CBO}}(t) + \phi_{\mathrm{CBO}}) e^{-\frac{t}{\gamma_{\mathrm{CBO}}}} \\ N_{2\mathrm{CBO}}(t) &= 1 + A_{2\mathrm{CBO}} \cos(2\omega_{\mathrm{CBO}}(t) + \phi_{2\mathrm{CBO}}) e^{-\frac{t}{\gamma_{\mathrm{CBO}}}} \\ N_{\mathrm{VW}}(t) &= 1 + A_{2\mathrm{VW}} \cos(\omega_{\mathrm{VW}}(t) t + \phi_{\mathrm{VW}}) e^{-\frac{t}{\gamma_{\mathrm{VW}}}} \\ N_y(t) &= 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\gamma_{\mathrm{VW}}}} \\ N_y(t) &= 1 - k_{LM} \int_{t_0}^t \Lambda(t) dt \quad \text{Muoni persi ($\mu$ che} \\ \text{Blue= parametri fissi} \\ \omega_{\mathrm{CBO}}(t) &= \omega_0 t + A e^{-\frac{t}{\gamma_A}} + B e^{-\frac{t}{\gamma_B}} \\ \omega_y(t) &= F \omega_{\mathrm{CBO}(t)} \sqrt{2\omega_c/F} \omega_{\mathrm{CBO}}(t) - 1 \\ \omega_{\mathrm{VW}}(t) &= \omega_c - 2\omega_y(t) \end{split}$$

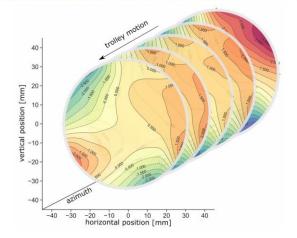
## Fit finale



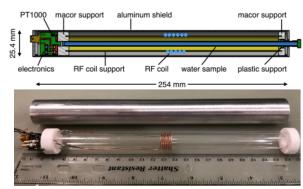

## Necessario B a < 100 ppb per determinare a

$$\omega_a = \omega_s - \omega_c = a_\mu \frac{eB}{mc}$$


Si utilizza la NMR per trovare il campo B in termini di frequenza di precessione protonica  $\omega_p$  (comagnetometer)


378 sonde fisse controllano 24/7






Un carrello con 17 sonde NMR mappa il campo ogni 3 giorni





Le sonde del carrello sono calibrate con sonde esterne assolute







Le sonde assolute tutte crosscalibrate al magnete di test di ANL

## Quello che noi misuriamo

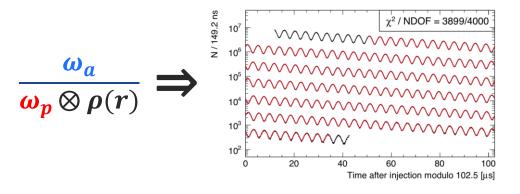
$$a_{\mu} = \underbrace{\frac{\omega_a}{\tilde{\omega}_p'(T_r)} \frac{\mu_p'(T_r)}{\mu_e(H)} \frac{\mu_e(H)}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}}_{\text{noi}}$$

 $rac{m_{\mu}}{m_e}rac{g_e}{2}$  calibrazione assoluta in  $_{^{1}}$ O

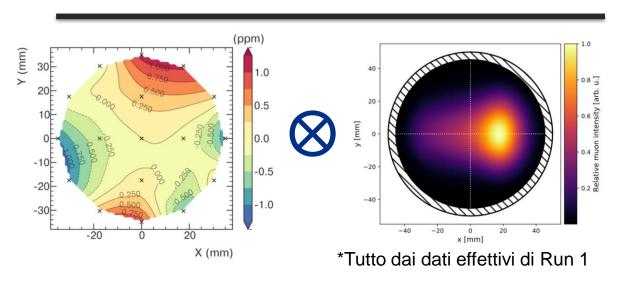
Proton Larmor precession frequency in a spherical water

Ci affidiamo ad

altri per e/m e


 $\omega_a$  : la precessione anomala dello spin

 $ilde{\omega}_p'(T_r)$ : frequenza di precessione di protoni in acqua a temperatura  $T_r$  ottenuta mappando il campo e pesandolo con la distribuzione dei muoni


Obiettivo: 140 ppb = 100 ppb (syst)

```
sample. Temperature dependence known to < 1ppb/°C.
           Metrologia 13, 179 (1977), Metrologia 51, 54 (2014),
           Metrologia 20, 81 (1984)
\mu_e(H)
           Measured to 10.5 ppb accuracy at T = 34.7°C
\mu_p'(T)
           Metrologia 13, 179 (1977)
           Bound-state QED (exact)
           Rev. Mod. Phys. 88 035009 (2016)
 m_{\mu}
        Known to 22 ppb from muonium hyperfine splitting
  m_e
        Phys. Rev. Lett. 82, 711 (1999)
        Measured to 0.28 ppt
         Phys. Rev. A 83, 052122 (2011)
                  All < 25 ppb
```

## ll 'grande' quadro dell'analisi









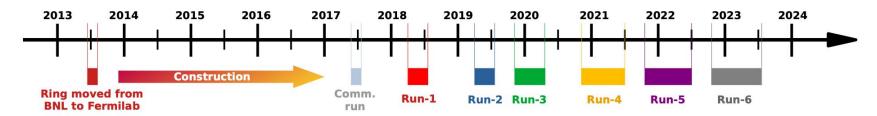
 In vacuo 2 stazioni traccianti di straw tubes misurano la distribuzione spaziale e altre proprietà del fascio di muoni (CBO, distribuzione di p)

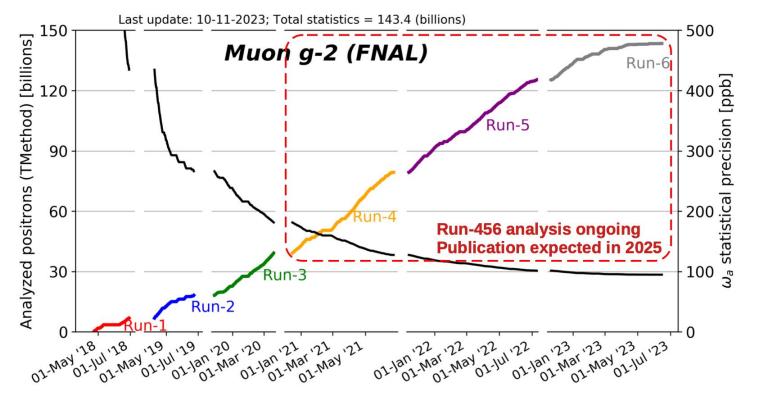
## ... e senza dimenticare le correzioni:

$$\frac{\omega_a}{\widetilde{\omega}_p} = \underbrace{\begin{pmatrix} f_{\text{clock}} \, \omega_a \, (\mathbf{1} + \mathbf{C}_{\text{e}} + \mathbf{C}_{\text{p}} + \mathbf{C}_{\text{ml}} + \mathbf{C}_{\text{pa}}) \\ (\mathbf{1} + \mathbf{B}_{\text{QT}} + \mathbf{B}_{\text{Eddy}}) \, f_{\text{field}} \, \omega_p \otimes \rho(\mathbf{r}) \end{pmatrix}}_{\text{Field transients}}$$
E-field & pitch Muon loss & phase acceptance corrections

 Ognuno di questi termini è stato studiato in modo estremamente dettagliato.

## L'analisi viene eseguita 'a la cieca'


$$\frac{\omega_{a}}{\widetilde{\omega}_{p}} = \frac{\int_{\text{clock}} \omega_{a} (1 + C_{e} + C_{p} + C_{dd} + C_{ml} + C_{pa})}{(1 + B_{QT} + B_{Eddy}) \int_{\text{field}} \omega_{p} \otimes \rho(\mathbf{r})}$$


- f<sub>clock</sub> è la frequenza a cui batte l'orologio dell'esperimento
  - Orologio di precisione, stabile a livello di ppt
- Per l'intera durata dell'analisi la frequenza dell'orologio è stata tenuta nascosta a tutta la collaboratorazione
  - Joe Lykken e Greg Bock (Direzione FNAL) si fermano ogni settimana per controllare l'orologio
  - 2 buste contenenti il valore di f<sub>clock</sub> sono state conservate in segreto fino al completamento dell'analisi fisica, pronte per essere aperte (25 febbraio) a conclusione dell'analisi 'alla cieca'.





## Muon g-2 Operation





05/09/24

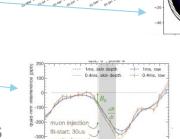
P. Girotti | Muon g-2 Experiment

INFN
Istituto Nacionale di Fisica Nucleare

60

## Muon g-2 Operation

## 2017 – 2023: The Running Years (goal is 21x BNL stats)


- 2017: 38 days of commissioning;
  - Everything "works" but very low muon storage rate;





1/70<sup>th</sup> of design rate!

- 2018: Run1 some rough spots
  - 2/32 bad quad resistors
  - Unstable hall temp wild; field and detector gains impacted
  - Kicker sparks → storage well off center
- 2019: Run2 improvements; temp smoothed a bit, still need better kick
  - Discovered "Quad-Transient" effect ! yikes
- 2020: Run3 HVAC upgrade! Kicker better; COVID!!!!
- 2021: Run4 Kicker finalized; long stable run, 5.5 BNLs
- **2022**: Run5 RF -> reduced CBO;
- 2023: Run6 Negative Muons!; well actually  $\mu^+$  & lots of (important) systematics runs







D. Hertzog - Fermilab- 12 December 2024

"beam systematic

5 ; Total = 21.90 (xBNL)



## Run 1 - 4 articoli su PR il 7Aprile 2021 (>1700 citazioni)

Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab

**PRAB** 

T. Albahri, 30 A. Anastasio, 10 K. Badgley, 7 S. Baeßler, 36, a I. Bailey, 17, b V. A. Baranov, 15 E. Barlas-Yucel, 28

T. Barrett, <sup>6</sup> F. Bedeschi, <sup>10</sup> T. Bowcock, 30 G. Cantate A. Chapelain. S. Charit J. D. Crnkovic, 34 S. Daba A. Driutti, 26, 29 V. N. Dugine A. Fiedler,<sup>20</sup> A. T. Fie C. Gabbanini, 10, h M. D. K. L. Giovanetti. 13 I S. Haciomeroglu,<sup>5</sup> T. D. W. Hertzog, 37 G. He M. Iacovacci, 9, k M. Incas L. Kelton,<sup>29</sup> A. Keshava B. Kiburg, O. Kim. N. A. Kuchinskiy, 15 K. R. L. Li,<sup>22</sup>, <sup>e</sup> I. Logashenke B. MacCoy, 37 R. Made W. M. Morse, J. Mott, 2, G. M. Piacentino,<sup>25</sup>, B. Quinn, 34 N. Raha, 10 L. Santi, 26, d D. Sathya M. Sorbara, 11, q D. Stöcki G. Sweetmore, 31 D. A. S K. Thomson, 30 V. G. Venanzoni, <sup>10</sup> T. Wal

Magnetic Field Measurement and Analysis for the Muon q-2 Experiment at Fermilab PRA T. Albahri, <sup>39</sup> A. Anastasi, <sup>11, a</sup> K. Badgley, <sup>7</sup> S. Baeßler, <sup>47, b</sup> I. Bailey, <sup>19, c</sup> V. A. Baranov, <sup>17</sup> E. Barlas-Yucel, <sup>37</sup> T. Barrett. F. Bedeschi, M. Berz. M. Bhattacharva, M. P. Binney, R. P. Bloom, J. J. Bono, E. Bottalico, 11, 32

T. Bowcock, 39 G. Cantatore, 13 A. Chapelain. S. Charity. L. Cotrozzi, 11, 32 J. D. Crnkovic, R. Di Stefano, 10, 30 A. Driut C. Ferrari, 11, 14 M. Fert C. Gabbanini, 11, 14 M. D. Gala K. L. Giovanetti, <sup>15</sup> P. G S. Haciomeroglu,<sup>5</sup> T. Ha D. W. Hertzog, 48 G. Heske M. Iacovacci, 10, 31 M. Incagli,

L. Kelton,<sup>38</sup> A. Keshavarzi B. Kiburg, M. Kiburg, 7, 21 O. H K. R. Labe, <sup>6</sup> J. LaBour I. Logashenko, 4, g A. Lorente R. Madrak, 7 K. Makino, 20 J. Mott,<sup>2,7</sup> A. Nath,<sup>10,31</sup> R. N. Pilato, 11, 32 K. T. Pitts, N. Raha, 11 S. Ramachandr

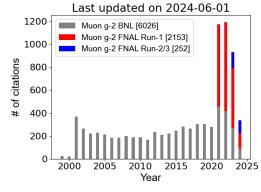
C. Schlesier, 37 A. Schrech

K. Thomson, <sup>39</sup> V. Tis

G. Venanzoni, <sup>11</sup> T. Walton

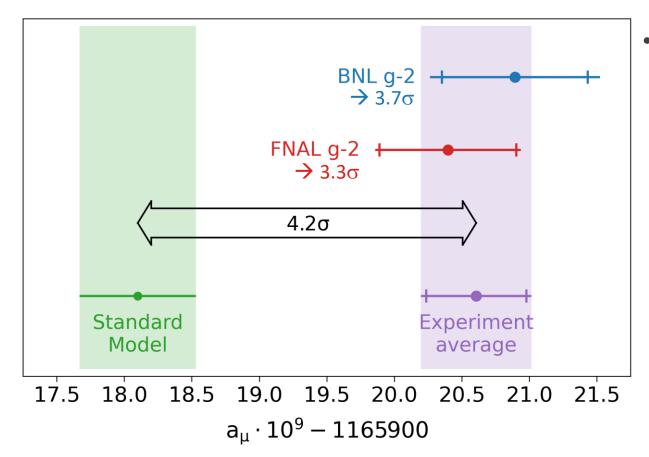
M. Sorbara, 12, 33 D. Stöckinge

G. Sweetmore, 40 D. A. Sweig


Measurement of the anomalous precession frequency of the muon in the Fermilab Muon q-2 experiment

T. Albahri, <sup>39</sup> A. Anastasi, <sup>11, a</sup> A. Anisenkov, <sup>4, b</sup> K. Badgley, <sup>7</sup> S. Baeßler, <sup>47, c</sup> I. Bailey, <sup>19, d</sup> V. A. Baranov, <sup>17</sup> E. Barlas-Yucel, <sup>37</sup> T. Barrett, <sup>6</sup> P. Bloom, <sup>21</sup> J. Bono, <sup>7</sup> E. Botta D. Cauz.<sup>35,8</sup> R. Chakrabortv.<sup>38</sup> S. T. E. Chupp, 42 S. Corrodi, L. Cot P. Di Meo, <sup>10</sup> G. Di Sciascio, <sup>12</sup> R. M. Farooq, 42 R. Fatemi, 38 C. Ferra N. S. Froemming, 48, 22 J. Frv, 47 C L. K. Gibbons, 6 A. Gioiosa, 29, 11 S. Grant, 36 F. Grav, 24 S. Hacid A. T. Herrod, <sup>39</sup>, d D. W. Hertzog, R. Hong, 1, 38 M. Iacovacci, 10, 31 M D. Kawall, 41 L. Kelton, 38 A N. V. Khomutov, <sup>17</sup> B. Kiburg, <sup>7</sup> M. A. Kuchibhotla, 37 N. A. Kuchinskiy B. Li. 26, 1, e D. Li. 26, g L. Li. 26, e I. A. L. Lyon, B. MacCoy, 8 R. S. Miozzi, 12 W. M. Morse, 3 J. M G. M. Piacentino, <sup>29,12</sup> R. N. Pilat J. Price, <sup>39</sup> B. Quinn, <sup>43</sup> N. Raha, <sup>11</sup> L. Santi, 35, 8 C. Schlesier, 37 A. Schr M. Sorbara, 12, 33 D. Stöckinger, 28 G. Sweetmore, 40 D. A. Sweigart, K. Thomson, 39 V. Tishche G. Venanzoni, <sup>11</sup> T. Walton, <sup>7</sup> A

#### Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm


B. Abi, 44 T. Albahri, 39 S. Al-Kilani, 36 D. Allspach, 7 L. P. Alonzi, 48 A. Anastasi, 11, a A. Anisenkov, 4, b F. Azfar, 44 K. Badglev, 7 S. Baeßler, 47, c I. Bailev, 19, d V. A. Baranov, 17 E. Barlas-Yucel, 37 T. Barrett, 6 E. Barzi, 7 A. Basti, 11, 32 F. Bedeschi, <sup>11</sup> A. Behnke, <sup>22</sup> M. Berz, <sup>20</sup> M. Bhattacharva, <sup>43</sup> H. P. Binney, <sup>48</sup> R. Bjorkquist, <sup>6</sup> P. Bloom, <sup>21</sup> J. Bono, <sup>7</sup> E. Bottalico, <sup>11</sup>, <sup>32</sup> T. Bowcock, <sup>39</sup> D. Boyden, <sup>22</sup> G. Cantatore, <sup>13</sup>, <sup>34</sup> R. M. Carey, <sup>2</sup> J. Carroll, <sup>39</sup> B. C. K. Casey, <sup>7</sup> D. Cauz. 35, 8 S. Ceravolo, 9 R. Chakraborty, 38 S. P. Chang. 18, 5 A. Chapelain, 6 S. Chappa, 7 S. Charity, 7 R. Chislett, <sup>36</sup> J. Choi, <sup>5</sup> Z. Chu, <sup>26</sup>, <sup>e</sup> T. E. Chupp, <sup>42</sup> M. E. Convery, <sup>7</sup> A. Conway, <sup>41</sup> G. Corradi, <sup>9</sup> S. Corrodi, <sup>1</sup> L. Cotrozzi, 11, 32 J. D. Crnkovic, 3, 37, 43 S. Dabagov, 9, f P. M. De Lurgio, P. T. Debevec, 37 S. Di Falco, 11 P. Di Meo, 10 G. Di Sciascio, 12 R. Di Stefano, 10, 30 B. Drendel, 7 A. Driutti, 35, 13, 38 V. N. Duginov, 17 M. Eads, 22 N. Eggert, A. Epps, L. Esquivel, M. Farooq, R. Fatemi, R. C. Ferrari, M. Fertl, M. Fertl, A. Fiedler, L. A. T. Fienberg, 48 A. Fioretti, 11, 14 D. Flay, 41 S. B. Foster, 2 H. Friedsam, 7 E. Frlež, 47 N. S. Froemming, 48, 22 J. Fry. 47 C. Fu. 26, e C. Gabbanini, 11, 14 M. D. Galati, 11, 32 S. Ganguly, 37, 7 A. Garcia, 48 D. E. Gastler, 2 J. George, 41 L. K. Gibbons, A. Gioiosa, 29, 11 K. L. Giovanetti, F. Girotti, 11, 32 W. Gohn, 38 T. Gorringe, 38 J. Grange, 1, 42 S. Grant, <sup>36</sup> F. Gray, <sup>24</sup> S. Haciomeroglu, <sup>5</sup> D. Hahn, <sup>7</sup> T. Halewood-Leagas, <sup>39</sup> D. Hampai, <sup>9</sup> F. Han, <sup>38</sup> E. Hazen, J. Hempstead, S. Henry, A. T. Herrod, D. W. Hertzog, G. Hesketh, A. Hibbert, B. Z. Hodge, <sup>48</sup> J. L. Holzbauer, <sup>43</sup> K. W. Hong, <sup>47</sup> R. Hong, <sup>1,38</sup> M. Iacovacci, <sup>10,31</sup> M. Incagli, <sup>11</sup> C. Johnstone, <sup>7</sup> J. A. Johnstone, P. Kammel, <sup>48</sup> M. Kargiantoulakis, M. Karuza, <sup>13</sup>, <sup>45</sup> J. Kaspar, <sup>48</sup> D. Kawall, <sup>41</sup> L. Kelton, <sup>38</sup> A. Keshavarzi, 40 D. Kessler, 41 K. S. Khaw, 27, 26, 48, e. Z. Khechadoorian, 6 N. V. Khomutov, 17 B. Kiburg, 7 M. Kiburg, 7,21 O. Kim, 18,5 S. C. Kim, 6 Y. I. Kim, 5 B. King, 39, a N. Kinnaird, 2 M. Korostelev, 19, d I. Kourbanis, 7 E. Kraegeloh, <sup>42</sup> V. A. Krylov, <sup>17</sup> A. Kuchibhotla, <sup>37</sup> N. A. Kuchinskiv, <sup>17</sup> K. R. Labe, <sup>6</sup> J. LaBounty, <sup>48</sup> M. Lancaster, <sup>40</sup> M. J. Lee, S. Lee, S. Lee, B. Li, 26, 1, e. D. Li, 26, g. L. Li, 26, e. I. Logashenko, 4, b. A. Lorente Campos, 38 A. Luca, G. Lukicov, G. Luca, Luca, A. Luca, A. Luca, B. MacCov, R. MacCov, R. Madrak, K. Makino, D. Luca, G. L F. Marignetti, 10, 30 S. Mastroianni, 10 S. Maxfield, 39 M. McEvoy, 22 W. Merritt, 7 A. A. Mikhailichenko, 6, a J. P. Miller, S. Miozzi, J. P. Morgan, W. M. Morse, J. Mott, 7 E. Motuk, A. Nath, 10, 31 D. Newton, 39, h H. Nguyen, M. Oberling, R. Osofsky, S. J.-F. Ostiguy, S. Park, G. Pauletta, S. G. M. Piacentino, Physical Rev. Phys. B 12, 120 (1997). R. N. Pilato, 11, 32 K. T. Pitts, 37 B. Plaster, 38 D. Počanić, 47 N. Pohlman, 22 C. C. Polly, 7 M. Popovic, 7 J. Price, 39 B. Quinn, <sup>43</sup> N. Raha, <sup>11</sup> S. Ramachandran, <sup>1</sup> E. Ramberg, <sup>7</sup> N. T. Rider, <sup>6</sup> J. L. Ritchie, <sup>46</sup> B. L. Roberts, <sup>2</sup> D. L. Rubin, L. Santi, 35,8 D. Sathyan, H. Schellman, 23, C. Schlesier, 37 A. Schreckenberger, 46, 2, 37 Y. K. Semertzidis, <sup>5, 18</sup> Y. M. Shatunov, <sup>4</sup> D. Shemyakin, <sup>4, b</sup> M. Shenk, <sup>22</sup> D. Sim, <sup>39</sup> M. W. Smith, <sup>48, 11</sup> A. Smith, <sup>39</sup> A. K. Soha, M. Sorbara, 12, 33 D. Stöckinger, 28 J. Stapleton, D. Still, C. Stoughton, D. Stratakis, 7 C. Strohman, <sup>6</sup> T. Stuttard, <sup>36</sup> H. E. Swanson, <sup>48</sup> G. Sweetmore, <sup>40</sup> D. A. Sweigart, <sup>6</sup> M. J. Syphers, <sup>22,7</sup> D. A. Tarazona, O T. Teubner, A E. Tewsley-Booth, K Thomson, V. Tishchenko, N. H. Tran, W. Turner, E. Valetov, <sup>20, 19, 27, d</sup> D. Vasilkova, <sup>36</sup> G. Venanzoni, <sup>11</sup> V. P. Volnykh, <sup>17</sup> T. Walton, <sup>7</sup> M. Warren, <sup>36</sup> A. Weisskopf, <sup>20</sup> L. Welty-Rieger, M. Whitley, <sup>39</sup> P. Winter, A. Wolski, <sup>39, d</sup> M. Wormald, <sup>39</sup> W. Wu, <sup>43</sup> and C. Yoshikawa <sup>7</sup>

(The Muon q-2 Collaboration)



## Risultato RUN1

$$a_{II}(SM) = 0.00116591810(43) \rightarrow 368 \text{ ppb}$$



Individual tension with SM

– BNL: 3.7σ

– FNAL: 3.3σ

 $a_{ii}(Exp) - a_{ii}(SM) = 0.000000000251(59) \rightarrow 4.2\sigma$ 

21

## Sistematiche del Run 1

| Quantity                                                             | Correction Terms | Uncertainty   |
|----------------------------------------------------------------------|------------------|---------------|
|                                                                      | (ppb)            | (ppb)         |
| $\omega_a^m$ (statistical)                                           | _                | 434           |
| $\frac{\omega_a^m \text{ (systematic)}}{C_e}$                        | _                | $\boxed{56}$  |
| $\overline{C_e}$                                                     | 489              | 53            |
| $C_p$                                                                | 180              | 13            |
| $C_{ml}$                                                             | -11              | 5             |
| $C_{pa}$                                                             | -158             | 75            |
| $f_{\text{calib}}\langle\omega_p(x,y,\phi)\times M(x,y,\phi)\rangle$ | _                | 56            |
| $B_k$                                                                | -27              | 37            |
| $B_q$                                                                | -17              | 92            |
| $\mu_p'(34.7^\circ)/\mu_e$                                           | _                | 10            |
| $m_{\mu}/m_e$                                                        | _                | 22            |
| $g_e/2$                                                              | _                | 0             |
| Total systematic                                                     | _                | 157           |
| Total fundamental factors                                            | _                | 25            |
| Totals                                                               | 544              | $\boxed{462}$ |

- 462 ppb errore complessivo
  - 434 ppb statistico
  - 157 ppb sistematico
  - 25 ppb CODATA inputs
- Risultati del Run 1 sono ampiamente dominati dall'errore statistico
- 157 ppb errore sistematico
  - Circa la metà di BNL
  - Non ancora a 100 ppb

## **RUN 2+3 (10 Agosto 2023)**

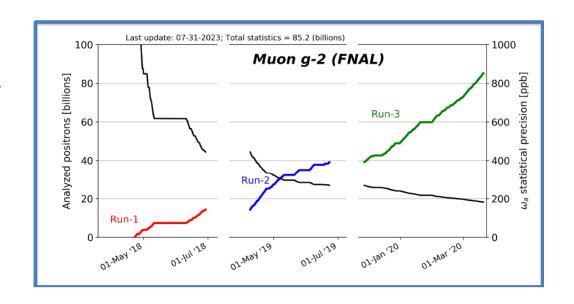
#### PHYSICAL REVIEW LETTERS 131, 161802 (2023)

**Editors' Suggestion** 

#### Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm

```
D. P. Aguillard, <sup>33</sup> T. Albahri, <sup>30</sup> D. Allspach, <sup>7</sup> A. Anisenkov, <sup>4,a</sup> K. Badgley, <sup>7</sup> S. Baeßler, <sup>35,b</sup> I. Bailey, <sup>17,c</sup> L. Bailey, <sup>27</sup> V. A. Baranov, <sup>15,d</sup> E. Barlas-Yucel, <sup>28</sup> T. Barrett, <sup>6</sup> E. Barzi, <sup>7</sup> F. Bedeschi, <sup>10</sup> M. Berz, <sup>18</sup> M. Bhattachary, <sup>7</sup> H. P. Binney, <sup>36</sup> P. Bloom, <sup>19</sup> J. Bono, <sup>7</sup> E. Bottalico, <sup>30</sup> T. Bowcock, <sup>30</sup> S. Braun, <sup>36</sup> M. Bressler, <sup>32</sup> G. Cantatore, <sup>12,c</sup> R. M. Carey, <sup>2</sup> B. C. K. Casey, <sup>7</sup> D. Cauz, <sup>26,f</sup> R. Chakraborty, <sup>29</sup> A. Chapelain, <sup>6</sup> S. Chappa, <sup>7</sup> S. Charity, <sup>30</sup> C. Chen, <sup>23,22</sup> M. Cheng, <sup>28</sup> R. Chislett, <sup>27</sup> Z. Chu, <sup>22,g</sup> T. E. Chupp, <sup>33</sup> C. Claessens, <sup>36</sup> M. E. Convery, <sup>7</sup> S. Corrodi, <sup>1</sup> L. Cotrozzi, <sup>10,h</sup> J. D. Crnkovic, <sup>7</sup> S. Dabagov, <sup>8,i</sup> P. T. Debevec, <sup>28</sup> S. Di Falco, <sup>10</sup> G. Di Sciascio, <sup>11</sup> B. Drendel, <sup>7</sup> A. Driutti, <sup>10,h</sup> V. N. Duginov, <sup>15,d</sup> M. Eads, <sup>20</sup> A. Edmonds, <sup>20</sup> J. Esquivel, <sup>7</sup>
```

#### PHYSICAL REVIEW D 110, 032009 (2024)

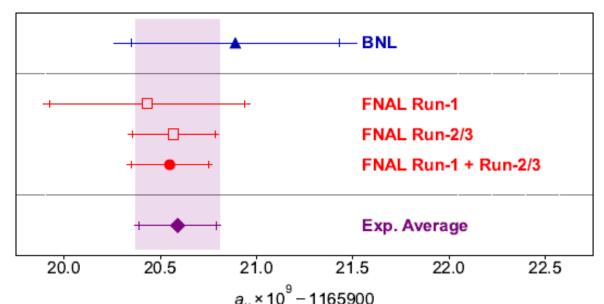

**Editors' Suggestion** 

## Detailed report on the measurement of the positive muon anomalous magnetic moment to 0.20 ppm

```
D. P. Aguillard, <sup>33</sup> T. Albahri, <sup>30</sup> D. Allspach, <sup>7</sup> A. Anisenkov, <sup>4a</sup> K. Badgley, <sup>7</sup> S. Baeßler, <sup>35,b</sup> I. Bailey, <sup>17,c</sup> L. Bailey, <sup>27</sup> V. A. Baranov, <sup>15,*</sup> E. Barlas-Yucel, <sup>28</sup> T. Barrett, <sup>6</sup> E. Barzi, <sup>7</sup> F. Bedeschi, <sup>10</sup> M. Berz, <sup>18</sup> M. Bhattachary, <sup>7</sup> H. P. Binney, <sup>36</sup> P. Bloom, <sup>19</sup> J. Bono, <sup>7</sup> E. Bottalico, <sup>30,d</sup> T. Bowcock, <sup>30</sup> S. Braun, <sup>36</sup> M. Bressler, <sup>32</sup> G. Cantatore, <sup>12,c</sup> R. M. Carey, <sup>2</sup> B. C. K. Casey, <sup>7</sup> D. Cauz, <sup>26,f</sup> R. Chakraborty, <sup>29</sup> A. Chapelain, <sup>6</sup> S. Chappa, <sup>7</sup> S. Charity, <sup>30</sup> C. Chen, <sup>23,22</sup> M. Cheng, <sup>28</sup> R. Chislett, <sup>27</sup> Z. Chu, <sup>22,g</sup> T. E. Chupp, <sup>33</sup> C. Claessens, <sup>36</sup> C. Cl
```

## Risultato Run 2+3: Statistica

Number of e+ with E > 1 GeV  $t > 30 \mu s$ 




| Dataset         | Statistical Error [ppb] |  |
|-----------------|-------------------------|--|
| Run-1           | 434                     |  |
| Run-2/3         | 201                     |  |
| Run-1 + Run-2/3 | 185                     |  |

Factor 4.7 more data in Run-2/3 than Run-1

## Risultato Run 2+3

## $a\mu(FNAL; Run-2/3) = 0.00 116 592 057(25) [215 ppb]$



- Ottimo accordo con Run-1 e BNL!
- Incertezza più che dimezzata a 215 ppb
- Entrambi i valori FNAL dominati dall'errore statistico
- Si assume sistematica non correlata e si combina...

| Run      | $\omega_a/2\pi[\mathrm{Hz}]$ | $\tilde{\omega}_p'/2\pi[\mathrm{Hz}]$ | $\mathcal{R}'_{\mu} \times 1000$ |
|----------|------------------------------|---------------------------------------|----------------------------------|
| Run-1    |                              |                                       | 3.7073004(17)                    |
| Run-2    | 229077.408(79)               | 61790875.0(3.3)                       | 3.7073016(13)                    |
| Run-3a   | 229077.591(68)               | 61790957.5(3.3)                       | 3.7072996(11)                    |
| Run-3b   | 229077.81(11)                | 61790962.3(3.3)                       | 3.7073029(18)                    |
| Run-2/3  |                              |                                       | 3.70730088(79)                   |
| Run-1/2/ | 3                            |                                       | 3.70730082(75)                   |
|          |                              |                                       |                                  |

TABLE II. Measurements of  $\omega_a$ ,  $\tilde{\omega}_p'$ , and their ratios  $\mathcal{R}_{\mu}'$  multiplied by 1000. The Run-1 value has been updated from [1] as described in the text.

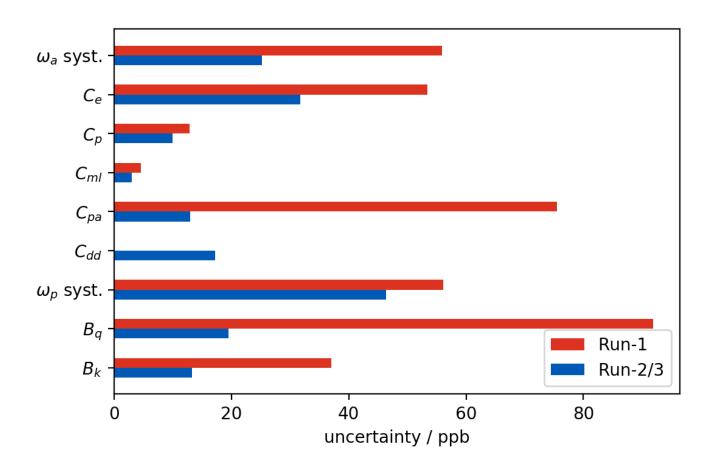
$$a_{\mu} = \frac{\omega_a}{\tilde{\omega}_p'(T_r)} \frac{\mu_p'(T_r)}{\mu_e(H)} \frac{\mu_e(H)}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$

$$\mathcal{R}_{\mu}^{'} = \omega_a/\tilde{\omega}_p'(T_r)$$
, where  $T_r = 34.7$  °C

## Run 2/3 - Correzioni e sistematica

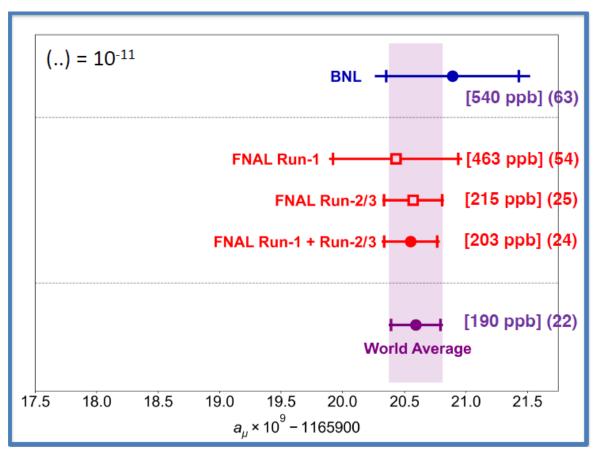
| Quantity                                                                        | Correction (ppb) | Uncertainty (ppb |
|---------------------------------------------------------------------------------|------------------|------------------|
| $\omega_a^m$ (statistical)                                                      |                  | 201              |
| $\omega_a^m$ (systematic)                                                       | • • •            | 25               |
| $C_e$                                                                           | 451              | 32               |
| $C_p$ $C_{pa}$ $C_{dd}$                                                         | 170              | 10               |
| $C_{pa}$                                                                        | -27              | 13               |
| $C_{dd}$                                                                        | -15              | 17               |
| $C_{ml}$                                                                        | 0                | 3                |
| $f_{\mathrm{calib}} \cdot \langle \omega_p'(\vec{r}) \times M(\vec{r}) \rangle$ |                  | 46               |
| $B_k$                                                                           | -21              | 13               |
| $B_q$                                                                           | <b>-2</b> 1      | 20               |
| $\mu_p'(34.7^{\circ})/\mu_e$                                                    |                  | 11               |
| $m_{\mu}/m_e$                                                                   |                  | 22               |
| $g_e/2$                                                                         | • • •            | 0                |
| Total systematic for $\mathcal{R}'_{\mu}$                                       |                  | 70               |
| Total external parameters                                                       | • • •            | 25               |
| Total for $a_{\mu}$                                                             | 622              | 215              |

## Incertezza totale 215 ppb


| [ppb] | Run-1 | Run-2/3 | Ratio |
|-------|-------|---------|-------|
| Stat. | 434   | 201     | 2.2   |
| Syst. | 157   | 70      | 2.2   |

All'incirca uguale miglioramento su Stat. e Syst.: Stat. ancora dominante

Sistematica a 70 ppb già inferior ai 100 ppb di progetto!


## Run 2+3 e Run1: Sistematiche a confronto

 $a\mu(FNAL; Run-2/3) = 0.00 116 592 057(25) [215 ppb]$ 



## Risultato Run 2+3 e Combinazioni

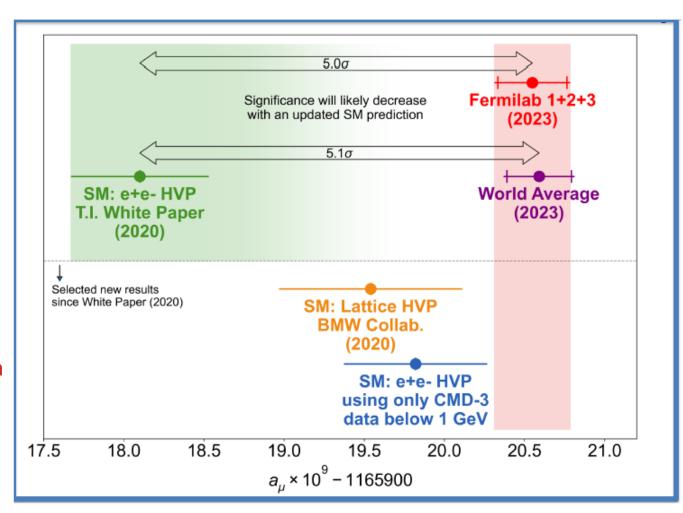
```
a_{\mu}(FNAL; Run-2/3) = 0.00116 592 057(25) [215 ppb] 
 <math>a_{\mu}(FNAL; Run 1+2+3) = 0.00116 592 055(24) [203 ppb] 
 <math>a_{\mu}(Exp) = 0.00116592059(22) [190 ppb]
```



- CombinazioneFNAL :203 ppb incertezza
- Entrambi FNAL e BNLdominati dall'errore statistico
- World Average
   dominato
   dal valore di FNAL

## Confronto con Predizioni SM (2023)

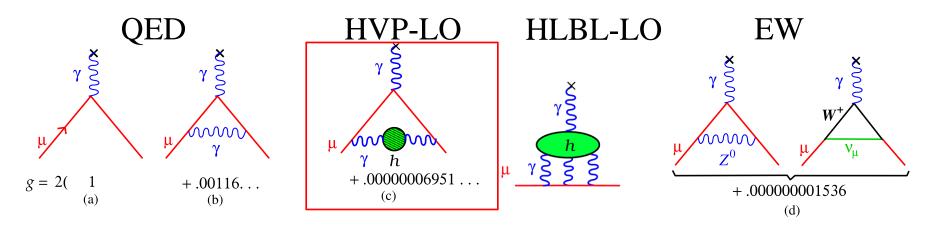
Theory Initiative (WP20):


T. Aoyama et al. Phys. Rept. 887 (2020)

HVP based on e+ehadronic cross section data

BMW Coll. (2020): HVP stimato su Lattice QCD, Incertezza 0.4 ppm

#### CMD3 Esp.


HVP based on e+ehadronic cross section data



... è chiaro che qualcosa va capita!!!

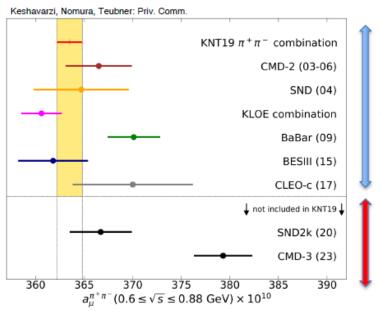
## Correzioni radiative SM

- Tutte le forze del Modello Standard contribuiscono a  $a_{\mu}$
- I contributi QED e Weak sono ben compresi.
- Il contributo adronico di ordine più basso è purtroppo in uno stato «non definito»



Contributi QED ed EW hanno errore crica 0.1x10<sup>-11</sup> e 1x10<sup>-11</sup> Sorprendentemente il contributo adronico HLBL è abbastanza ben noto e condiviso (92(19) x10<sup>-11</sup>). Problema è HVP-LO

## Calcolo HVP: Metodo dispersivo (e+e-)


$$a_{\mu}^{\mathrm{HVP,LO}} = \frac{\alpha^2}{3\pi^2} \int_{s_{th}}^{\infty} \frac{K(s)}{s} ds$$

$$\mathrm{Hadronic\ R-ratio}$$

$$\mathrm{K(s)\ ^{\sim}1/s} \qquad (\mathrm{Data\ Driven})$$

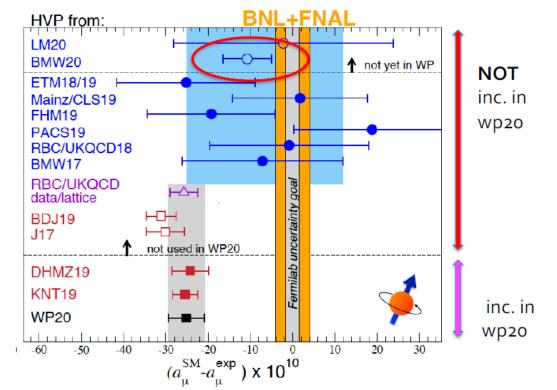
$$\mathrm{R(s)} = \frac{\sigma^0(\mathrm{e^+e^-} \to \gamma \to \mathrm{hadrons})}{4\pi\alpha^2/3\mathrm{s}}$$

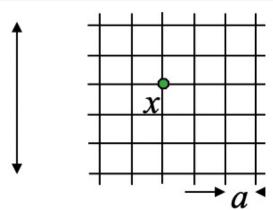
- Calcolato dai dati per σ(e+e-→ adroni
- Utilizza i dati di diversi esperimenti di 20+ anni
- 1/s pesa fortemente a bassa energia: 73% da canale π + π -



inc. in wp20 Dati provenienti da CMD-2, SND,
 KLOE, BaBar, BESIII e CLEO-C
 sono stati inclusi nel WP20

$$a_{\mu}^{HVP;LO} = 6931 (40) \times 10^{-11} (0.6\%) \text{ (wp20)}$$


**NOT** inc. in wp20

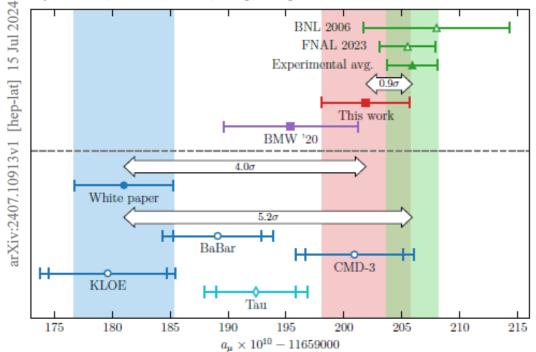

- New results from SND2k and
- CMD-3 after wp20
- CMD-3 is different from all the other data

## Calcolo di HVP sul reticolo

Calcolo «ab-initio» dell'HVP sul reticolo

G. Colangelo et al. https://arxiv.org/pdf/2203.15810.pdf






- Tutti i calcoli sul reticolo non sono stati inclusi in WP20
- BMW è/era l'unico risultato con alta precisione elevata e più vicino al risultato sperimentale (w.m.a.)

## Novità dal Reticolo

## High precision calculation of the hadronic vacuum polarisation contribution to the muon anomaly

A. Boccaletti<sup>1,2</sup>, Sz. Borsanyi<sup>1</sup>, M. Davier<sup>3</sup>, Z. Fodor<sup>1,4,5,2,6,7,\*</sup>, F. Frech<sup>1</sup>, A. Gérardin<sup>8</sup>, D. Giusti<sup>2,9</sup>, A.Yu. Kotov<sup>2</sup>, L. Lellouch<sup>8</sup>, Th. Lippert<sup>2</sup>, A. Lupo<sup>8</sup>, B. Malaescu<sup>10</sup>, S. Mutzel<sup>8,11</sup>, A. Portelli<sup>12,13</sup>, A. Risch<sup>1</sup>, M. Sjö<sup>8</sup>, F. Stokes<sup>2,14</sup>, K.K. Szabo<sup>1,2</sup>, B.C. Toth<sup>1</sup>, G. Wang<sup>8</sup>, Z. Zhang<sup>3</sup>



Stessa precisione della predizione WP20: 0.37 ppm!

 $a_{\mu}(WP20) = 0.00116591810(43) [0.37 ppm]$ 

## **Conclusioni**

## Il Confronto continua con:

- Rianalisi Dati Esperimenti e+e-
- Studio di altri canali di annichilazione e+e- →....
- Riconsiderazione delle correzioni radiative
- Più e nuovi risultati dal calcolo sul reticolo con precisione che consente confronto con valore sperimentale (FNAL+BNL)

#### In attesa di:

- Fermilab  $\sim$  0,1 pp -- misura di  $a_{\mu}$  nel 2025
- J-PARC: metodica completamente diversa per la misura di a<sub>u</sub>
- Nuovi Risultati su reticolo per a<sub>u</sub>LO-HVP
- a<sub>11</sub> da RBC/UKQCD e Mainz
- Nuova analisi BABAR
- Nuova analisi KLOE
- Nuovi dati e analisi BES III, BELLE-II, CMD-3, SND-2k
- MUonE @ CERN per misura HVP spacelike

## Muon g-2 Collaboration

(The Muon g-2 Collaboration)

<sup>1</sup>Argonne National Laboratory, Lemont, IL, USA <sup>2</sup>Boston University, Boston, MA, USA

<sup>3</sup>Brookhaven National Laboratory, Upton, NY, USA <sup>4</sup>Budker Institute of Nuclear Physics, Novosibirsk, Russia

<sup>5</sup> Center for Axion and Precision Physics (CAPP) / Institute for Basic Science (IBS), Daejeon, Republic of Korea <sup>6</sup> Cornell University, Ithaca, NY, USA

<sup>7</sup> Fermi National Accelerator Laboratoru, Batavia, IL, USA

<sup>8</sup>INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy

<sup>9</sup>INFN, Laboratori Nazionali di Frascati, Frascati, Italy

<sup>10</sup>INFN, Sezione di Napoli, Napoli, Italy

<sup>11</sup>INFN, Sezione di Pisa, Pisa, Italy

<sup>12</sup>INFN, Sezione di Roma Tor Vergata, Roma, Italy

<sup>13</sup>INFN, Sezione di Trieste, Trieste, Italy

<sup>14</sup> Istituto Nazionale di Ottica - Consiglio Nazionale delle Ricerche, Pisa, Italy

<sup>15</sup>Department of Physics and Astronomy, James Madison University, Harrisonburg, VA, USA

<sup>16</sup>Institute of Physics and Cluster of Excellence PRISMA+,

Johannes Gutenberg University Mainz, Mainz, Germany

onainies Gatenoery University Maniz, Mainz, German, <sup>17</sup> Joint Institute for Nuclear Research, Dubna, Russia

<sup>18</sup>Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
<sup>19</sup>Lancaster University, Lancaster, United Kingdom

<sup>20</sup>Michigan State University, East Lansing, MI, USA

<sup>21</sup>North Central College, Naperville, IL, USA

North Central College, Naperville, IL, USA

<sup>22</sup>Northern Illinois University, DeKalb, IL, USA

<sup>23</sup>Northwestern University, Evanston, IL, USA

Regis University, Denver, CO, USA
 Scuola Normale Superiore, Pisa, Italy

<sup>26</sup>School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China

<sup>27</sup> Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China
 <sup>28</sup> Institut fr Kern - und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

<sup>29</sup> Università del Molise, Campobasso, Italy

<sup>30</sup>Università di Cassino e del Lazio Meridionale, Cassino, Italy

<sup>31</sup> Università di Napoli, Napoli, Italy

<sup>32</sup> Università di Pisa, Pisa, Italy

<sup>33</sup>Università di Roma Tor Vergata, Rome, Italy

<sup>34</sup>Università di Trieste, Trieste, Italy

<sup>35</sup> Università di Udine, Udine, Italy

<sup>36</sup>Department of Physics and Astronomy, University College London, London, United Kingdom
<sup>37</sup>University of Illinois at Urbana-Champaign, Urbana, IL, USA

<sup>38</sup> University of Kentucky, Lexington, KY, USA

<sup>39</sup> University of Liverpool, Liverpool, United Kingdom

<sup>40</sup>Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
<sup>41</sup>Department of Physics, University of Massachusetts, Amherst, MA, USA

42 University of Michigan, Ann Arbor, MI, USA

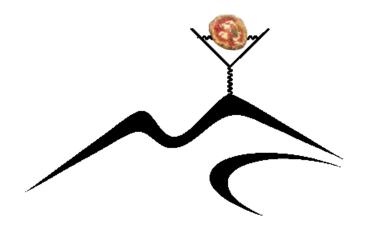
43 University of Mississippi, University, MS, USA

44 University of Oxford, Oxford, United Kingdom

<sup>45</sup>University of Rijeka, Rijeka, Croatia

<sup>46</sup>Department of Physics, University of Texas at Austin, Austin, TX, USA

<sup>47</sup> University of Virginia, Charlottesville, VA, USA


<sup>48</sup> University of Washington, Seattle, WA, USA

Department of Energy (USA)
National Science Foundation (USA)
Istituto Nazionale di Fisica Nucleare (Italy)
Science and Technology Facilities Council (UK)
Royal Society (UK)
European Union's Horizon 2020
National Natural Science Foundation of China
MSIP, NRF and IBS-R017-D1 (Republic of Korea)
German Research Foundation (DFG)





# Fine



#### **Credits:**

- C. Polly Fermilab
- G. Venanzoni Pisa
- R. Lee Boston
- D. Hertzog Washington
- A. Nath Napoli