

L'esperimento NA62 al CERN

M. Mirra per il gruppo NA62-Napoli

Riunione Gruppo 1, Napoli 16/01/2025

Breaking news

CERN press release

NA62 experiment at CERN observes ultra-rare particle decay

In the Standard Model of particle physics, the odds of this decay occurring are less than one in 10 billion

25 SEPTEMBER, 2024

25 SETTEMBRE 2024

CERN: L'ESPERIMENTO NA62 OSSERVA UN PROCESSO RARISSIMO

UKRI press release

UK Research and Innovation

CERN reports first observation of ultra-rare particle decay

OCTOBER 1, 2024 | 5 MIN READ

A One-in-10-Billion Particle Decay Hints at Hidden Physics

Physicists have detected a long-sought particle process that may suggest new forces and particles exist in the universe

Scientific American

SCI AM

Kaon experiments at CERN

Kaons have been fundamental in the development of the SM flavor sector SPS experiments have been at the forefront of kaon physics for decades

- ✓ Fixed target experiment at CERN SPS.
- ✓ Main NA62 goal: BR($K^+ \to \pi^+ \nu \overline{\nu}$) measurement to 15% precision with a novel decay-in-flight technique.
- ✓ Officially approved to run up to LS3.
- ✓ Currently ~300 participants from 31 institutions.

NA31: K_S /K_L (1984-1990) CPV

NA48, NA48/1: $K_S/K_L(1997-2002)$ Discovery of direct CPV, Re(ϵ'/ϵ), rare K_S and hyperon decays

NA48/2: K⁺/ K⁻(2003-2004) Direct CPV, rare K[±] decays

NA62: K⁺/ K⁻(2007-2008) R_K= $\Gamma(K_{e2}) / \Gamma(K_{\mu 2})$

NA62: K⁺ (2016-2018) Physics Run1

NA62: K⁺ (2021-now) Physics Run2

Seeking new physics through kaon decays

New physics at TeV scale not found (so far): explore higher mass scale via virtual production (ultrarare processes). Over-constraining unitary triangle via kaon decays is a crucial compatibility test of the SM $K \rightarrow \pi \nu \overline{\nu}$ are extremely rare decays with rates very precisely predicted in SM:

- FCNC processes, no tree-level SM contribution
- $\sin^5\theta_C$ suppression (top loop dominance)
- Hadronic part from K_{e3} via isospin rotation

Decay Mode BR	SM Buras et al. EPJC 82 (2022) 7, 615	SM D'Ambrosio et al. JHEP 09 (2022) 148	Experimental Status	
$\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu})$	$(8.60 \pm 0.42) \times 10^{-11}$	$(7.86 \pm 0.61) \times 10^{-11}$	$(10.6^{+4.1}_{-3.5}) \times 10^{-11}$	(NA62)
$\mathcal{B}(K_L \to \pi^0 \nu \overline{\nu})$	$(2.94 \pm 0.15) \times 10^{-11}$	$(2.68 \pm 0.30) \times 10^{-11}$	$< 2 \times 10^{-9}$	(KOTO)

NA62 (2016–18 data): [JHEP 06 (2021) 093]

KOTO (2021 data): [Eur.Phys.J.C 84 (2024) 4, 377]

$K \rightarrow \pi \nu \overline{\nu}$ beyond SM

Correlations between BSM contributions to BRs of K⁺ and K_L modes.

• Must measure both to discriminate between BSM scenarios.

- Models with a CKM-like structure of flavour interactions (e.g. MFV)
 - Models with new flavour
 and CP-violating interactions
 in which either left or right
 handed currents fully
 dominate (e.g. Z or Z' FCNC
 scenarios)
- Models like Randall-Sundrum
- Grossman-Nir Bound: model-independent relation

$$\frac{\mathcal{B}(K_L \to \pi^0 \nu \overline{\nu})}{\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu})} \frac{\tau_{K^+}}{\tau_{K_L}} \lesssim 1$$

$$\Rightarrow \mathcal{B}(K_L \to \pi^0 \nu \overline{\nu}) \lesssim 4.3 \cdot \mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu})$$

Beamline and detector

✓ Excellent time resolution: O(100 ps) to match beam and daughter particle information

- ✓ **Kinematics:** rejection of main *K* modes 10⁻⁴ via kinematics reconstruction
- ✓ PID capability (RICH+LKr+MUV): 𝒪(10⁻⁷) muon suppression for 15GeV < p < 35 GeV
- ✓ High-efficiency photon veto: 10⁻⁷ rejection of π^0 for E(π^0) > 40 GeV

NA62 timeline and dataset

Commissioning run 2015: minimum bias data (~3×10¹⁰ protons/pulse).

- > Physics run 2016 (30 days, $\sim 1.3 \times 10^{12}$ ppp): 2×10^{11} useful K⁺ decays.
- > Physics run 2017 (160 days, ~1.9×10¹² ppp): 2×10^{12} useful K⁺ decays.
- Physics run 2018 (217 days, ~2.3×10¹² ppp): 4×10¹² useful K⁺ decays.
- Run 2 in progress: June 2021 till LS3 (~3×10¹² ppp + upgraded detector).

The story so far: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ with 2016-2018 data

Signal: BR = $(8.60 \pm 0.42) \times 10^{-11}$

Ke4

Upstream

Upstream beam background $m_{miss}^2 = (P_{K^+} - P_{\pi^+})^2$ K track in $K^+ \rightarrow \mu^+ \nu(\gamma)$ BR = 63.5% P_{π^+} π track out $K^+ \rightarrow \pi^+ \pi^0(\gamma)$ BR = 20.7% No other particles P_{K^+} $K^+ \to \pi^+ \pi^+ \pi^-$ BR = 5.58% in final state $Br(K_L {\to} \pi^0 \sqrt{v})$ KOTO Exclusion 90% CL Summary of NA62 Run 1: **Grossman-Nir Exclusion** NA62 2016-2018 data : Expected SM sig: $10.01 \pm 0.42_{svs} \pm 1.19_{ext}$ Expected bkg: 7. $03^{+1.05}_{-0.82}$ evts NA62 Run1 10^{-10} E787/E949 Upstream K2pi Kmu2 largest SM ■ K3pi

• 20 events observed

background

BR $(K^+ \to \pi^+ \nu \overline{\nu}) = (10.6^{+4.0}_{-3.4}|_{stat} \pm 0.9_{sys}) \times 10^{-11}$ (3.4 σ significance) JHEP 06 (2021) 093

 10^{-11}

10

5

15

16/01/2025 M. Mirra

20

25

30

 $Br(K^+ \rightarrow \pi^+ \nu \overline{\nu}) \times 10^{11}$

35

Main backgrounds

NA62 Run 2

Key modifications during LS2 to reduce background from upstream decays and interactions:

- 4th GTK (Kaon beam tracker) & rearrange GTK achromat (GTK2 upstream of scraper). New veto hodoscope upstream of decay volume and additional veto counters around downstream beam pipe
- New downstream veto for photon conversion in the beampipe
- Intensity increased by ~ 35% with respect to 2018 [450 \rightarrow 600 MHz].
- Improvements to the trigger configuration

Results in context

✓ New NA62 result with 2021-2022 data (see R. Fiorenza's talk)

 $BR(K^+ \to \pi^+ \nu \overline{\nu}) = (13.0^{+3.0}_{-2.7} |_{stat} \pm 1.3_{sys}) \times 10^{-11} \text{ [arXiv:} 2412.12015]$

- ✓ Central value moved up; the combined NA62 result is consistent with the SM expectation within 1.7σ .
- ✓ Fractional uncertainty decreased: 40% to 25%
- ✓ Bkg-only hypothesis rejected with significance Z>5
- ✓ The full NA62 dataset will clarify the agreement or tension with the SM expectation.

Flavour Physics with kaons

Hidden sector Physics

Search for New Physics at the EW scale with sizeable coupling to SM particles via indirect effects in loops:

Experiment main goal: BR(K⁺ $\rightarrow \pi^+ vv$) Search for lepton flavour and number violation, rare and forbidden decays:

814.67

 $K^{+} \rightarrow \pi^{-} e^{+} e^{+}(\gamma)$ $K^{+} \rightarrow \pi^{-} \mu^{+} \mu^{+}(\gamma)$ $K^{+} \rightarrow \gamma l^{+} \nu$ $K^{+} \rightarrow \pi^{-} \mu^{\pm} e^{\mp}(\gamma)$ $K^{+} \rightarrow \pi^{-} \mu^{+} e^{+}(\gamma)$ $\pi^{0} \rightarrow e^{+} e^{-}$

Search for New Physics below the EW scale (MeV-GeV) feebly-coupled to SM particles via direct detection of long-lived particles:

Heavy neutral Lepton(H) Dark Photon(A'), Axion Like Particle (ALPs), Dark Scalar (S) in K decays: $K^+ \rightarrow \mu^+ H, K^+ \rightarrow e^+ H$ $K^+ \rightarrow \pi^+ \pi^0$ with $\pi^0 \rightarrow A'\gamma$

M. Mirra

16/01/2025

A comprehensive programme of searches for LFV/LNV kaon and pion decays: 10 decay modes addressed so far.

L'esperimento NA62 al CERN 13

NA62 in dump mode

Beam dump mode: 22 λ_{int} Cu-Fe collimators (TAX) used as target removing the Be target Search for dark sector particles production in interaction with TAXs decaying into visible final states in the NA62 experimental apparatus

Beam-dump dataset: so far, 6×10¹⁷ pot collected in 30 days; 10¹⁸ pot to be collected by end of NA62 (LS3)

NA62 in dump mode: dark photon search $A' \rightarrow \ell^+ \ell^-$

- > Dark photon A':
 - extra U(1) massive gauge singlet
 - mixing with SM hypercharge
 - ε and M_{A'} are free parameters
- ➢ Require ℓ⁺ℓ[−] vertex in FV and pointing back to beam interaction point in TAX (CDA vs Z_{TAX})
- > Backgrounds:
 - Prompt: interactions of single halo μ with material upstream of/inside FV
 - Combinatorial: accidental coincidence of single halo μ

Naples working group

;%
%
0%
0%
0%
;')' 0 0 0

5.65 FTE

Activities in NA62

- Full responsabily of the CHANTI detector: hw/sw maintanece, data quality analysis
- > Involved in the main channel analysis $(K^+ \rightarrow \pi^+ \nu \overline{\nu})$, in lepton flavor universality measurements and dark sector

CHANTI postcard

Detector proposed and built entirely in Naples, thanks to the INFN mechanical design and workhop service.

Six guard rings to veto kaon inelastic interaction on GTK3 and beam background. Staggered scintillator bars with triangular section read via WLS fibers and SiPM forming 6 xy sensitive planes

Scintillator bar

Layout of the X/Y layers

Fully cabled station

Front end electronics

TOT

FEE

CHANTI in 2024 run

- New FE boards installed to cope with the higher intensity reached in 2021 run
- In 2024 a new FPGA-based TDC FELIX readout board has replaced the TEL62 board to readout the CHANTI detector.
- Successful and smooth RUN2 data taking for CHANTI

View X efficiency

CHANTI 2025 run preparation

- SiPMs currents are monitored during the whole data taking: a replacement before 2025 run is mandatory to prevent any aging effect due to radiation damages.
- This work was already done before 2023 run and it required a big effort from L. Roscilli, F. Cassese, C. Cassese and B. De Fazio.

Several tools built to keep the CHANTI stations alignment.

Analysis activities

- > Improvements in $K^+ \pi^+$ matching and random veto studies for the main analysis $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ (see R. Fiorenza's talk)
- > Dark sector:
 - Search for an invisible dark photon in π^0 decays: $K^+ \to \pi^+ \pi^0, \pi^0 \to A' \gamma, A' \to inv$
 - Study of the $K^+ \to \mu^+ \nu_\mu A'$, $A' \to e^+ e^-$ (see I. Rosa's talk)

The HIKE saga

Original plan:

HIKE to succeed NA62 in ECN3 hall at CERN SPS after LS3 and to extend the NA62 physics program into the HL-LHC era and beyond 15-year program with start of data taking around 2030 **Phase 1:** K^+ beam, 4x NA62 primary intensity $K^+ \rightarrow \pi^+ vv$ to 5%, LFV/LNV & other rare decays, precision measurements Time sharing with SHADOWS, HIKE in beam-dump mode **Phase 2:** K_L beam, 6x NA62 primary intensity $K_L \rightarrow \pi^0 \ell \ell$ to 12-18%, LFV/LNV & rare decays, precision measurements HIKE proposal SPSC-P-368 (2311.02831) made public October 2023

Decision of CERN Directorate at Research Board, 06 Mar 2024: SHiP experiment approved to run in ECN3 after LS3

HIKE physics case judged excellent but decision made on "strategic" grounds

NA62 experiment will conclude for decommissioning at start of LS3

- No dedicated kaon experiment at CERN for the first time in many decades
- No experiment capable of carrying out the HIKE suite of measurements at any facility in the world

PRIN 2022 HetCal

Development of high performance heterostructured calorimeter for future intensity frontier experiments (HetCal)

- Main goals• Establish a technological solution to be adopted for electromagnetic
calorimeters for the next generation high intensity experiments.
 - Obtain energy resolution and efficiency comparable to that for homogenous detectors based on inorganic crystals, with sub ns time resolution
 - Two alternative solutions proposed:
 - ✓ Shashlyk, based on the KOPIO calorimeter design, with spy tiles
 - ✓ Heterostructures with quantum confined nanocrystals in combination with standard scintillators

Shashlyk simulation

Geant4 simulation developed to drive the Shashlyk prototype design:

- > 500 layers of PS+PTP+POPOP scintillator (1.6mm) and lead (0.3mm)
- ➤ Transverse module size: 40 x 40 mm2, length ~27X₀
- ➢ TiO₂ coating for the scintillator
- > WLS fibers with tunable absorption-emission spectrum
- > Optical photons tracking and sensitive detector for photon counting

I. Rosa

Shashlyk simulation

Several performance checked and different materials/configurations tested with the Geant4 tool

Energy resolution

Stochastic + constantStochastic only $\frac{\sigma(E)}{E} = \frac{2.41}{\sqrt{E (GeV)}} \oplus 0.12 \, [\%]$ $\frac{\sigma(E)}{E} = \frac{2.42 \, \%}{\sqrt{E (GeV)}}$

σE/E defined as RMS/Emean

> Photon arrival time distribution

- 1GeV incident photon with mirrored fibers
- Photon spectrum compatible with WLS emission one
- Black paint fibers option: 50% less light, but 15% narrower distribution

I. Rosa

Shashlyk prototype construction

Shashlyk prototype design assembled in Kharkiv:

- > 3x3 channel matrix with cell size 4x4 cm
- > 500 layers of scintillator (polystyrene + 0.05% POPOP + 2% PTP) + lead
- > All edges tiles and both lead tiles sides coated with reflective paint.
- > WLS fibers BCF-92XL with 1.2mm diameter, mirrored at one side

Shashlyk prototype construction

Switch between two possible photosensors

➢ SiPM solution: Hamamatsu S13360-6050/25CS

SiPM connector - SER (A. Di Meno)+progettazione (G. Passeggio) a Napoli

16/01/2025 M. Mirra

L'esperimento NA62 al CERN 26

Shashlyk prototype construction

Switch between two possible photosensors

PMT solution: Hamamtsu R7600U-300 extended green

2024 beam test of shashlyk prototype

Test at T9 CERN beamline, October 2024:

2024 beam test of shashlyk prototype

Charge spectra with central PMT

M. Francesconi

L'esperimento NA62 al CERN 29

16/01/2025 M. Mirra

Shashlyk prototype readout

Preliminary Geant4 simulation of the detector shows photon arrival time with ~6ns spread and $\sigma_E/\sqrt{E} \sim 3\%/\sqrt{E}$ (GeV), motivating the requirements of GHz sampling of analog signals with 14 bit , not to spoil the detector perfomances.

 Full chain implemented with the TI ADS54J40 and Xilinx Kintex Ultrascale+ : successful read out of SiPM dark noise signals

CFD resolution of 49 ps with double pulse

• Pole-zero filter used to remove the tail and improve pileup identification

Francesconi et al., NIMA 1067 (2024) 169679

M. Francesconi & R. Giordano

16/01/2025 M. Mirra

ADC unit

Conclusions

- ✓ The CERN Kaon factory has a vast and unique physics program for the search of NP, complementary to what can be done at LHC and B-factories
- ✓ First observation of the $K^+ \to \pi^+ \nu \overline{\nu}$ decay with a significance >5 σ , using the NA62 2016–2022 dataset: the smallest particle decay BR measured with a significance >5 σ . O(15%) precision on BR($K^+ \to \pi^+ \nu \overline{\nu}$) will be reached by LS3 with optimization of the analysis.
- ✓ High quality physics results are being published by the collaboration. The current run(2021-2025) will allow to fully exploit the physics reach with the current NA62 setup. It will collect data both in «kaon mode» and in «dump mode»
- ✓ Naples working group involved both in detector side (full responsibility of CHANTI) and in physics analysis for the main channel $K^+ \to \pi^+ \nu \overline{\nu}$ and dark sector
- ✓ HW activities started in Naples to study electromagnetic calorimeters for the next generation of high intensity experiments

Backup

NA48 LKr calorimeter in HIKE

Quasi-homogeneous ionization calorimeter: 27 X₀ f LKr

Photon efficiency likely adequate even for K_L program

- NA48-era studies for NA62: $1 \varepsilon < 10^{-5}$ for $E\gamma > 10$ GeV
- High-energy efficiency confirmed with NA62 data

Time resolution

- $\sigma_t \sim 500 \text{ ps for } \pi^0 \text{ with } E\gamma\gamma > 20 \text{ GeV}$
- Would require 4x improvement in K^+ phase to hold accidental veto rate to current levels
- Critical for KLEVER: Accidental rate ~140 MHz!

Consolidation work necessary Investigating upgrade possibilities

- Increase operating voltage to increase drift velocity
- Faster digitizers and signal shaping

For K_L phase, LKr inner bore limits beam solid angle

LKr resolution:

$$\frac{\sigma_E}{E} = \frac{3.2\%}{\sqrt{E}} \oplus \frac{9\%}{E} \oplus 0.42\%$$
$$\sigma_t = \frac{2.5 \text{ ns}}{\sqrt{E}}$$

HIKE phase 1: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ at high-statistics

Goal: Measure BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) to within ~5% Requires 4x increase in intensity Basic design of NA62 will work at high intensity

Key challenges:

- Require 4x better time resolution to keep random veto rate under control
- Must maintain other key performance specifications at high-rate:
- Space-time reconstruction, material budget, single photon efficiencies, etc.

These characteristics are necessary for rare K_L decays as well

• Calorimeter, photon vetoes, and readout reused for K_L experiments

HIKE phase 2: rare K_L decays

K_L beamline, tracking and PID for secondary particles

- Statistical power: 3.8 10¹³ Kaon decays in decay volume per year (1.2 10¹⁹ POT/year)
- 120 m long neutral beamline, secondary beam opening angle = 0.4 mrad
- Using detectors of previous phase, with some detectors removed
- Minor modifications to make left/right symmetric and optimize geometrical acceptance.
- Will provide valuable information to characterize neutral beam: measurement of K_L , n, and Λ fluxes and halo

HIKE phase 3: $K_L \rightarrow \pi^0 \nu \overline{\nu}$

 2×10^{13} ppp = 6x NA62

Studied in context of Physics Beyond Colliders

- Essential signature: 2γ with unbalanced p_{\perp} + nothing else All other K_L decays have ≥ 2 extra γ s or ≥ 2 tracks to veto Exception: $K_L \rightarrow \gamma\gamma$, but not a big problem since $p_{\perp} = 0$
- $M(\gamma\gamma) = m(\pi^0)$ is the only sharp kinematic constraint
- Target sensitivity: 6 × 10¹⁹ pot in 5 years
- ~60 SM $K_L \rightarrow \pi^0 vv$, $S/B \sim 1$, $\delta BR/BR(\pi^0 vv) \sim 20\%$
- High-energy experiment complementary to KOTO

$K^+ \rightarrow \pi^+ \nu \overline{\nu} (a) \text{ NA62}$

Signal: BR = $(8.4 \pm 1.0) \times 10^{-11}$

K track in π track out No other particles in final state $m_{miss}^2 = (P_K - P_\pi)^2$

Main backgrounds

 $K^+ \rightarrow \mu^+ \nu(\gamma)$ BR = 63.5% $K^+ \rightarrow \pi^+ \pi^0(\gamma)$ BR = 20.7% $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ BR = 5.58%Upstream beam background

Selection criteria

 K^+ beam identification Single track in final state π^+ identification (μ^+/e^+ event rejection) γ rejection

Recent results on hidden-sector mediator production and other BSM physics in kaon decays: • searches for heavy neutral leptons from $K^+ \rightarrow l^+ \nu$ decays

Events with a K^+ in the initial state and a lepton (e^+ or μ^+) in the final state; squared missing mass $m_{miss}^2 = (P_k - P_l)^2$ using STRAW and GTK trackers; HNL production signal: a spike above continuous missing mass spectrum.

Recent results on hidden-sector mediator production and other BSM physics in kaon decays:

• Lepton number violation:

Same sign leptons mediated by Majorana neutrinos

- Experimental signature: 3 charged tracks with $\pi^{\pm}\mu^{\mp}e^{+}$
- Consistent with closed kinematics K^+ decay
- The invariant mass $M_{\pi\nu e}$ used to distinguish between signal and background

PRL 127 (2021) 131802

- Main bkg π mis-ID and decay in flight measured with data
- Normalized with $K^+ \to \pi^+ \pi^+ \pi^-$

• Lepton flavour violation:

Opposite sign – different family leptons mediated by Leptoquarks

Run1 result on $K^+ \rightarrow \pi^+ X$

Limits on $K^+ \rightarrow \pi^+ X$ translate in strong limits on ALPs or scalars in the usual mass / coupling plane

PBC workshop report, *Eur.Phys.J.C* 81 (2021) 11, 1015

M. Bauer, M. Neubert, S. Renner, M.Schnubel and A. Thamm JHEP 09 (2022) 056

HIKE program

Observable	Target	Motivation
K ⁺ phase		
$K^+ \rightarrow \pi^+ v v$	BR to ~5%	New physics in FCNC decays
$K^+ \rightarrow \pi^+ \ell \ell$	Form factors at ~1% level	LFUV
$K^+ \rightarrow \pi \mu e, \pi^- \ell^+ \ell^+$	O(10 ⁻¹²) sensitivity	LFV, LNV
$R_K = \Gamma(K \to ev) / \Gamma(K \to \mu v)$	<i>R_K</i> to ~0.1%	LFUV
$K^+ \rightarrow \pi^+ \gamma \gamma, \pi^+ \pi^0 \gamma, \pi^+ \pi^0 e e$	As best as possible	Chiral parameters (LECs)
Hybrid phase		
$K_L \rightarrow \pi^0 \ell \ell$	Observation	New physics in FCNC decays
$K_L \rightarrow \mu \mu$	BR to < 1%	New physics in FCNC decays
$K_L \rightarrow \mu e, \pi^0 \mu e$	O(10 ⁻¹²) sensitivity	LFV
$K_L \rightarrow \gamma \gamma, \pi^0 \gamma \gamma$	As best at possible	Ancillary to $K_L \rightarrow \mu \mu$, LECs
K _L phase (K_LEVER)		
$K_L \rightarrow \pi^0 v v$	BR to ~20%	New physics in FCNC decays

Plus periodic runs with dumped beam to accumulate at least 10¹⁹ pot to search for exotic, long-lived particles

Shashlyk calorimeter with spy tiles

Main electromagnetic calorimeter (MEC):

Fine-sampling shashlyk based on PANDA forward EM calorimeter produced at Protvino

0.275 mm Pb + 1.5 mm scintillator

PANDA/KOPIO prototypes:

- $\sigma_E / \sqrt{E} \sim 3\% / \sqrt{E} (\text{GeV})$
- $\sigma_t \sim 72 \text{ ps} / \sqrt{E} \text{ (GeV)}$
- $\sigma_x \sim 13 \text{ mm} / \sqrt{E} \text{ (GeV)}$

New for HIKE: longitudinal shower information from spy tiles

- PID information: identification of μ , γ , *n* interactions
- Shower depth information: improved time resolution for EM showers

1st prototype assembled in Protvino and tested at OKA in April 2018 and DESY in Nov 2019

Innovative scintillators for shashlyk

R&D in synergy with NanoCal project: perovskite nanostructures in a polymer matrix can be used as sensitizers/emitters for ultrafast, robust scintillators

Quick-start using CsPbBr3, 0.2% w/w in UV-cured PMMA

- Light yield O(few k) photons/MeV deposit
- 50% of light emitted in components with $\tau < 0.5$ ns
- Radiation hard to O(1 MGy)

Progress:

- Oct 2022: First component test at CERN: fibers/tiles/SiPMs
- 2023: Further iterations to improve performance of NC scintillator prototype
- 2024: Construction of full-scale prototype modules; performance comparison

2022 early prototypes

Possible issues:

First test of NanoCal prototype at H2 CERN beamline with 80 GeV e^- and 150 GeV π^+ (MIPs) in Oct 2022, followed by laboratory studies with cosmic rays spring 2023

Comparison of light yield from conventional (Protvino) shashlyk with NanoCal (CsPbBr₃/PMMA) prototype

LY_{mip}(NanoCal/Protvino) ~ 5%

- 1. Nanoparticles exhibit too much self-absorption?
- 2. Inefficient excitation of nanoparticles: concentration too low, no contribution from matrix?

2023 beam test of shashlyk prototypes

Test at T9 CERN beamline, June 2023:

- Electron beam, 1-10 GeV
- MIP beam (μ^- or π^-), ~4 GeV
- Cerenkov detectors to allow verification of beam ID $e/\mu\pi/p$

For each prototype:

- MIP efficiency map
- *e* response
- Time resolution

Tested prototypes:

- Protvino scintillator + Y-11 with new mechanincs
- ✓ CsPbBr3 + NCA-1
- ✓ CsPb(BrCl)3 + NCA-1
- ✓ PVT + Y-11

2023 beam test of shashlyk prototypes

Test at T9 CERN beamline, June 2023:

Efficiency maps with 10 GeV μ , threshold = $5\sigma_{noise}$

Disappointing result from new nanocomposite: only light is from readout fibers!

2024 beam test of nanocomposite scintillator

New samples with 1-2.5% nc in PVT with/without additional dyes tested at BTF in Apr '24

16th Pisa Meeting on Advanced Detectors, arXiv:2407.10915

- **Blank_0** Only matrix (control for NC24_0, 1)
- Blank_1 1.5% PTP (control for NC24_2)
- Blank_2 Perylene dyad (control for NC24_3)
- **Blank_3** 1.5% PTP + perylene dyad (control for NC24_4)
- NC24_0 1% CsPbBr₃:F
- NC24_1 2.5% CsPbBr₃:F
- **NC24_2** 1.5% PTP + 1% CsPbBr₃:F
- **NC24_3** 1% CsPbBr₃:F + perylene
- NC24_4 1.5% PTP + 1% CsPbBr₃:F + perylene

From all of the measurements performed, the use of perovskite quantum dots in scintillator for HEP is not straightforward, but it will require significant additional optimization effort.

Run 1 beamline layout

Run 2 beamline layout

16/01/2025 M. Mirra

L'esperimento NA62 al CERN 49

КОТО

KOTO-II cost and timescale

Total cost: \$23.1M

- Calorimeter in CsI: \$10.1M Reduced to \$1.4M for shashlyk option
- Barrel veto \$7.7M

Item	Cost M\$
Calorimeter	10.1
CV	0.1
Barrel	7.7
BHPV	0.3
BHCV	0.1
Readout	2.4
Other items	3.1
Total	23.4

Year 1 not well defined:	
End of construction of	
Hadron Hall Extension	
(2033?)	

Year	Main object
1	Beam line survey
2	Construction of the rest of the detector
3-6	Phase I: Physics run for mainly $K_L \to \pi^0 \nu \bar{\nu}$
7	Single event sensitivity will reach 8.5×10^{-13} for the $K_L \to \pi^0 \nu \bar{\nu}$ search
8	Detector upgrade
9-12	Phase II: Physics run mainly for $K_L \to \pi^0 \ell^+ \ell^-$ with an optimized setup
13	End of Phase II