NEW FRONTIERS IN NEUTRINO PHYSICS AT CERN

Antonia Di Crescenzo Università Federico II and INFN - Napoli, Italy

on behalf of the SND@LHC Napoli Group

INFN Napoli Gr1 Meeting - 16 January 2025

NEUTRINO PHYSICS AT CERN: THE **SND@LHC** EXPERIMENT

THE SND@LHC DETECTOR

OFF-AXIS LOCATION

- Rapidity range: 7.2 < η < 8
- Enhances ν flux from **charm** parents
- Complementarity with FASER_v, located on-axis in symmetric tunnel (TI-12)

https://cds.cern.ch/record/2750060/files/LHCC-P-016.pdf

STRATEGY

About Existing site (avoided major civil engineering)

- Enough material to shield against collision debris
- Use LHC magnets to deflect charged particles

TI-18 LOCATION

- Charged Old LEP positron transfer line tunnel
- 480 m away from IP1
- 100 m of rock between detector and IP1

Operation in Run 3 (2022-2026) to collect ~300 fb⁻¹

PHYSICS GOALS

QCD

- Decays of **charm** hadrons contribute significantly to the neutrino flux in SND@LHC
 - Measure forward charm production with neutrinos
 - Constrain gluon PDF at very small x

Flavour

- Detection of all three types of neutrinos allows for tests of lepton flavour universality
 - Charm parentage leads to partial cancelation of flux uncertainties

Neutrino interactions

- Detection of all three types of neutrinos allows for tests of lepton flavour universality
- Measure **neutrino interactions** in unexplored ~TeV energy range - Large yield of neutrinos will likely double existing data
 - About 20 events observed by DONuT and OPERA

Beyond the Standard Model

• Search for **new**, feebly interacting, **particles decaying** within the detector or **scattering** off the target

THE SND@LHC CONCEPT

Hybrid detector optimised for the identification of three neutrino flavours and for the detection of feebly interacting particles

VETO PLANE:

- two (2022–2023) / three (2024-)
- 1 cm-thick scintillator planes

TARGET, VERTEX DETECTOR AND ECAL:

- 830 kg tungsten target
- Five walls x 59 emulsion layers + five scintillating fibre stations 84 X₀, 3 λ_{int}

HCAL AND MUON SYSTEM:

- Eight 20 cm-thick Fe blocks + scintillator planes
- Last 3 planes have finer granularity to track muons
- 9.5 λ_{int}

VETO SYSTEM

EXPERIMENT TIMELINE August 2020

Scattering and Neutrino Detector at the LHC

Letter of Intent

January 2021

SND@LHC

DATA TAKING IN RUN3

Delivered luminosity in 2022-2024: 195.0 fb⁻¹

Integrated luminosity in 2022-2024: 187.1 fb⁻¹

024: 195.0 fb⁻¹ 2024: 187.1 fb⁻¹

96% efficiency

MUON NEUTRINO OBSERVATION

- First observation of muon neutrinos produced at colliders based on 2022 data published last year
- 8 observed v_µ candidates
- Observation significance 7σ
- Updated results using 2022+2023 data:
- 32 observed v_µ candidates
- Measurement of the hadronic energy

• Display of a v_{μ} CC candidate event

0µ NEUTRINO OBSERVATION

- First observation of neutrino interactions without a muon in the final state based on 2022-2023 data
- 9 observed 0µ v-candidates
- Observation significance 6.4σ
- Evidence for v_e interactions at 6.4σ

Submitted to PRL arXiv:2411.18787

Observation of collider neutrinos without final state muons with the SND@LHC experiment

Display of a 0µ v-candidate event

EMULSION HANDLING AND SCANNING

Emulsion handling and chemical development performed at the CERN emulsion facility and dark room

11500 emulsion films (415 m²) exposed and developed in 2022-2024

Emulsion scanning performed in different laboratories 1) Bologna: 2 microscopes

- 4) Santiago: 1 microscope installed in 2024

EMULSION DATA ANALYSIS AND RECONSTRUCTION

High density environment: up to 4x10⁵ tracks/cm²

Tracks reconstructed in 1x1x30 mm³

Track multiplicity: 6 Average #segments: 13 Average fill factor: 0.7 Average IP: 0.2 um

Reconstructed neutrino-like vertex

Software development: Valeri Tioukov

Reconstructed electromagnetic shower

NEUTRINO PHYSICS AT THE **ENERGY** FRONTIER: **SND@LHC** IN HI-LUMI ERA

SND IN THE HI-LUMI ERA

Motivation

- Upgrade the SND@LHC detector to cope with high background rates
- Improve detector performances in energy measurement and charge separation

Letter of Intent: https://cds.cern.ch/record/2895224 Addendum: https://cds.cern.ch/record/2909524/

• Exploit the High-Lumi LHC to perform neutrino physics measurements in the TeV energy range with unprecedented statistics

Main features of the detector

- Electronic vertex detector
- Silicon tracker as vertex detector
- Iron-core muon spectrometer
- Improved hadron calorimeter and timing detectors.

SND IN THE HI-LUMI ERA

Physics performances

- Measurement of charm production with neutrinos
- Constrain gluon PDF at very small x
- (Tau) neutrino physics with high statistics
- Beyond Standard Model searches

IC Run3	HL-LHC
Target	Target+HCAL
1.2×10^{3}	1.3×10^{5}
3.9×10^{2}	4.5×10^{4}
3.0×10^{1}	2.2×10^{3}
$ 1.6 \times 10^{3} $	1.8×10^{5}
	C Run3 Target 1.2×10^3 3.9×10^2 3.0×10^1 1.6×10^3

LHC Run3 **HL-LHC**

leasurement	Uncertainty Stat Sys		Uncertainty Stat Sys	
	plat.	By5.	Stat.	by5.
harmed hadron yield	5%	35%	1%	5%
$/\nu_{\tau}$ ratio for LFU test	30%	22%	5%	10%
ν_{μ} ratio for LFU test	10%	10%	1%	5%
$_{\iota}$ and $\overline{\nu}_{\mu}$ cross-section	-	-	1%	5%

- Active surface: 40x40 cm²
- Material: W
- Total mass: 1.3 tons
- Sensitive layers: Silicon strips

SND UPGRADE: TRACKING SYSTEM

- Re-use of CMS Tracker Outer Barrel (TOB) modules
- Design of new mechanics and electronics for the Tracker performed at INFN Napoli

NEUTRINO PHYSICS AT THE **INTENSITY** FRONTIER THE **SHIP** EXPERIMENT

SEARCH FOR HIDDEN PARTICLES (SHIP) AT A DEDICATED BEAM DUMP FACILITY (BDF)

High-Intensity (HI) upgrade of **CERN SPS 400GeV proton facility** General-purpose **beam dump facility** Dedicated beam to ECN3 **SND** Rich program at the Scattering & Neutrino Detector (SND): **90m** icrometric resolution

[CERN-SPSC-2013-024, CERN-SPSC-2022-032 / SPSC-I-258, CERN-SPSC-2023-033 / SPSC-P-369]

BDF/SHiP approved by the CERN Research Board in March 2024

Search for Feebly-Interacting Particles with the Hidden Sector Decay Spectrometer (HSDS):

Original Proposal (2013): Developed for new cavern EHN4 ► Refined Proposal (2023): Adaptation to existing ECN3 facility

http://cds.cern.ch/record/2007512/files/SPSC-P-350.pdf Technical Proposal in 2015 EPJC (2022) 82:486 19

SND@SHIP

• Neutrino physics (10÷100 GeV) with unprecedented statistics, complementary to the LHC programme

New concept for SND:

- Detector embedded in the last section
 muon shield
- Closer to the target, higher neutrino fluxes
- Magnetized Iron interleaved with trackers and used as HCAL
- Emulsions combined with Silicon trackers for the target
- Scintillators and SciFi as trackers in Magnetized HCAL
- Profit of the experience gained in SND@LHC with emulsions in high-density environment
- R&D and prototyping for **Silicon detectors** in common with the SND Upgrade for HL-LHC

SHIP TIMELINE

Accelerator schedule	2022	2023	2024	2025		
LHC		Run 3				
SPS (North Area)						
BDF / SHiP	Study		esign and p	prototyping		
Milestones BDF			DR studies			
Milestones SHiP			TDR stu	idies		
		΄ Αpp	oroval for	TDR		

- ~2.5 years for Detector Technical Design Reports (TDRs)
- Start data taking in 2031

IT'S TIME FOR NEUTRINO PHYSICS AT CERN

CMS TRACKER DECOMMISIONING AND RECOVERY OF TOB MODULES

Target & Hadron Stopper

[CERN-SPSC-2019-049 / SPSC-SR-263, CERN-PBC-Notes-2021-005, CERN-PBC-REPORT-2023-003, CERN-SPSC-2023-033 / SPSC-P-369]

- High-density proton target: 12λ Ti-Zr-Mo (TZM) + W blocks, clad by Ta
- Optimised for heavy meson production
- Shielding: Cast iron & concrete, water-cooled & vacuum-confined
- 5m-long magnetised hadron stopper

(Superconducting) Magnetic Muon Shield

CERN-SHIP-NOTE-2016-005, 2017 JINST-12-P05011, CERN-SPSC-2019-049 / SPSC-SR-263, EPJC-80(2020)3-284, CERN-SPSC-2023-033 / SPSC-P-369]

- **Alternate-polarity scheme:** Split of **positive & negative** μ to **left & right** of decay volume
- ECN3 optimisation (hybrid SC / NC): 5.1T Shortened, preserving experiment sensitivity
- Initial (& fallback) design (NC): 1.7T

Ongoing ML-assisted optimisation campaign

Reduction of μ rate: $2x \ 10^{10} \mu \rightarrow < 10^5 \mu \text{ per spill}$

Prompt dose, y [-110:110], all particles 108 106 500 104 Sanctuary 102 -500 10-5 10* 1000 14000 16000 6000 12000 8000

Hidden Sector (HS) Decay Volume

[CERN-SPSC-2019-049 / SPSC-SR-263, ACME (2021) 21:3, CERN-STUDENTS-Note-2023-122, CERN-SPSC-2023-033 / SPSC-P-369]

50m-long decay volume:

minimum BG from $v \& K_{\nu}, K_{s}, \Lambda$

He at atmospheric pressure

Initial design: Evacuated vessel at < 10⁻² bar

Lightweight structure (AI / stainless steel) Low material budget to **minimise** μ and ν **interactions**

Support for LS-SBT integration

HS Detector: Spectrometer Straw Tracker (SST) & Magnet

- ۲
- ۲

[CERN-SPSC-2019-049 / SPSC-SR-263, CERN-SPSC-2023-033 / SPSC-P-369]

Large aperture: 4.0m x 6.0m

Cu/Au-coated Mylar drift tubes (NA62 design): 4m length, 2cm diameter, 36µm wall thickness, Ar:CO₂ mixture (70:30) Low material budget

2x 2 stations of 4 double layers at 10° stereo angle, **10 000 channels altogether**

Magnet (NC baseline): 0.65Tm / 0.15T SC options being studied (MgB₂)

HS Detector: Timing Detector (TD)

[CERN-SPSC-2019-049 / SPSC-SR-263, CERN-SPSC-2023-033 / SPSC-P-369]

- **EJ200 plastic scintillator bars:** 135cm x 6cm x 1cm
- **Readout** at both ends by **SiPM arrays**
- 3 columns of 111 vertically staggered bars (5mm overlap), 666 channels altogether
- Timestamp for SST
- **ToF identification** of particle decay products

Suppression of μ combinatorial BG

HS Detector: Particle Identification (pID) & Calorimeter (ECal / HCal)

[CERN-SPSC-2019-049 / SPSC-SR-263, CERN-SPSC-2023-033 / SPSC-P-369]

Integrated system of pID & calorimeter

Electromagnetic sampling calorimeter (ECal): 40 layers of thin Fe absorbers (1/20 λ each) & plastic scintillators

Compact hadron sampling calorimeter (HCal): 5 layers of thick Fe absorbers (1 λ each) & plastic scintillators

Total length: 7λ (> 99.5% π interaction probability)

1 – 3 MicroMeGaS high-precision layers

Possible 1m-air gap for additional μ stations

