Dark Sector searches at LHC and prospects for HL-LHC

Unveiling the invisible: connecting dark matter with the Standard Model 9.1.25 - LNGS

Livia Soffi

Dark sector searches at LHC

Common experimental challenges

program

Towards HL-LHC

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

Outline

Signature based physics

• Unexplained phenomena as gravity, dark matter, dark energy and experimental tensions as $g - 2\mu$, mW, $R(D_*)$ or X17 and fine-tuning problems: hierarchy problem, neutrino masses

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

New Physics Searches at LHC Dark Sector

- New interactions with the standard model (SM) can provide dark matter (DM) candidates
- New symmetries can solve other theoretical and fine-tuning problems
- New particles can explain experimental tensions
- Can have rich structure b/c dark sectors have their own dark charges, so are stable under their conservation laws
- Masses, couplings, gauge structures, portals, are very unconstrainted
- **Zoo of theories**: ALPs, WIMPs, SUSY, Hidden Valleys, Extra Dimensions, Axions, Dark Photons, ...

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

New Physics Searches at LHC Dark Sector

To avoid breaking SM symmetries, four commonly studied ways to communicate with DS:

- Spin-1 Portal: new U(1) interaction mixes with SM hypercharge
- Spin-O Portal: scalar (Higgs-like) or pseudoscalar (e.g. ALPs) that couple to DS
- Fermion Portal: Yukawa couplings between DS and SM fermions
- Neutrino Portal: HNLs mix with neutrinos

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

New Physics Searches at LHC Dark Sector STANDARD MODEL

To avoid breaking SM symmetries, four commonly studied ways to communicate with DS:

- Spin-1 Portal: new U(1) interaction mixes with SM hypercharge
- Spin-O Portal: scalar (Higgs-like) or pseudoscalar (e.g. ALPs) that couple to DS
- Fermion Portal: Yukawa couplings between DS and SM fermions
- Neutrino Portal: HNLs mix with neutrinos

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

LHC unique high-energy collision environment

Current Operational Highlights:

- Run 3 underway with $\sqrt{s} = 13.6$ TeV proton proton collisions
- Peak luminosities in key experiments (CMS 3.7e4 Hz/µb)
- Roughly **360/fb of data** collected for ongoing physics analysis
- **Dedicated heavy-ion runs** to study quark-gluon plasma and collective phenomena

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

LHC unique high-energy collision environment

Current Operational Highlights:

- Run 3 underway with $\sqrt{s} = 13.6$ TeV proton proton collisions
- Peak luminosities in key experiments (CMS 3.7e4 Hz/µb)
- Roughly **360/fb of data** collected for ongoing physics analysis
- **Dedicated heavy-ion runs** to study quark-gluon plasma and collective phenomena

• Insights from Run 3 will directly inform the High-Luminosity LHC (HL-LHC), set to begin in early 2030s.

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

A random LHC experiment: CMS

Silicon Tracker

Pixel (100 x 150 μ m) - 66M channels MicroStrips (80 x 180 μ m) - 9.6M channels

✓ P_T resolution ~ 1.5% @100 GeV ✓ dE/dx measurement

Electromagnetic CALorimeter

76K PbWO4 crystals

- Designed energy resolution ~0.5% for $E(\gamma) > 100 \text{ GeV}$
- ✓ Fast scintillation scale: > 80% of the light emitted in ~ 25 ns

Brass/Scintillator Hadron <u>Calorimeter</u>

Muon Chambers

Drift Tube - Cathode Strips Chambers - Resistive Plate Chambers

Single-point resolution ~ 200 μm
✓ σ_{DI} ~ 3ns
Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

 $\checkmark \sigma_{\rm CSC} \sim 7 \rm ns$

Mapping Uncharted Territory

Mapping Uncharted Territory

Overview of experimental signatures at LHC

MET+X searches

- DS produced recoiling against SM system
- Missing transverse energy since DS invisible

Portal resonances

- Known SM processes cross sections are affected by DS
- Search for bumps in mass distributions

m

 p_T^{miss}

Unconventional signatures

- More complicated DSs can produce signatures completely different from SM (disappearing tracks, emerging jets, displaced leptons, etc.)
- New reconstructed objects often necessary

Overview of experimental signatures at LHC

MET+X searches

- DS produced recoiling against SM system
- Missing transverse energy since DS invisible

Portal resonances

- Known SM processes cross sections are affected by DS
- Search for bumps in mass distributions

m

 p_T^{miss}

Unconventional signatures

- More complicated DSs can produce signatures completely different from SM (disappearing tracks, emerging jets, displaced leptons, etc.)
- New reconstructed objects often necessary

Overview of experimental signatures at LHC

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

MET+X searches

- DS produced recoiling against SM system
- Missing transverse energy since DS invisible

Portal resonances

- Known SM processes cross sections are affected by DS
- Search for bumps in mass distributions

m

.....

 p_T^{miss}

Unconventional signatures

 More complicated DSs can produce signatures completely different from SM (disappearing tracks, emerging jets, displaced leptons, etc.)

New reconstructed objects often necessary

Dedicated triggers and data streams

Common <u>experimental</u> Pileup mitigation and background removal <u>challenges</u>

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

Ad hoc objects reconstruction

Dedicated triggers and data streams

- Many triggers developed to target a wide variety of final states predicted by DS physics: stringent kinematic thresholds applied to keep low rates
- Challenges arise in obtaining sensitivity to theories w/ exotic topologies, e.g. new low-mass states

- Intense scouting/pakring Run 3 program with complex objects building upon Run 2 experience
- Dedicated triggers featuring special reconstruction for displaced or delayed objects deployed

Dedicated triggers and data streams

- Many triggers developed to target a wide variety of final states predicted by DS physics: stringent **kinematic thresholds** applied to keep low rates
- Challenges arise in obtaining sensitivity to theories w/ exotic topologies, e.g. new low-mass states

- Intense scouting/pakring Run 3 program with complex objects building upon Run 2 experience
- Dedicated triggers featuring special reconstruction for displaced or delayed objects deployed

Dedicated triggers and data streams

- arget a wide variable of final states predicted by DS physics: stringent kinematic thresholds app first time in Scouting data

- Intense scouting/pakring
- reconstruction for displaced or delayed objects deployed

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

A key ingredient for Dark Matter searches at LHC

MET vector : negative of vector sum of momenta of all particles transverse to the beam direction

MET : magnitude of MET vector

$$ec{P_T^{P_1}} + ec{P_T^{P_2}} = 0 = \sum_i ec{P_T^i}(measured)$$

$$\vec{P}_T^{miss} = -\sum_i \vec{P}_T^i(measured) \neq 0 \Rightarrow$$

Some particles are not detected (e.g. v, neutralino)

A key ingredient for Dark Matter searches at LHC

$$\vec{\mathbf{E}}_{T}^{miss} = -\sum_{i} \vec{E}_{T}^{i} \qquad \mathbf{E}_{T} = \left| \vec{\mathbf{E}}_{T}^{miss} \right|$$

First step to measure MET: understand what is going on in your detector !

- Beam background, cosmics, various kind of noise some of which not really expected.
- Special filters developed to eliminate noise, which could otherwise affect MET performance

Pileup mitigation

- Multiple pp interactions per LHC bunch crossing.
- Challenge: Distinguishing primary collision signals from overlapping events
- Increased particle multiplicity affects energy and momentum and **objects quality**.

Mitigation Techniques

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

• Pileup Per Particle Identification (PUPPI): assigns weights

Improve jet and Missing Energy (MET) resolution by

Pileup mitigation

- Multiple pp interactions per LHC bunch crossing.
- Challenge: Distinguishing primary collision signals from overlapping events
- Increased particle multiplicity affects energy and momentum and **objects quality**.

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

<u>Mitigation Techniques</u>

- primary interaction.
- suppressing pileup contributions.

• Pileup Per Particle Identification (PUPPI): assigns weights to particles based on their likelihood of originating from

Improve jet and Missing Energy (MET) resolution by

Ad hoc objects reconstruction

- Specific examples of LLP signatures include displaced and delayed leptons, photons, and jets; disappearing tracks; and nonstandard tracks
- Standard triggers, object reconstruction usually inadequate b/c designed for promptly decaying particles

Ad hoc objects reconstruction

- Specific examples of LLP signatures include displaced and delayed leptons, photons, and jets; disappearing tracks; and nonstandard tracks
- Standard triggers, object reconstruction usually inadequate b/c designed for promptly decaying particles

Ad hoc objects reconstruction

- Specific examples of LLP signatures include displaced and delayed leptons, photons, and jets; disappearing tracks; and nonstandard tracks
- Standard triggers, object reconstruction usually inadequate b/c designed for promptly decaying particles

<u>Signature</u> ifetime [ns] based Emerging jets <u>physics</u> <u>program</u> Prompt resonances, **SUEPs**

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

Long lived particles

% of invisible

MET based searches for invisible

- <u>Strategy:</u>
 - Invisible DS particles produced via mediator that couples to SM and DS
 - DS particles recoil against SM (jet, photon, V, Higgs, t/b, tt/bb, etc.)
- <u>Target:</u>
 - Simplified DM models (e.g. WIMPs) with **parameters**: *mmed*, *mDM*, *gq*, *gx*
 - Higgs portals
 - Any model with invisible decays! Very model independent search
- Dark Sector searches at LHC and prospects for HL-LHC Livia Soffi

The Mono-Jet search

400

600

800

1000

- Main Backgrounds

 - identified
- <u>Minor Backgrounds</u>

 - \circ y+jets
 - QCD multi-jet

Main Back. estimated from data considering **5** Control Regions

 \circ Z \rightarrow vv is the main background and is irreducible \circ W \rightarrow Iv when one lepton out of acceptance/not

• Top: mainly from semi-leptonic t

• Di-boson: WW and WZ production mainly

021

A mono-Jet search

CMS Experiment at the LHC, CERN

Data recorded: 2017-Jun-28 07:15:14 EDT

Run / Event / LS: 297620 / 285430183 / 201

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

Sensitivity from Mono-Jet

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

 As an example, the same mono-jet search can be reinterpreted for many DS/DM models

• Simplified DM models:

- WIMPs with vector, axial, pseudoscalars, fermion portals
 - $\circ B(H \rightarrow inv)$
 - Leptoquarks & other more complex models
- For WIMPs, can constrain directly *mDM* and *mmed*
 - Can interpret these as limits
 on σDM-nucleon
 - Compare with directdetection experiments

The Mono-Higgs search

Decay channel	Final state or category			
$h \rightarrow bb$	AK8 jet (Z'-2HDM) CA15 jet (Baryonic Z')			
$ m h ightarrow \gamma \gamma$	$p_{\mathrm{T}}^{\mathrm{miss}} \in 50130\mathrm{GeV}$ $p_{\mathrm{T}}^{\mathrm{miss}} > 130\mathrm{GeV}$			
h ightarrow au au	$rac{ au_{ m h} au_{ m h}}{\mu au_{ m h}}$ e $ au_{ m h}$			
$\textbf{h} \rightarrow \textbf{WW}$	ενμν			
$h \to ZZ$	$4e \\ 4\mu \\ 2e2u$			

arXiv:1908.01713

Mono-Higgs combination at CMS

 Channel selection needed for the big combination of II 5 channels

Object	$\textbf{h} \rightarrow \textbf{b}\textbf{b}$	$ m h ightarrow \gamma \gamma$	$h \rightarrow \tau \tau$	$\textbf{h} \rightarrow \textbf{W}\textbf{W}$	$h \rightarrow ZZ$
Electron	=0	_	=0	=0	=0
Muon	=0		=0	=0	=0
au lepton	=0		_	=0	
Photon	=0			_	
AK4 Jet	≤ 1	≤ 2		_	_
b tagged AK4 jet	=0	_	=0	=0	≤ 1

• The h → yy and h → ZZ channels exhibit better resolution in the reconstructed Higgs boson invariant mass, while the $h \rightarrow \pi$, $h \rightarrow WW$, and $h \rightarrow ZZ$ channels benefit from lower SM backgrounds, which results in a higher sensitivity for signals with a soft MET

Resonances searches

- <u>Strategy:</u>
 - New DS-SM mediator produced in pp collisions
 - Mediator decays back to SM (instead of decaying to DS like in MET+X scenario)
 - Look for Breit-Wigner resonances "bumps" in mass distributions
- <u>Target:</u>
 - **Model-independent limits** on $\sigma pp \rightarrow X B X \rightarrow SM SM A$ as function of *mmed*
 - Target high masses (~TeV) via traditional triggers and low masses (~GeV) via production of another particle to trigger on or via high-rate ("scouting") triggers

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

MET+X scenario) **ons**

on of *mmed* ses (~GeV) via production of another

GeV scale Dimuon Resonances with scouting

- Searching for light (1-8 GeV) BSM mediator decaying into a pair of opposite sign muons using Run II scouting data collected by CMS
- **Excellent resolution** allowed to "detect" unexpected peaking background from $D0 \rightarrow KK/K\pi$

- Most significant excess at 2.41 GeV in a boosted category • Local
- significance: 3.24σ , global significance 1.27σ

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

6 arXiv:2309
- opposite sign muons using Run II scouting data collected by CMS
- Upper limit on dark photon coupling (ε^2) at 90% CL

Low mass collimated pairs of leptons

Low-mass dijet search with Machine Learning

ParticleNet algorithm reconstructs Large Radius Jet w/ 2 pronged substructure

The high mass range and its excess

• Massive scalar diquark decaying to a pair of vector-like quarks, each decaying to a ug pair.

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

799997 arXiv:2206

- MET+X and resonance searches have excluded large phase space of simplified DM models like WIMPs throughout Run 1 and 2 of the LHC
- Important complementarity between colliders and direct detection experiments for simplified DM models
 - Spin dependence
 - Nature of mediator and dark matter particle(s)

CMS obs Vector m	ed., Dirac DM; g _q = 0.25, g _{DM} = 1.0
	Boosted dijet (77 fb ⁻¹) Phys. Rev. D 100 (2019) 112007
	Dijet+ISR j (18.3 fb ⁻¹) Phys. Lett. B 805 (2020) 135448
	b-tagged dijet (19.7 fb ⁻¹) Phys. Rev. Lett. 120 (2018) 201801
	Dijet (137 fb ⁻¹) JHEP 05 (2020) 033
	DM + Z_{II} (137 fb⁻¹) Eur. Phys. J. C 81 (2021) 13
·	DM + γ (35.9 fb ⁻¹) JHEP 02 (2019) 074
·	DM + j/V (137 fb ⁻¹) JHEP 11 (2021) 153
DD obse	erved exclusion 90% CL
	CRESST-III Phys. Rev. D 100 (2019) 102002
∃	DarkSide-50 Phys. Rev. D 107 (2023) 063001
<u> </u>	PandaX-4T Phys. Rev. Lett. 130 (2023) 021802
	XENONnT Phys. Rev. Lett. 131 (2023) 041003
	LZ Phys. Rev. Lett. 131 (2023) 041002

Unconventional signatures

- First-generation of searches at colliders found no convincing evidence for BSM
- New ideas (scouting, ML, etc.) are able to improve sensitivity (analyses re-iterated with Run 3 data (ongoing!))
- More complex DS models and/or alternative DM mechanisms (non WIMP) being investigated • Freeze-in, inelastic DM, FIMPs, etc.
- Give rise to new types of signatures that we don't typically reconstruct at colliders

Low mass particles in merged diphotons

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

31/43

section [fb]

cross

uo

Soft Unclustered Energy Patterns (SUEPs)

- Dark quark matter masses below $\Lambda D \rightarrow$ dark quarks hadronize in "dark shower"
- Large 't Hooft coupling → dark particles emitted isotropically
- Mass gap b/w dark hadrons < mass of portal state \rightarrow high multiplicity of soft dark particles
- Particularly interesting portal case: **portal mass = 125 GeV**

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

Soft Unclustered Energy Patterns (SUEPs)

- Dark quark matter masses below $\Lambda D \rightarrow$ dark quarks hadronize in "dark shower"
- Large 't Hooft coupling \rightarrow dark particles emitted isotropically
- Mass gap b/w dark hadrons < mass of portal state \rightarrow high multiplicity of soft dark particles
- Particularly interesting portal case: **portal mass = 125 GeV**

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

 \mathcal{O} Ń 403 arXiv:2

Displaced signatures: building upon new Run 3 triggers

CMS-DPS-2023-043

Displaced signatures: building upon new Run 3 triggers

-Xiv:2409.1080

Hidden sector searches complementarity

https://lpcc.web.cern.ch/content/lhc-bsm-wg

 Consolidated and broad overview of BSM LHC physics program and of current state of the art and plans from LHC experiments

Novel opportunities for Run 3

Towards HL-LHC

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

Prospects for HL-LHC

Accessing new phase space w/ timing detectors

Novel opportunities for Run 3

- Successful execution of the **B parking program during Run 2** garnered significant interest, propelling the evolution of the parking technique into a comprehensive and diverse program.
- Since 2022, the definition of data parking has shifted somewhat to include prompt reconstruction (i.e., processing typically starting within 48 hours), upon the availability of computing resources.
- New parking strategies enable efficient probing currently unexplored experimental signatures that may become of interest in the future.

VBF parking

Prospects at HL-LHC

• HL-LHC represents the ultimate evolution of LHC machine performance: operation at up to L=7.5.1034 Hz/cm²

- Major boost in statistics expected at HL-LHC from 2029:
- 3000 fb-1 for ATLAS&CMS, 50 fb-1 for LHCb 5 fb-1 for ALICE
- Pb-Pb (13 nb-1) and p-Pb (50 nb-1)

Raising the challenge at HL-LHC

- Pileup (PU) particularly challenging for data-taking: detector irradiation, higher occupancy and trigger rates
- Much higher collision rates will far exceed the capabilities of the existing detectors

140-200 vertices in beam-spot space [5 cm]

Raising the challenge at HL-LHC

- Pileup (PU) particularly challenging for data-taking: detector irradiation, higher occupancy and trigger rates
- Much higher collision rates will far exceed the capabilities of the existing detectors

140-200 vertices in beam-spot space [5 cm]

New timing detectors at LHC

Mip Timing Detector @CMS

High-Granularity Timing Detector @ ATLAS

TORCH @ LHCb

- Significant reduction of beamspot uncertainty w/ tens ps target resolution
- Remove pileup tracks and rejects spurious secondary vertices
- Extend the physics reach in precision measurements
- Provides a new capability for LLP searches and Particle ID

Detection of late photons with CMS MTD

- New **30 ps Mip Timing Detector (MTD)** essential to properly determine the primary vertex time and particles' time of flight
- Signatures with delayed photons: (ECAL time resolution: 30 ps)
- Weighted vertex time resolution: estimating number of tracks in barrel/endcap CMS Phase-2 Simulation 10⁶ cτ [cm] 10⁵ ECAL surface 10⁴ **MTD** surface 10^{3} 10² Secondary Vertex 10 Colliding LHC beams **Primary Vertex** Colliding LHC beams **Gemetrical Cente** 10large gain in sensitivity w.r.t. 10^{-2} 200 **ECAL only scenario**

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

CDS-LINk

CMS MTD as a time-of-flight detector

- Turn the MTD into a time of flight detector and look for anomalous moving **particles** (slow velocities, q!=1, large mass)
- Complement Muon Detector based searches at short lifetimes
- Promising performance through the entire HL-LHC data taking period

Dark sector searches in our light-cone

Run 3 provides a powerful platform to explore new physics through combination of higher energy,

Low-mass dimuon

increased luminosity, and improved experimental techniques

Some excesses around, w/o Run 3 result yet, to chase..e.g.:

HL-LHC will significantly increase physics reach: gains from **high lur** and new detector capabilities

Dark sector searches in our light-cone

Run 3 provides a powerful platform to explore new physics through combination of higher energy,

Low-mass dimuon

increased luminosity, and improved experimental techniques

Some excesses around, w/o Run 3 result yet, to chase..e.g.:

HL-LHC will significantly increase physics reach: gains from **high luminosity** and new detector capabilities

e.g. Long Lived Particles searches and Particle ID with timing detectors

Dark sector searches in our light-cone

Run 3 provides a powerful platform to explore new physics through combination of higher energy,

Low-mass dimuon

increased luminosity, and improved experimental techniques

Some excesses around, w/o Run 3 result yet, to chase..e.g.:

HL-LHC will significantly increase physics reach: gains from **high luminosity**

and new detector capabilities

e.g. Long Lived Particles searches and Particle ID with timing detectors

Next years will provide massive amount of new knowledge and we are expecting to exceed expectations!

Thank you for listening!

BSM searches since summer 2024

Reference	Торіс	Experiment	Model	<u> </u>	300	6
HDBS-2021-07	$H \rightarrow aa \rightarrow bb\tau\tau$	ATLAS		-		
HDBS-2020-11 and HDBS-2024-45	$H^{\pm} \rightarrow cs$ and $H^{+} \rightarrow Wh$	ATLAS		•		
HDBS-2023-19	Combination of charged Higgs searches	ATLAS				
HDBS-2021-08	$A \rightarrow \tau \tau$	ATLAS				
EXOT-2022-13	$t\bar{t}A \rightarrow t\bar{t}t\bar{t}$	ATLAS	Extended Higgs Sector			
HIG-24-002	$H \to ZZ \to 4l$	CMS				
HIG-22-004	$A \to Zh(\tau\tau)$	CMS	-			
SUS-24-001	$\phi \rightarrow bb$	CMS	-			
HIG-20-012	$X \to Y H \to 40$	CMS 🥰	-			
HIG-22-013	$A \rightarrow t t$	CMS 🦊				
EXOT-2018-55	Prompt Lepton-Jets	ATLAS		•		
EXOT-2022-04	Long Lived Particles in the hadronic calorim.	ATLAS				
HDBS-2021-09	$H \rightarrow Za \rightarrow llj$	ATLAS 🚅	Dark Sector	•		
SUS-23-004	mono-t	CMS				
SUS-23-012	${ m mono}{-}h(au au)$	CMS			-	
SUS-23-018	$H ightarrow Za ightarrow ll\chi\chi$	CMS				
SUS-24-004	pMSSM	CMS				
SUS-23-003	Compressed Supersymmetry	CMS	-			
ATLAS-CONF-2024-011	Run3 displaced leptons	ATLAS	Supersymmetry			
SUS-23-002 Supersymmetry w/ charged leptons and missing		CMS	-			
ATLAS-CONF-2024-008	Vector Like Leptons (VLL) 4321 model (tau	ATLAS	-			_
EXOT-2021-31	VLL (1st and 2nd gen)	ATLAS	-			_
EXOT-2021-02	Combination of VLQ	ATLAS				
EXOT-2022-43	VLQ Wb (0L)	ATLAS	Heavy Fermions			
TOPQ-2019-31	t-HNL	ATLAS 💻	-			
EXO-23-015	$\frac{\nabla LL}{t^*} \rightarrow ta$	CMS	-			_
B2G-22-005	$\iota \rightarrow \iota g$	CMS				
EXO-23-010	ll + b - jets, non - resonant	CMS	EFT		-	
EXOT-2022-33	Low mass dijet + ISR gamma	ATLAS				
EXOT-2020-26	Dark Higgs via Z'	ATLAS				
HDBS-2021-13	S into four leptons	ATLAS 📙	New Mediators			
EXO-24-007	Low mass dijet+ISR	CMS]			
EXO-22-006	$Z' \rightarrow \mu \mu + b - jets, resonant$	CMS				
EXO-22-013	t-channel scalar and vector leptoquark	CMS	Leptoquarks			

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

"RUN

00	900	Explored energy	range	2400	2700	3000	[GeV]
		•	- displaced				
-							
			- displaced				
		- d	isplaced				
		<					
	Ļ	== New w.r.t. ICHEP2024	Show	n today			

ATLAS Dark Matter summary

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

35

ATLAS SUSY summary

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

Home

CMS Heavy Resonances summary

Overview of CMS B2G Results

2

CMS Preliminary

	t [*] t* → tgtg, ℓ (spin-1/2)	Mt*	B2G-22-005 B2G-22-	⊢→	0.7 - 1.1		
	t [*] t [*] → tgtg, 1 (spin-3/2)	Mt*	005 JHEP 12 (2021) 106	\mapsto		0.7 – 1.7	
	b* b* tW → bqq̄ qq̄ (LH+RH)	Mb*	JHEP 12 (2021) 106 JHEP		\mapsto	-	
, KS	b [*] → tW → bqq̄ qq̄ (RH)	Mb*	12 (2021) 106 JHEP 04		\mapsto		- All and a second s
nal	→ tW → bqq̄ qq̄ (LH)	Mb*	(2022) 048 JHEP 04		\mapsto		1.4
σ	► $b^* \rightarrow tW \rightarrow bq\bar{q}\ell v$ (LH+RH)	Mb*	(2022) 048 JHEP 04	\mapsto			
ltec	▶ b [*] → tW → $bq\bar{q}\ell\nu$ (RH)	Mb*	(2022) 048 B2G-21-005	→			
U X C	▶ $b^* \rightarrow tW \rightarrow bq\bar{q} lv$ (LH)	Mb*	B2G-21-005 B2G-21-005	\mapsto			
	b^* → tW → blag (I H+RH)	Mb*	PRL 121 241802 (2018)		\mapsto		
	$b^* \rightarrow tW \rightarrow blog(RH)$	Mb*	PRL 121 241802 (2018)		\mapsto		ſ
	$b^* \rightarrow tW \rightarrow blog(1H)$	Mb*	EPJC 78 (2018) 707 PLB		►→		12 - 24
		MLÇ	-777-(2018)-39-PLB-820		03 -11		1.2 2.7
		MLÇ	(2021) 136535 PLB 820		0.3	-14	
		MLÇ	(2021) 136535 JHEP 05		0.5	1.4	
	$P W' \rightarrow tb 1 (RH) M > M' R W$	Ν.Λ	- (2024) - 046 - JHEP - 05		\rightarrow		
		Γ~I₩' ► Λ\ \ \	(2024) 046 JHEP 05				
	$ VV \rightarrow tb, 0l(DH) $	IVI V V ∧ /\ \ /	(2024) 046 JHEP 05				
•	$ = \sqrt{\sqrt{3}} $	ινι v v Λ/\Λ/	(2024) 046 JHEP 04				
	$ \Lambda / \rightarrow tb \ell DH / \Lambda / (-1/6) $	Γ¢Γ \ \ \ \	(2019) 031 JHEP 04				
	$ VV' \rightarrow tb, T th H / NtV'=10\% $	Γ¢Γ \ \ \ \	(2019) 031 JHEP 04				2.0
	$\wedge W' \rightarrow tb + h BH / M' = 10\%$	MW	(2019) 031 PRL 123				2.0 -
	$\nabla \overline{Z} = \pm \overline{E} \left(\frac{1}{2} \sqrt{2} - \frac{1}{2} \sqrt{2} \right)$	M7'	241801 (2019) EPJC 79				2.0
γ	$ \sum Z \rightarrow \text{tr} (MMZ - 30\%) $	M7'	(2019) 208 JHEP 09				
	$ \sum Z' \rightarrow \text{tt} (MMZ - 10\%) $	MZ'	(2022) 088 B2G-23-004	\mapsto			
ך 2	$ \sum \mathcal{L} \rightarrow \text{II} (M^{M} \mathcal{L} - 1\%) $	Ma	PRL 129 (2022) 021802	\rightarrow			
Ľ.	$ > \text{Stealth g} \rightarrow \chi \text{Uldd} \chi \text{-jets,} \text{MO}_{\chi} \text{-0.21eV}) $	MZ'	PRD 106 (2022) 012002		\mapsto	1.0 - 1.7	
rs/	$\triangleright Z' \rightarrow tT \rightarrow tZt/tHt \rightarrow \ell\nu + \text{Jets} (MI=1.5 \text{ IeV})$	MW	PLB 835 (2022) 137566 '		_	\mapsto	2.0 - 2.
De	► $VV^{+} \rightarrow Ib/Bt (MVLQ=2/3MVV)$					>	
, ot	▶ $g^{K} \rightarrow gR \rightarrow gWW (Q) (MR/MgKK=0.5)$	Мд _{кк}			\mapsto		
× ×	$\blacktriangleright_{WKK} \rightarrow RW \rightarrow WWW (\mathcal{Q} + 1) \ell$	MWk	K		H	>	
\prec	$\blacktriangleright_{WKK} \rightarrow RW \rightarrow WWW (\mathcal{A})$	MWk	K			>	
	► X → aa → bbbb (Ma=0.1TeV, MXN/f=8)	MX			\mapsto		1.0
					L		

Dark Sector searches at LHC and prospects for HL-LHC^O Livia Soffi¹

Resonances

Search for neutral particles decaying promptly to Collimated pairs of leptons

$\epsilon \gtrsim 10-5 - 10-3$: prompt γ d decays

 $O(10 \text{MeV}) < M_{\gamma_d} < O(10 \text{GeV})$

Background estimated datadrive taking the shape from CR based on # of LJ

LeptonJets (LJs): relatively small mass of the γd w.r.t. the Higgs boson implies decay products highly collimated

> Cambridge-Aachen clustering inclusive in the number of leptons adopted to reconstruct LJs (Total charge is zero)

<u>Search for low-mass resonances into</u>

hadrons + ISR

ParticleNET algorithm used to define separate signal regions targeting resonances decaying to bb pairs and to light quark pairs: Convolutional graph NN: 1st discriminant 2 prong vs QCD. 2nd discriminant flavor (bb/cc/other)

 $50 \text{GeV} < M_X < 300 \text{GeV}$

- X produced with large pT, due to significant initial state radiation (ISR)
- Circumvent huge rate of dijet events from the QCD
- Simultaneous fit of Jet mass in 5 pT SRs and CRs
- Maximum fluctuations in the observed (all flav): 2.2 σ (3.0 σ local) at m(Z') = 75GeV 1.9 σ (2.8 σ local) at m(Z') = 225GeV bb only: 2.6 σ (1.6 σ) at m(ϕ) = 75 GeV

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

62 bins in mSD between 40–350GeV and five pT bins with boundaries of 500, 550, 600, 700, 800, and 1200GeV

50

300

Scouting opportunities at Run 2 & 3

• Events processed in real time with reduced content, permitting recording of larger data samples.

Table 3: Comparisons of the event rate, event size, and total bandwidth between the standard and scouting trigger strategies, for an LHC fill corresponding to data collected in 2018 with $\mathcal{L}_{inst} \approx 1.8 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ at the start of the fill, one of the highest at the LHC in Run 2, and pileup around 50.

Data stream	Event rate [Hz]	Event size	Total bandwidth [MB/s]
Standard muons	600	0.86 MB	485
Standard jets/ $H_{\rm T}$	400	0.87 MB	385
Scouting Calo muons and Calo $H_{\rm T}$	5970	8.9 KB	45
Scouting PF jets and PF $H_{\rm T}$	1766	14.8 KB	25

Year	$\mathcal{L}_{ ext{inst}}$ [cm $^{-2}$ s $^{-1}$]	PU	Standard rate [Hz]	Parking rate [Hz]	Scouting rate [Hz]
2018	$1.2 imes 10^{34}$	38	1000	3000	5000
2022	$1.5 imes10^{34}$	46	1800	2440	22000
2023	$1.7 imes 10^{34}$	48	1700	2660	17000

61

 Higher order theory calculations and larger MC samples required to fully Dark Sector searches exploit the HL-LHC - Livia Soffi

good reconstruction efficiency

Increase detector granularity

Sophisticated detector

Increase data acquisition Increase processing power for online reconstruction
ATLAS and CMS Upgraded Detectors

Particles Interaction in CMS

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

Curves in B field: R=P/0.3B Signals in Tracker Energy deposit in ECAL No energy in HCAL

No curve in B field No signals in Tracker Energy deposit in ECAL No energy in HCAL

Charged hadron (e.g. pion)

Curves in B field: R=P/0.3B Signals in Tracker Possible energy deposit in ECAL Energy deposit in HCAL

Neutral hadron (e.g. neutron)

No curve in B field No signals in Tracker Possible energy deposit in ECAL Energy deposit in HCAL

Ricerche di Materia Oscura: mono-Jet background estimation

Derive binned MC based transfer factors (TF) to translate yields from CRs to SR

- NLO k-factors used to correct the TF prediction
- Theoretical and experimental uncertainties on TF added as nuisance parameter in the final fit

$$\mathcal{L}ikelihood model$$

$$\mathcal{L}_{c}(\mu^{Z \to \nu\nu}, \mu, \theta) = \prod_{i} \operatorname{Poisson} \left(d_{i}^{\gamma} | B_{i}^{\gamma}(\theta) + \frac{\mu_{i}^{Z \to \nu\nu}}{R_{i}^{\gamma}(\theta)} \right) \qquad \circ \mu_{i}^{Z \to \nu\nu} = Z$$

$$\sim \prod_{i} \operatorname{Poisson} \left(d_{i}^{Z} | B_{i}^{Z}(\theta) + \frac{\mu_{i}^{Z \to \nu\nu}}{R_{i}^{Z}(\theta)} \right) \qquad \circ \theta = \exp_{i} a$$

$$\circ \theta = \exp_{i} a$$

$$\circ \mu_{i}^{Z \to \nu\nu} x f_{i}(\theta)$$

$$\sim \prod_{i} \operatorname{Poisson} \left(d_{i}^{W} | B_{i}^{W}(\theta) + \frac{f_{i}(\theta)\mu_{i}^{Z \to \nu\nu}}{R_{i}^{W}(\theta)} \right) \qquad \circ \mu_{i}^{Z \to \nu\nu} x f_{i}(\theta)$$

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

BACK

- (inv)+jets rate, free to float
- inned transfer factors asaf E_T^{miss}
- and theo. nuisance parameters
- θ) = W+jets rate

Ricerche di Materia Oscura: mono-jet post-fit

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

BACK

Il rivelatore MTD The MTD Detector ETL: Si with internal gain (LGAD): • On the CE nose: 1.6 < |n| < 3.0

MIP timing detector (MTD) w/ ~30 ps precision $|\eta| < 3.0, p_T > 0.7 GeV$

ETL

- Radius: 315 < R < 1200 mm

BTL

BTL: LYSO bars + SiPM readout:

- TK / ECAL interface: $|\eta| < 1.45$
- Inner radius: 1148 mm (40 mm thick)
- Length: ±2.6 m along z
- Surface ~38 m²; 332k channels
- Fluence at 4 ab⁻¹: 2x10¹⁴ n_{eq}/cm²

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

 Position in z: ±3.0 m (45 mm thick) Surface ~14 m²; ~8.5M channels Fluence at 4 ab⁻¹: up to 2x10¹⁵ n_{eg}/cm²

BACK

- Currently, Run3 data are being analyzed.
- Interesting isolated event recorded by the ATLAS experiment (10.1103/PhysRevD.108.112005).
 - by searching for broader resonances as well.

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

CMS-EXO-21-010

SUEPs

- First dedicated search for SUEPs at the LHC +
 - Particularly interesting portal case: portal mass = 125 GeV +
 - Search can be generalized to several other models: other strongly coupled dark sectors, instantons, black holes in theories with extra spatial dimensions \rightarrow also SUEP signatures!
- Two production mechanisms under current investigation: +

Gluon Fusion Channel (ggF)

EXO-23-001 (Scouting) EXO-23-002 (Offline- this talk!)

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

Associated Production (ZH)

EXO-23-003

SUEPs

Dark Sector searches at LHC and prospects for HL-LHC - Livia Soffi

$$\frac{dN_{\phi}}{dp} \propto e^{-\sqrt{p^2 + m^2}/T}$$

$$N \sim \frac{m_{\rm S}}{m_{\phi}} \sim \frac{m_{\rm S}}{T}$$