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We are interested in creating a next generation Effective Field Theory (EFT) 
nucleon-nucleon interactions. 

These models should have robust uncertainty quantification:
• Parametric uncertainty
• Truncation uncertainty

This must be accomplished in the model calibration.
• Constrain only in relavent regimes

Next-Generation EFT Interactionsχ

JB et al. Phys. Rev. C 111, 
034005 (2025)
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Microscopic nuclear interactions 
can be formulated using EFT.

Potentials represented in 
expansions of Q ≡ p/Λb < 1
•  is a momentum or pion 

mass
p

•  is the symmetry breaking 
scale
Λb

A specific organization is known 
as a power counting.

Nuclear Potentials

Figure adapted from: M. Piarulli, JB, and I. Tews. Local Two- and Three-
Nucleon Interactions Within Chiral Effective Field Theory

Two nucleon Three nucleon
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We have model parameters (Low Energy Constants [LECs]) to infer. How?

Using Bayesian statistics:

pr(a |y, I) ∝ pr(y |a, I) pr(a | I)

Bayesian Inference

Probability of  given data  

posterior

a y Probability of data  given  

likelihood

y a Other belief in  
prior

a
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How do we calculate the likelihood?

Let’s say we have some experimental data, . For each piece of data, we assume this is 
given by 

⃗yexp

yexp = yth( ⃗a) + δy, δy ∼ 𝒩(0,Σ)
Naturally giving rise to the likelihood

pr(y⃗ | ⃗a) ∝ exp[( ⃗yth − ⃗yexp)TΣ−1( ⃗yth − ⃗yexp)]

Likelihood
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  δy(k)
th (x) = yref(x)

∞

∑
n=k+1

cnQn

by making a good set of assumptions.

• Statistics on ’s: cn 𝔼[cn] = 0, 𝔼[cncm] = c̄2δmn

Σth
ij = 𝔼 [δ(k)

th,iδ
(k)
th,j] − 𝔼 [δ(k)

th,i] 𝔼 [δ(k)
th,j] =

(yref,ic̄Qk+1
i )(yref,jc̄Qk+1

j )
1 − QiQj

Discrepancy Model
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Priority to understand scale 
of physical processes
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The hyperparameters come out of the order-by-order analysis:

cn,i =
yn

i − y(n−1)
i

yref,i Qn
i

With the degrees of freedom, i.e., number of data used
ν = ν0 + Nobsnc

and “scale” of the  distributionχ−2

τ2 =
1
ν

ν0τ0 + ∑
n,i

c2
n,i

Order-by-order Hyperparameters
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Hidden in the  in our distributions is the choice of interaction.I

This includes:
• Degrees of freedom
• Power counting
• Representation
• Regularization scheme

Interaction Choice
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To use these interactions, they must be regularized in some fashion and may be 
local in coordinate space (for QMC).

We employ a Gaussian cutoff in coordinate space, which smears 
-functions upon Fourier transformationδ

We choose  which are ~  in momentum space.Rs ∈ [1.5,2.0,2.5] fm
400
Rs

MeV

Regularization

f(r) =
1

π3/2R3
s

e−( r
Rs )

2
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To estimate all of these parameters, we need data to calibrate to.

Our choice of data is the pp and np Granada database (251 differential 
cross sections, 133 total cross sections, 4 polarized cross sections) up to 5 
MeV + deuteron binding energy + nn scattering length.

We then use Markov Chain Monte Carlo (MCMC) to sample the posteriors 
at LO , NLO , and N3LO , allowing for the order-by-order 

convergence analysis for LO NLO and NLO N3LO to estimate  and .
(Q0) (Q2) (Q4)

→ → c̄ Λb

Parameter Estimation Algorithm
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•  

•  

•  

•  

•

pr( ⃗a | I) ∼ 𝒩 ( ⃗aMAP
p.s. , ⃗102)

pr(Λb | I) ∼ 𝒩 (500 MeV,10002 MeV2)
pr(c̄2 | I) ∼ χ−2(ν0 = 1.5,τ2

0 = 1.52)

r(xi, xj; ⃗l) = e|pi−pj|/2lpe|θi−θj|/2lθδtypei,typej
, lp = 0.3 MeV, lθ = 20∘

psoft = {
pd ∼ 45 MeV/c, for np scalering

1/1app ∼ 25 MeV, for pp scalering .

Prior Choices
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• Motivation/Bayesian EFT Model Calibration 
• BUQEYE Formalism 
• Interaction Choice 
• Results

Outline
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We want to know how to apply our uncertainty quantifies results to nuclei.

Few problems:
• What is the momentum scale in bound systems?

• Easy for chiral interactions: p ≈ mπ

• Not so easy for pionless interactions
• three-nucleon interactions are important, and we do not have 

uncertainty quantification for these

Applications to Few-Body Systems
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We can also examine power-counting problems. 

Improving Power-Counting

We (possibly) demonstrated a means to identify 
non-systematic organization for the nuclear 
interaction.

We already knew this was problematic.

How do we fix this? 
• Re-counting the index of interactions
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• EFT interactions provide a systematic framework for microscopic nuclear 
interactions. 
• Enable rigorous uncertainty quantification. 

• Bayesian analysis is a useful tool in EFT contexts. 
• Uncertainty quantification 
• Extract information of physics from data 

• E.g., inconsistencies in EFT power counting 
“Bayesian analysis is like having a discussion with data.” 
What can the data tell us about the physics we want to explore?

Summary
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