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Posterior Likelvihood Pr;()r
How do we calculate the likelihood?

Let’s say we have some experimental data, iexp. For each piece of data, we assume this is

given by
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Hidden in the [ in our distributions is the choice of interaction.

This includes:

e Degrees of freedom
e Power counting

e Representation

e Regularization scheme
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To use these interactions, they must be regularized in some fashion and may be
local in coordinate space (for QMC).

We employ a Gaussian cutoff in coordinate space, which smears

o-functions upon Fourier transformation

400

We choose R, € [1.5,2.0,2.5] fm which are NT MeV in momentum space.

S
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Parameter Estimation Algorithm

To estimate all of these parameters, we need data to calibrate to.

Our choice of data is the pp and np Granada database (251 differential
cross sections, 133 total cross sections, 4 polarized cross sections) up to 5
MeV + deuteron binding energy + nn scattering length.

We then use Markov Chain Monte Carlo (MCMC) to sample the posteriors
at LO (QO), NLO (Qz), and N3LO (Q4), allowing for the order-by-order
convergence analysis for LO—NLO and NLO—N3LO to estimate ¢ and /\,.
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Prior Choices

cpr@|l) ~ A (ﬁyﬁp, 1()2)

. pr(Ay | D) ~ A (500 MeV,1000* MeV?)
. pr(c*| D) ~ y (v = 1.5,7; = 1.5%)

o F(X; X5 1) = o IP=D112L,,10~0]112ly5

ypestyper  bp = 0.3 MeV, [y = 20

p,~ 45 MeV/c, fornp scattering
o Fsoft = l/lapp ~ 25 MeV, for pp scattering.

19



Outline

e Results
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2.5 fm ¢ and A, Posteriors

NLO N3LO
Ay Ay
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2.0 fm ¢ and A, Posteriors
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1.5 fm ¢ and A, Posteriors

NLO N3LO
Ab Ab
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Power-Counting Problem?

For our analysis, we used naive dimensional analysis for the power-
counting, which is known to be problematic.

26



Power-Counting Problem?

For our analysis, we used naive dimensional analysis for the power-
counting, which is known to be problematic.

90 -

—
——___‘
-
—~
~
-~
—
—
-~

80 ’ . — : =

Ab; MeV

60 -

50 NLO
—-e-- N3LO

0.5 1.0 1.5 2.0 25
R, fm

JB et al. Phys. Rev. C 111, 034005 (2025)



Power-Counting Problem?

For our analysis, we used naive dimensional analysis for the power-
counting, which is known to be problematic.
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Propagation of Errors for Deuteron
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Propagation of Errors for Deuteron

)95 % Confidence interval — ~ 150 % uncertainty

pr(y,, |y, x, 1) = |dadc* dA, N (yth (a,x), 2, (52, Ab) ) X

Filled: pr(aly, Dpr(¢” | Ay, a, Dpr(A,|a, 1),
NLO

e Poorly constrained d-waves
Empty: e 2b corrections at O(Q°)
N3LO —SHOULD BE CONSISTENT

WITH O
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Applications to Few-Body Systems

We want to know how to apply our uncertainty quantifies results to nuclei.

Few problems:

e What is the momentum scale in bound systems?
e Easy for chiral interactions: p ~ m

e Not so easy for pionless interactions

e three-nucleon interactions are important, and we do not have
uncertainty quantification for these

28
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Improving Power-Counting

We can also examine power-counting problems.
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2.0

We (possibly) demonstrated a means to identify
non-systematic organization for the nuclear
Interaction.

We already knew this was problematic.

How do we fix this?
e Re-counting the index of interactions
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Summary

e EFT interactions provide a systematic framework for microscopic nuclear
Interactions.

e Enable rigorous uncertainty quantification.
e Bayesian analysis is a useful tool in EFT contexts.
e Uncertainty quantification
e Extract information of physics from data
e E.g., Inconsistencies in EFT power counting
“Bayesian analysis is like having a discussion with data.”
What can the data tell us about the physics we want to explore?
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