Bayes-ic Interactions -Bayesian analysis of nucleon-nucleon scattering data in pionless effective field theory

Jason Bub

In collaboration with: Maria Piarulli, Dick Furnstahl, Saori Pastore, and Daniel Phillips

Marciana 2025 - Lepton Interactions with Nucleons and Nuclei 26 June 2025

Outline

- Motivation/Bayesian EFT Model Calibration
- BUQEYE Formalism
- Interaction Choice
- Results

Outline

 Motivation/Bayesian EFT Model Calibration • **BUQEYE Formalism** Interaction Choice • Results

JB et al. Phys. Rev. C **111**, 034005 (2025)

1

l I

nucleon-nucleon interactions.

We are interested in creating a next generation Effective Field Theory (EFT)

We are interested in creating a next generation Effective Field Theory (EFT) nucleon-nucleon interactions.

These models should have robust uncertainty quantification:

We are interested in creating a next generation Effective Field Theory (EFT) nucleon-nucleon interactions.

These models should have robust uncertainty quantification:

Parametric uncertainty

We are interested in creating a next generation Effective Field Theory (EFT) nucleon-nucleon interactions.

These models should have robust uncertainty quantification:

- Parametric uncertainty
- Truncation uncertainty

We are interested in creating a next generation Effective Field Theory (EFT) nucleon-nucleon interactions.

These models should have robust uncertainty quantification:

- Parametric uncertainty
- Truncation uncertainty

This must be accomplished in the model calibration.

We are interested in creating a next generation Effective Field Theory (EFT) nucleon-nucleon interactions.

These models should have robust uncertainty quantification:

- Parametric uncertainty
- Truncation uncertainty

This must be accomplished in the model calibration.

• Constrain only in relavent regimes

Microscopic nuclear interactions can be formulated using EFT.

LO

NLO (p/Λ_b)

 $N^{2}LO$ (p/Λ_b)

N³LO (p/Λ_b)

N⁴LO (p/Λ_b)

 $N^{5}LO$ $\left(p/\Lambda_b\right)^6$

Microscopic nuclear interactions can be formulated using EFT.

Potentials represented in expansions of $Q \equiv p/\Lambda_b < 1$

LO $\left(p/\Lambda_b\right)^0$

NLO (p/Λ_b)

N²LO (p/Λ_b)

 (p/Λ_b)

N⁴LO (p/Λ_b)

N⁵LO $\left(p/\Lambda_b\right)^6$

Microscopic nuclear interactions can be formulated using EFT.

Potentials represented in expansions of $Q \equiv p/\Lambda_b < 1$

Microscopic nuclear interactions can be formulated using EFT.

Potentials represented in expansions of $Q \equiv p/\Lambda_b < 1$

p is a momentum or pion mass

Microscopic nuclear interactions can be formulated using EFT.

Potentials represented in expansions of $Q \equiv p/\Lambda_b < 1$

- *p* is a momentum or pion mass
- Λ_b is the symmetry breaking scale

Microscopic nuclear interactions can be formulated using EFT.

Potentials represented in expansions of $Q \equiv p/\Lambda_b < 1$

- *p* is a momentum or pion mass
- Λ_b is the symmetry breaking scale

LO

NLO (p/Λ_b)

 $N^{2}LO$ (p/Λ_b)

N³LO (p/Λ_b)

N⁴LO (p/Λ_b)

N⁵LO $(p/\Lambda_b)^6$

Two nucleon

3N

Microscopic nuclear interactions can be formulated using EFT.

Potentials represented in expansions of $Q \equiv p/\Lambda_b < 1$

- *p* is a momentum or pion mass
- Λ_b is the symmetry breaking scale

 $LO
 <math>
 \left(p/\Lambda_b \right)^c$

NLO (p/Λ_b)

 ${
m N^2LO} \left(p/\Lambda_b
ight)$

 $N^{3}LO$ (p/Λ_{b})

 ${
m N^4LO} \left(p/\Lambda_b
ight)$

 ${
m N^5LO} {\left(p/\Lambda_b
ight)^6}$

Microscopic nuclear interactions can be formulated using EFT.

Potentials represented in expansions of $Q \equiv p/\Lambda_b < 1$

- *p* is a momentum or pion mass
- Λ_b is the symmetry breaking scale

LO (p/Λ_b)

NLO (p/Λ_b)

 ${
m N^2LO} \left(p/\Lambda_b
ight)$

 $N^{3}LO$ (p/Λ_{b})

 ${
m N^4LO} \left(p/\Lambda_b
ight)$

 ${
m N^5LO} {\left(p/\Lambda_b
ight)^6}$

Microscopic nuclear interactions can be formulated using EFT.

Potentials represented in expansions of $Q \equiv p/\Lambda_b < 1$

- *p* is a momentum or pion mass
- Λ_b is the symmetry breaking scale

 ${
m LO} {\left(p/\Lambda_b
ight)^0}$

NLO (p/Λ_b)

 ${
m N^2LO} \left(p/\Lambda_b
ight)$

 $N^{3}LO$ (p/Λ_{b})

 ${
m N^4LO} \left(p/\Lambda_b
ight)$

 ${
m N^5LO} {\left(p/\Lambda_b
ight)^6}$

Microscopic nuclear interactions can be formulated using EFT.

Potentials represented in expansions of $Q \equiv p/\Lambda_b < 1$

- *p* is a momentum or pion mass
- Λ_b is the symmetry breaking scale

A specific organization is known as a power counting.

LO $<math>(p/\Lambda_b)^0$

NLO (p/Λ_b)

 ${
m N^2LO}\left(p/\Lambda_b
ight)$

 $N^{3}LO$ (p/Λ_{b})

 ${
m N^4LO}\ (p/\Lambda_b)$

 ${
m N^5LO} {\left(p/\Lambda_b
ight)^6}$

5

Power-counting not only lets us improve our description, but allows us to quantify the effect of neglecting physics - a strength of EFT.

5

Power-counting not only lets us improve our description, but allows us to quantify the effect of neglecting physics - a strength of EFT. For any quantity, y, we assume it is described by the expansion

5

Power-counting not only lets us improve our description, but allows us to quantify the effect of neglecting physics - a strength of EFT. For any quantity, y, we assume it is described by the expansion

orders the interaction.

5

$$\sum_{i=0}^{\infty} y^{(i)}Q^i$$

Power-counting not only lets us improve our description, but allows us to quantify the effect of neglecting physics - a strength of EFT. For any quantity, y, we assume it is described by the expansion

where $y^{(i)}$ is calculated using a potential at order *i*, and *Q* is the parameter that orders the interaction.

$$\sum_{i=0}^{\infty} y^{(i)}Q^i$$

Power-counting not only lets us improve our description, but allows us to quantify the effect of neglecting physics - a strength of EFT. For any quantity, y, we assume it is described by the expansion

orders the interaction.

Truncating this tells us what we are ne

$$\sum_{i=0}^{\infty} y^{(i)}Q^i$$

eglecting:
$$y_k = \sum_{i=0}^k y^{(i)}Q^i + \delta y^{(k)}$$

Power-counting not only lets us improve our description, but allows us to quantify the effect of neglecting physics - a strength of EFT. For any quantity, y, we assume it is described by the expansion

orders the interaction.

$$\sum_{i=0}^{\infty} y^{(i)}Q^i$$

Power-counting not only lets us improve our description, but allows us to quantify the effect of neglecting physics - a strength of EFT. For any quantity, y, we assume it is described by the expansion

orders the interaction.

Truncating this tells us what we are neglecting: $y_k \neq 0$

$$\sum_{i=0}^{\infty} y^{(i)}Q^i$$

To understand this discrepancy, we apply a Bayesian framework to statistical models.

To understand this discrepancy, we apply a Bayesian framework to statistical models.

What do I mean by this?

To understand this discrepancy, we apply a Bayesian framework to statistical models.

What do I mean by this?

 $y = y_{th}(\mathbf{a}) + \delta y$

To understand this discrepancy, we apply a Bayesian framework to statistical models.

What do I mean by this?

Quantity we $y = y_{th}(\mathbf{a}) + \delta y$ want to describe

To understand this discrepancy, we apply a Bayesian framework to statistical models.

What do I mean by this?

Quantity we **y** want to describe Model output

To understand this discrepancy, we apply a Bayesian framework to statistical models.

What do I mean by this?

Model parameters

Quantity we want to describe

Model output

To understand this discrepancy, we apply a Bayesian framework to statistical models.

What do I mean by this?

Model parameters

Quantity we want to describe

Model output

To understand this discrepancy, we apply a Bayesian framework to statistical models.

What do I mean by this?

Model parameters

Quantity we want to describe

Model output

To understand this discrepancy, we apply a Bayesian framework to statistical models.

What do I mean by this?

Model parameters

Quantity we want to describe

Model output

To understand this discrepancy, we apply a Bayesian framework to statistical models.

To understand this discrepancy, we apply a Bayesian framework to statistical models.

We have model parameters (Low Energy Constants [LECs]) to infer. How?

We have model parameters (Low Energy Constants [LECs]) to infer. How?

Using Bayesian statistics:

We have model parameters (Low Energy Constants [LECs]) to infer. How?

Using Bayesian statistics:

$pr(\mathbf{a} | \mathbf{y}, I) \propto pr(\mathbf{y} | \mathbf{a}, I) pr(\mathbf{a} | I)$

We have model parameters (Low Energy Constants [LECs]) to infer. How?

Using Bayesian statistics:

Probability of a given data y

posterior

$pr(\mathbf{a} | \mathbf{y}, I) \propto pr(\mathbf{y} | \mathbf{a}, I) pr(\mathbf{a} | I)$

We have model parameters (Low Energy Constants [LECs]) to infer. How?

Using Bayesian statistics:

$$pr(\mathbf{a} \mid \mathbf{y}, I) \propto pr(\mathbf{y} \mid \mathbf{a}, I) pr(\mathbf{a} \mid I)$$

data \mathbf{y} Probability of data \mathbf{y} given \mathbf{a}
likelihood

Probability of **a** given data **y** Pr

posterior

We have model parameters (Low Energy Constants [LECs]) to infer. How?

Using Bayesian statistics:

$$pr(\mathbf{a} | \mathbf{y}, I) \propto$$

Probability of **a** given data **y** Pr

posterior

We have

We have

Posterior

$pr(\vec{a} | \vec{y}, I) \propto pr(\vec{y} | \vec{a}) pr(\vec{a} | I)$

Likelihood Prior

We have

Posterior

How do we calculate the likelihood?

$pr(\vec{a} | \vec{y}, I) \propto pr(\vec{y} | \vec{a}) pr(\vec{a} | I)$

Likelihood Prior

We have

Posterior

How do we calculate the likelihood? given by

- $pr(\vec{a} | \vec{y}, I) \propto pr(\vec{y} | \vec{a}) pr(\vec{a} | I)$
 - Likelihood Prior
- Let's say we have some experimental data, \vec{y}_{exp} . For each piece of data, we assume this is

We have

Posterior

How do we calculate the likelihood? given by

$$y_{\exp} = y_{th}(\vec{a})$$

- $pr(\vec{a} | \vec{y}, I) \propto pr(\vec{y} | \vec{a}) pr(\vec{a} | I)$
 - Likelihood Prior
- Let's say we have some experimental data, \vec{y}_{exp} . For each piece of data, we assume this is
 - + δy , $\delta y \sim \mathcal{N}(0,\Sigma)$

We have

Posterior

How do we calculate the likelihood? given by

$$y_{\exp} = y_{th}(\vec{a})$$
 -

Naturally giving rise to the likelihood

- $pr(\vec{a} | \vec{y}, I) \propto pr(\vec{y} | \vec{a}) pr(\vec{a} | I)$
 - Likelihood Prior
- Let's say we have some experimental data, \vec{y}_{exp} . For each piece of data, we assume this is
 - + δy , $\delta y \sim \mathcal{N}(0,\Sigma)$

We have

Posterior

How do we calculate the likelihood? given by

$$y_{\exp} = y_{th}(\vec{a})$$
 -

Naturally giving rise to the likelihood

$$\operatorname{pr}(\vec{y} \mid \vec{a}) \propto \exp\left[\left(\vec{y}_{th} - \vec{y}_{exp}\right)^T \Sigma^{-1} \left(\vec{y}_{th} - \vec{y}_{exp}\right)\right]$$

 $pr(\vec{a} | \vec{y}, I) \propto pr(\vec{y} | \vec{a}) pr(\vec{a} | I)$

Likelihood Prior

Let's say we have some experimental data, \vec{y}_{exp} . For each piece of data, we assume this is

 $+ \delta y, \quad \delta y \sim \mathcal{N}(0, \Sigma)$

Outline

- Motivation/Bayesian EFT Model Calibration
- BUQEYE Formalism
- Interaction Choice
- Results

X +++

We describe our model with $y = y_{th}(\mathbf{a}) + \delta y$, but what is δy ?

We describe our model with $y = y_{th}(\mathbf{a}) + \delta y$, but what is δy ?

The discrepancy comes in two parts:

We describe our model with $y = y_{th}(\mathbf{a}) + \delta y$, but what is δy ?

The discrepancy comes in two parts:

• Data uncertainty: δy_{exp}

We describe our model with $y = y_{th}(\mathbf{a}) + \delta y$, but what is δy ?

The discrepancy comes in two parts:

• Data uncertainty: δy_{exp} - Known

We describe our model with $y = y_{th}(\mathbf{a}) + \delta y$, but what is δy ?

The discrepancy comes in two parts:

- Data uncertainty: δy_{exp} Known
- Model uncertainty: δy_{th}

We describe our model with $y = y_{th}(\mathbf{a}) + \delta y$, but what is δy ?

The discrepancy comes in two parts:

- Data uncertainty: δy_{exp} Known
- Model uncertainty: δy_{th} Needs to modeled

We describe our model with $y = y_{th}(\mathbf{a}) + \delta y$, but what is δy ?

The discrepancy comes in two parts:

- Data uncertainty: δy_{exp} Known
- Model uncertainty: δy_{th} Needs to modeled

We model the model uncertainty by assuming

$$y_{\text{th}}(x) = y_{\text{ref}}(x) \sum_{n=0}^{k} c_n Q^n + y_r$$

We describe our model with $y = y_{th}(\mathbf{a}) + \delta y$, but what is δy ?

The discrepancy comes in two parts:

- Data uncertainty: δy_{exp} Known
- Model uncertainty: δy_{th} Needs to modeled

We model the model uncertainty by assuming

$$y_{\text{th}}(x) = y_{\text{ref}}(x) \sum_{n=0}^{k} c_n Q^n + y_r$$

We describe our model with $y = y_{th}(\mathbf{a}) + \delta y$, but what is δy ?

The discrepancy comes in two parts:

- Data uncertainty: δy_{exp} Known
- Model uncertainty: δy_{th} Needs to modeled We model the model uncertainty by assuming $r_{ref}(x) \sum_{n=k+1} c_n Q^n = y_{th}^{(k)}(x) + \delta y_{th}^{(k)}(x)$

$$y_{\text{th}}(x) = y_{\text{ref}}(x) \sum_{n=0}^{k} c_n Q^n + y_r$$

We describe our model with $y = y_{th}(\mathbf{a}) + \delta y$, but what is δy ?

The discrepancy comes in two parts:

- Data uncertainty: δy_{exp} Known
- Model uncertainty: δy_{th} Needs to modeled

We model the model uncertainty by assuming

$$y_{\text{th}}(x) = y_{\text{ref}}(x) \sum_{n=0}^{k} c_n Q^n + y_r$$

$\delta y_{\text{th}}^{(k)}(x) + \delta y_{\text{th}}^{(k)}(x)$ < th `` *n=k*+1 Prediction

We describe our model with $y = y_{th}(\mathbf{a}) + \delta y$, but what is δy ?

The discrepancy comes in two parts:

- Data uncertainty: δy_{exp} Known
- Model uncertainty: δy_{th} Needs to modeled

We model the model uncertainty by assuming

$$y_{\text{th}}(x) = y_{\text{ref}}(x) \sum_{n=0}^{k} c_n Q^n + y_r$$

$\operatorname{ref}(X)$ (\mathcal{X}) th *n*=*k*+1 Uncertainty Prediction

Discrepancy Model

Discrepancy Model

We can find an estimate for the effects of

$$\delta y_{\rm th}^{(k)}(x) =$$

by making a good set of assumptions.

11

Freets of $y_{ref}(x) \sum_{n=k+1}^{\infty} c_n Q^n$

Discrepancy Model

We can find an estimate for the effects of

$$\delta y_{\text{th}}^{(k)}(x) =$$

by making a good set of assumptions.

• Statistics on c_n 's: $\mathbb{E}[c_n] = 0$, $\mathbb{E}[c_n] = 0$

11

$y_{ref}(x) \sum c_n Q^n$ n=k+1

$$[c_n c_m] = \bar{c}^2 \delta_{mn}$$
Discrepancy Model

We can find an estimate for the effects of

by making a good set of assumptions.

• Statistics on c_n 's: $\mathbb{E}[c_n] = 0$, $\mathbb{E}[c_n c_m] = \bar{c}^2 \delta_{mn}$

$$\Sigma_{ij}^{\text{th}} = \mathbb{E}\left[\delta_{\text{th},i}^{(k)}\delta_{\text{th},j}^{(k)}\right] - \mathbb{E}\left[\delta_{\text{th},i}^{(k)}\right]\mathbb{E}$$

 $\delta y_{\text{th}}^{(k)}(x) = y_{\text{ref}}(x) \sum_{n=1}^{\infty} c_n Q^n$ n=k+1

 $\left[\delta_{\text{th},j}^{(k)}\right] = \frac{\left(y_{\text{ref},i}\bar{c}Q_i^{k+1}\right)\left(y_{\text{ref},j}\bar{c}Q_j^{k+1}\right)}{1}$ $1 - Q_i Q_j$

For our models, we want to estimate the total probability distribution

For our models, we want to estimate the total probability distribution

$\operatorname{pr}(\mathbf{a}, \overline{c}^2, \Lambda_b | \mathbf{y}, I) \propto \operatorname{pr}(\mathbf{y} | \mathbf{a}, \overline{c}^2, \Lambda_b, I) \operatorname{pr}(\mathbf{a} | I) \operatorname{pr}(\overline{c}^2 | \Lambda_b, \mathbf{a}, I) \operatorname{pr}(\Lambda_b | \mathbf{a}, I)$

pr(
$$\mathbf{a}, \bar{c}^2, \Lambda_b | \mathbf{y}, I$$
) $\propto \text{pr}(\mathbf{y} | \mathbf{a}, \bar{c}^2, \Lambda)$
 $\mathbf{x} e^{(\mathbf{y}_{exp} - \mathbf{y}_{th})^T \Sigma^{-1} (\mathbf{y}_{exp} - \mathbf{y}_{th})}$

For our models, we want to estimate the total probability distribution

$\Lambda_b, I) \operatorname{pr}(\mathbf{a} | I) \operatorname{pr}(\overline{c}^2 | \Lambda_b, \mathbf{a}, I) \operatorname{pr}(\Lambda_b | \mathbf{a}, I)$

pr(**a**,
$$\bar{c}^2$$
, $\Lambda_b | \mathbf{y}, I$) \propto pr(**y** | **a**, \bar{c}^2 , Λ_b
× $e^{(\mathbf{y}_{exp} - \mathbf{y}_{th})^T \Sigma^{-1} (\mathbf{y}_{exp} - \mathbf{y}_{th})}$
Multivariate Gaussian

For our models, we want to estimate the total probability distribution

$\Lambda_b, I) \operatorname{pr}(\mathbf{a} | I) \operatorname{pr}(\overline{c}^2 | \Lambda_b, \mathbf{a}, I) \operatorname{pr}(\Lambda_b | \mathbf{a}, I)$

 $\propto e^{(\mathbf{y}_{exp}-\mathbf{y}_{th})^{\mathrm{T}}\Sigma^{-1}(\mathbf{y}_{exp}-\mathbf{y}_{th})}$ Multivariate Gaussian ~ $\mathcal{N}(\mu, \Sigma_{\text{prior}})$

For our models, we want to estimate the total probability distribution

$\operatorname{pr}(\mathbf{a}, \bar{c}^2, \Lambda_b | \mathbf{y}, I) \propto \operatorname{pr}(\mathbf{y} | \mathbf{a}, \bar{c}^2, \Lambda_b, I) \operatorname{pr}(\mathbf{a} | I) \operatorname{pr}(\bar{c}^2 | \Lambda_b, \mathbf{a}, I) \operatorname{pr}(\Lambda_b | \mathbf{a}, I)$

 $\mathbf{x} e^{(\mathbf{y}_{exp} - \mathbf{y}_{th})^{\mathrm{T}} \Sigma^{-1} (\mathbf{y}_{exp} - \mathbf{y}_{th})}$ Multivariate Gaussian $(\mu, \Sigma_{\text{priot}})$

For our models, we want to estimate the total probability distribution

$\operatorname{pr}(\mathbf{a}, \bar{c}^2, \Lambda_b | \mathbf{y}, I) \propto \operatorname{pr}(\mathbf{y} | \mathbf{a}, \bar{c}^2, \Lambda_b, I) \operatorname{pr}(\mathbf{a} | I) \operatorname{pr}(\bar{c}^2 | \Lambda_b, \mathbf{a}, I) \operatorname{pr}(\Lambda_b | \mathbf{a}, I)$ $\sim \chi^{-2}(\nu,\tau^2)$

 $\mathbf{x} e^{(\mathbf{y}_{exp} - \mathbf{y}_{th})^{\mathrm{T}} \Sigma^{-1} (\mathbf{y}_{exp} - \mathbf{y}_{th})}$ Multivariate Gaussian

For our models, we want to estimate the total probability distribution

 $\mathbf{x} e^{(\mathbf{y}_{exp} - \mathbf{y}_{th})^{\mathrm{T}} \Sigma^{-1} (\mathbf{y}_{exp} - \mathbf{y}_{th})}$ **Multivariate Gaussian**

For our models, we want to estimate the total probability distribution

$\operatorname{pr}(\mathbf{a}, \bar{c}^2, \Lambda_b | \mathbf{y}, I) \propto \operatorname{pr}(\mathbf{y} | \mathbf{a}, \bar{c}^2, \Lambda_b, I) \operatorname{pr}(\mathbf{a} | I) \operatorname{pr}(\bar{c}^2 | \Lambda_b, \mathbf{a}, I) \operatorname{pr}(\Lambda_b | \mathbf{a}, I)$ $(\nu, \tau^2) \propto \frac{\operatorname{pr}(\Lambda_b | I)}{1}$ $\sim \chi^{-2}$ Hyperparameters found in order-by-order calculations

 $\mathbf{x} e^{(\mathbf{y}_{exp} - \mathbf{y}_{th})^{\mathrm{T}} \Sigma^{-1} (\mathbf{y}_{exp} - \mathbf{y}_{th})}$ **Multivariate Gaussian**

For our models, we want to estimate the total probability distribution

$\operatorname{pr}(\mathbf{a}, \bar{c}^2, \Lambda_b | \mathbf{y}, I) \propto \operatorname{pr}(\mathbf{y} | \mathbf{a}, \bar{c}^2, \Lambda_b, I) \operatorname{pr}(\mathbf{a} | I) \operatorname{pr}(\bar{c}^2 | \Lambda_b, \mathbf{a}, I) \operatorname{pr}(\Lambda_b | \mathbf{a}, I)$ $(\nu, \tau^2) \sim \underline{\operatorname{pr}(\Lambda_b | I)}$ $\sim \chi^{-2}$ Hyperparameters found in Priority to understand scale order-by-order calculations of physical processes

The hyperparameters come out of the order-by-order analysis:

 $c_{n,i} =$

$$\frac{y_i^n - y_i^{(n-1)}}{y_{\text{ref},i} Q_i^n}$$

The hyperparameters come out of the order-by-order analysis:

 $c_{n,i} =$

With the degrees of freedom, i.e., number of data used $\nu = \iota$

$$y_i^n - y_i^{(n-1)}$$
$$y_{\text{ref},i} Q_i^n$$

$$\nu_0 + N_{\rm obs} n_c$$

The hyperparameters come out of the order-by-order analysis:

 $c_{n,i} =$

With the degrees of freedom, i.e., number of data used $\nu = \iota$ and "scale" of the χ^{-2} distribution _2 \mathcal{V}

$$y_i^n - y_i^{(n-1)}$$
$$y_{\text{ref},i} Q_i^n$$

$$\nu_0 + N_{\rm obs} n_c$$

$$\nu_0 \tau_0 + \sum_{n,i} c_{n,i}^2$$

Outline

Motivation/Bayesian EFT Model Calibration BUQEYE Formalism Interaction Choice

Results

Hidden in the I in our distributions is the choice of interaction.

Hidden in the I in our distributions is the choice of interaction.

This includes:

Hidden in the I in our distributions is the choice of interaction.

This includes:

Degrees of freedom

Hidden in the I in our distributions is the choice of interaction.

This includes:

- Degrees of freedom
- Power counting

Hidden in the I in our distributions is the choice of interaction.

This includes:

- Degrees of freedom
- Power counting
- Representation

Hidden in the I in our distributions is the choice of interaction.

This includes:

- Degrees of freedom
- Power counting
- Representation
- Regularization scheme

We are working in a "Weinberg-ized" pionless EFT.

We are working in a "Weinberg-ized" pionless EFT.

$y_{\text{th}}(x) = y_{\text{ref}}(x) \sum c_{2n}(x)Q^{2n}(x)$ n=0

$y_{\text{th}}(x) = \underbrace{\overline{y_{\text{ref}}(x)}}_{y_{\text{exp}}} \sum_{n=0}^{\infty} c_{2n}(x) Q^{2n}(x)$

We are working in a "Weinberg-ized" pionless EFT.

Our interaction takes the form:

$y_{\text{th}}(x) = \underbrace{\overline{y_{\text{ref}}(x)}}_{y_{\text{exp}}(x)} \sum_{n=0}^{\infty} c_{2n}(x) Q^{2n}(x)$

We are working in a "Weinberg-ized" pionless EFT.

Our interaction takes the form:

$$v_{\rm LO} = C_S + C_T \sigma_1 \cdot \sigma_2$$

$y_{\text{th}}(x) = \underbrace{\overline{y_{\text{ref}}(x)}}_{y_{\text{exp}}(x)} \sum_{n=0}^{\infty} c_{2n}(x) Q^{2n}(x)$

We are working in a "Weinberg-ized" pionless EFT.

Our interaction takes the form:

$$v_{\rm LO} = C_S + C_T \sigma_1 \cdot \sigma_2$$

$$v_{\text{NLO}}^{\text{CI}}(\vec{k},\vec{K}) = C_1 k^2 + C_2 k^2 \sigma_1 \cdot \sigma_2 + C_3 S_{12}(k) + C_4 k^2 \tau_1 \cdot \tau_2$$
$$+ i C_5 \vec{S} \cdot (\vec{K} \times \vec{k}) + C_6 k^2 \tau_1 \cdot \tau_2 \sigma_1 \cdot \sigma_2 + C_7 S_{12}(k) \tau_2 \cdot \tau_2$$

$$y_{\text{th}}(x) = \underbrace{y_{\text{ref}}(x)}_{\text{ref}} \sum_{n=0}^{\infty} c_{2n}(x) Q^{2n}(x)$$
$$y_{\text{exp}}(x) \quad n=0$$

We are working in a "Weinberg-ized" pionless EFT.

Our interaction takes the form:

$$v_{\rm LO} = C_S + C_T \sigma_1 \cdot \sigma_2$$

$$v_{\text{NLO}}^{\text{CI}}(\vec{k}, \vec{K}) = C_1 k^2 + C_2 k^2 \sigma_1 \cdot \sigma_2 + C_3 S_{12}(k) + C_4 k^2 \tau_1 \cdot \tau_2$$
$$+ i C_5 \vec{S} \cdot (\vec{K} \times \vec{k}) + C_6 k^2 \tau_1 \cdot \tau_2 \sigma_1 \cdot \sigma_2 + C_7 S_{12}(k) \tau_2 \cdot \tau_2$$

 $v_{\text{NLO}}^{\text{CD}} = C_0^{\text{TT}} T_{12} + C_0^{\text{TV}} (\tau_{1z} + \tau_{2z})$

$$y_{\text{th}}(x) = \underbrace{y_{\text{ref}}(x)}_{\text{ref}} \sum_{n=0}^{\infty} c_{2n}(x) Q^{2n}(x)$$
$$y_{\text{exp}}(x) \quad n=0$$

Regularization

Regularization

To use these interactions, they must be local in coordinate space (for QMC).

To use these interactions, they must be regularized in some fashion and may be
Regularization

To use these interactions, they must be local in coordinate space (for QMC).

We employ a Gaussian cutoff in coordinate space, which smears δ -functions upon Fourier transformation

 $f(r) = -\frac{1}{\pi^2}$

To use these interactions, they must be regularized in some fashion and may be

$$\frac{1}{\frac{3}{2}R_s^3}e^{-\left(\frac{r}{R_s}\right)^2}$$

Regularization

To use these interactions, they must be local in coordinate space (for QMC).

We employ a Gaussian cutoff in coordinate space, which smears δ -functions upon Fourier transformation

 $f(r) = -\frac{\pi^2}{\pi^2}$

We choose $R_s \in [1.5, 2.0, 2.5]$ fm which are $\sim \frac{400}{R_s}$ MeV in momentum space.

To use these interactions, they must be regularized in some fashion and may be

$$\frac{1}{3/2R_s^3}e^{-\left(\frac{r}{R_s}\right)^2}$$

To estimate all of these parameters, we need data to calibrate to.

To estimate all of these parameters, we need data to calibrate to.

MeV + deuteron binding energy + nn scattering length.

- Our choice of data is the pp and np Granada database (251 differential cross sections, 133 total cross sections, 4 polarized cross sections) up to 5

To estimate all of these parameters, we need data to calibrate to.

MeV + deuteron binding energy + nn scattering length.

- Our choice of data is the pp and np Granada database (251 differential cross sections, 133 total cross sections, 4 polarized cross sections) up to 5
- We then use Markov Chain Monte Carlo (MCMC) to sample the posteriors at LO (Q^0) , NLO (Q^2) , and N3LO (Q^4) , allowing for the order-by-order convergence analysis for LO \rightarrow NLO and NLO \rightarrow N3LO to estimate \bar{c} and Λ_{h} .

Prior Choices

 $\mathbf{pr}(\vec{a} \mid I) \sim \mathcal{N}\left(\vec{a}_{p.s.}^{MAP}, \overrightarrow{10^2}\right)$

- $pr(\Lambda_h | I) \sim \mathcal{N}(500 \text{ MeV}, 1000^2)$
- $\operatorname{pr}(\bar{c}^2 | \mathbf{I}) \sim \chi^{-2}(\nu_0 = 1.5, \tau_0^2 = 1.5)$
- $r(x_i, x_j; \vec{l}) = e^{|p_i p_j|/2l_p} e^{|\theta_i \theta_j|/2l_\theta} \delta_{\text{type}_i, \text{type}_j}, \quad l_p = 0.3 \text{ MeV}, \ l_\theta = 20^\circ$
- $p_{\rm soft} = \begin{cases} p_d \sim 45 \; {\rm MeV}/c, & {\rm for} \; np \; {\rm scattering} \\ 1/{}^1 a_{\rm pp} \sim 25 \; {\rm MeV}, & {\rm for} \; pp \; {\rm scattering} \, . \end{cases}$

$$MeV^2$$
)

Outline

- Motivation/Bayesian EFT Model Calibration
- BUQEYE Formalism
- Interaction Choice
- Results

More figures

(S, T) = (0, 1)

More figures

(S, T) = (1, 0)

More figures

More figures

2.5 fm \bar{c} and Λ_b Posteriors

2.0 fm \bar{c} and Λ_b Posteriors

1.5 fm \bar{c} and Λ_b Posteriors

Why is there dependence on the order?

Why is there dependence on the order?

• Power-counting?

Why is there dependence on the order?

• Power-counting?

Why is there dependence on the order?

- Power-counting?
- Flawed assumption of geometric series?

Why is there dependence on the order?

- Power-counting?
- Flawed assumption of geometric series?
- Fierz transformation breaking?

Why is there dependence on the order?

- Power-counting?
- Flawed assumption of geometric series?
- Fierz transformation breaking?

Why is there dependence on the order?

- Power-counting?
- Flawed assumption of geometric series?

• DICALINE:

Why is there dependence on the order?

• Power-counting?

- Flawed assumption of geometric series?

• DICALINE:

Power-Counting Problem?

For our analysis, we used naïve dimensional analysis for the powercounting, which is known to be problematic.

Power-Counting Problem?

For our analysis, we used naïve dimensional analysis for the powercounting, which is known to be problematic.

JB et al. Phys. Rev. C **111**, 034005 (2025)

Power-Counting Problem?

For our analysis, we used naïve dimensional analysis for the powercounting, which is known to be problematic.

JB et al. Phys. Rev. C **111**, 034005 (2025)

Ekström and Platter, Phys.Lett.B 860 139207 (2025)

$$pr(\mathbf{y}_{th} | \mathbf{y}, \mathbf{x}, I) = \int d\mathbf{a} \, d\bar{c}^2 \, d\Lambda_b \, \mathcal{N} \left(\mathbf{y}_{th} (\mathbf{a}, \mathbf{x}), \Sigma_{th} \left(\bar{c}^2, \Lambda_b \right) \right) \times pr(\mathbf{a} | \mathbf{y}, I) pr(\bar{c}^2 | \Lambda_b, \mathbf{a}, I) pr(\Lambda_b | \mathbf{a}, I),$$

95 % Confidence interval $\rightarrow \sim 150$ % uncertainty $pr(\mathbf{y}_{th} | \mathbf{y}, \mathbf{x}, I) = \int d\mathbf{a} \, d\bar{c}^2 \, d\Lambda_b \, \mathcal{N} \left(\mathbf{y}_{th}(\mathbf{a}, \mathbf{x}), \Sigma_{th}\left(\bar{c}^2, \Lambda_b\right) \right) \times$ $pr(\mathbf{a} | \mathbf{y}, I) pr(\bar{c}^2 | \Lambda_b, \mathbf{a}, I) pr(\Lambda_b | \mathbf{a}, I),$

95% Confidence interval $\rightarrow \sim 150\%$ uncertainty $pr(\mathbf{y}_{th} | \mathbf{y}, \mathbf{x}, I) = \int d\mathbf{a} \, d\bar{c}^2 \, d\Lambda_b \, \mathcal{N}\left(\mathbf{y}_{th}(\mathbf{a}, \mathbf{x}), \Sigma_{th}\left(\bar{c}^2, \Lambda_b\right)\right) \times$ $pr(\mathbf{a} | \mathbf{y}, I) pr(\bar{c}^2 | \Lambda_b, \mathbf{a}, I) pr(\Lambda_b | \mathbf{a}, I),$

Poorly constrained *d*-waves

95 % Confidence interval $\rightarrow \sim 150$ % uncertainty $pr(\mathbf{y}_{th} | \mathbf{y}, \mathbf{x}, I) = \int d\mathbf{a} \, d\bar{c}^2 \, d\Lambda_b \, \mathcal{N} \left(\mathbf{y}_{th}(\mathbf{a}, \mathbf{x}), \Sigma_{th}\left(\bar{c}^2, \Lambda_b\right) \right) \times$ $pr(\mathbf{a} | \mathbf{y}, I) pr(\bar{c}^2 | \Lambda_b, \mathbf{a}, I) pr(\Lambda_b | \mathbf{a}, I),$

Poorly constrained *d*-waves
 2b corrections at O(Q⁵)

95 % Confidence interval $\rightarrow \sim 150$ % uncertainty $pr(\mathbf{y}_{th} | \mathbf{y}, \mathbf{x}, I) = \int d\mathbf{a} \, d\bar{c}^2 \, d\Lambda_b \, \mathcal{N} \left(\mathbf{y}_{th}(\mathbf{a}, \mathbf{x}), \Sigma_{th}\left(\bar{c}^2, \Lambda_b\right) \right) \times$ $pr(\mathbf{a} | \mathbf{y}, I) pr(\bar{c}^2 | \Lambda_b, \mathbf{a}, I) pr(\Lambda_b | \mathbf{a}, I),$

> • Poorly constrained *d*-waves • 2b corrections at $O(Q^5)$ <u>
> → SHOULD BE CONSISTENT</u> <u>WITH 0</u>

Applications to Few-Body Systems

Applications to Few-Body Systems

We want to know how to apply our uncertainty quantifies results to nuclei.

We want to know how to apply our uncertainty quantifies results to nuclei.

Few problems:

- Few problems:
- What is the momentum scale in bound systems?

We want to know how to apply our uncertainty quantifies results to nuclei.

- Few problems:
- What is the momentum scale in bound systems?
 - Easy for chiral interactions: $p \approx m_{\pi}$

We want to know how to apply our uncertainty quantifies results to nuclei.

- We want to know how to apply our uncertainty quantifies results to nuclei.
- Few problems:
- What is the momentum scale in bound systems?
 - Easy for chiral interactions: $p \approx m_{\pi}$
 - Not so easy for pionless interactions

- We want to know how to apply our uncertainty quantifies results to nuclei.
- Few problems:
- What is the momentum scale in bound systems?
 - Easy for chiral interactions: $p \approx m_{\pi}$
 - Not so easy for pionless interactions
- three-nucleon interactions are important, and we do not have uncertainty quantification for these

We can also examine power-counting problems.

We can also examine power-counting problems.

We (possibly) demonstrated a means to identify non-systematic organization for the nuclear interaction.

We can also examine power-counting problems.

We (possibly) demonstrated a means to identify non-systematic organization for the nuclear interaction.

We already knew this was problematic.

We can also examine power-counting problems.

We (possibly) demonstrated a means to identify non-systematic organization for the nuclear interaction.

We already knew this was problematic.

How do we fix this?

We can also examine power-counting problems.

interaction.

• Re-counting the index of interactions

- We (possibly) demonstrated a means to identify non-systematic organization for the nuclear
- We already knew this was problematic.
- How do we fix this?

Summary

- EFT interactions provide a systematic framework for microscopic nuclear interactions.
 - Enable rigorous uncertainty quantification.
- Bayesian analysis is a useful tool in EFT contexts.
 - Uncertainty quantification
 - Extract information of physics from data
 - E.g., inconsistencies in EFT power counting

"Bayesian analysis is like having a discussion with data."

What can the data tell us about the physics we want to explore?

Acknowledgements

QMC@WashU

Piarulli (PI), Pastore (PI), Novario (SS), Weiss(PD), Flores (PD), Chambers-Wall (GS), Niiro (MS*), Macedo Lima (GS), JJ Silva (GS)

Sai lyer WashU

Dick Furnstahl

Daniel Phillips OU

Computational Resources

Funding

Fellowship/Travel

Collaborations NTNP

, **H**, I A SciDAC-5 Project

