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Introduction

I When a high-energy pp or p–nucleus collision occurs, particles are produced and
emitted at relative distances of the order of the nuclear force

I The effect of the mutual interaction between hadrons is reflected as a correlation
signal in the momentum distributions of the detected particles which can be
studied using correlation functions

I The correlation function incorporate information on the emission process as well
as on the final state interaction of the emitted pairs

I By measuring correlated particle pairs or triplets at low relative energies and
comparing the yields to theoretical predictions, it is possible to study the hadron
dynamics.



The two-particle correlation function

I The two-particle correlation function is defined as the ratio of the yield of a
particle pair to the product of the single-particle yields.

C (~p1, ~p2) =
P (~p1, ~p2)

P (~p1)P (~p2)

I P(~p1, ~p2) is the probability of finding a pair with momenta ~p1 and ~p2

I P(~pi ) is the probability of finding each particle with momentum ~pi .

I In absence of correlations, the two-particle probability factorizes,
P(~p1, ~p2) = P(~p1)P(~p2), and the correlation function is equal to unity.



The two-particle correlation function

I The correlation between the pair is related to the particle emission and the
subsequent interaction of the pair

C (~p1, ~p2) =
1

Γ

∑
m1,m2

∫
d3r1 d

3r2S1 (r1) S1 (r2)× |Ψm1,m2(~p1, ~p2,~r1,~r2)|2

I S1(r) describes the spatial shape of the source for single-particle emissions. It can
be approximated as a Gaussian probability distribution with a width RM

S1(r) =
1

(2πR2
M)

3
2

e−r
2/2R2

M

I The integration on the CM coordinates leads to the Koonin-Pratt relation for
two-particle correlation function

C (k) =
1

Γ

∫
d3r S(r)|ψk (~r) |2



The pp correlation function

I S(r) is the two-particle emission source, given by

S(r) =

(
1

4πR2
M

)3/2

e
− r2

4R2
M

I ψk (~r) is the two-particle scattering wave function at E = ~2k2/2µ

I The scattering wave function is expanded in partial waves

ψk = 4π
∑
JJz

∑
`mSSz

i `(kr)−1u`(kr)Y[`S](r̂)(`mSSz |JJz)Y ∗`m(k̂)

I In the case of two protons u`(kr)→ F`(η, kr) + T``O`(kr)



The pp Correlation Function
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The pp correlation function

C (k) =
1

N

∑
j≤jm

∑
l ,l ′,s,t

∫
dr r2S(r)

∣∣∣Ψ(l ′)
k;l ,s,j ,t(r)

∣∣∣2 +
∑

jm<j≤jM

∑
l ,s,t

∫
dr r2Sr |Ψfree;k;l ,s,j ,t(r)|2


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The pp correlation function
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The pp correlation function from a Gaussian representation

Vpp(1S0) = V0e
−(r/rG )2

+ e2

r

with V0 fixed to reproduce the pp scattering length. When rG = rG ,o the pp effective
range is described too.
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The pp correlation function using several potentials



Considering the Coulomb interaction

The pp case

We consider two cases

a)Vpp(r) = V0 e
−(r/r0)2P0 + e2

r

b)V sc
pp(r) = V0 e

−(r/r0)2P0 + e2

r e
−(r/rsc )n

The correlation function is

Cpp(k) =
∑
`

C `pp =

∫
dr

e−(r2/4R2)

4
√
πR3k2

( ∑
`≡even

u2
` (kr)(2`+ 1) + 3

∑
`≡odd

u2
` (kr)(2`+ 1)

)

a)u`(kr →∞) −→ [F`(ν, kr) + T``O(ν, kr)]

b)u`(kr →∞) −→ kr [j`(kr) + T``O(kr)]



Considering the Coulomb interaction
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Considering the Coulomb plus the short-range interaction
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The pd Correlation Function

I We now consider the pd correlation function:

AdCpd(k) =
1

6

∑
m2,m1

∫
d3r1d

3r2d
3r3 S1(r1)S1(r2)S1(r3)|Ψm2,m1 |2

I the probability of deuteron formation

Ad =
1

3

∑
m2

∫
d3r1d

3r2 S1(r1)S1(r2)|φm2 |2

I the single particle source function

S1(r) =
1

(2πR2
M)

3
2

e−r
2/2R2

M



The pd Correlation Function

I the pd correlation function results

AdCpd(k) =
1

6

∑
m2,m1

∫
ρ5dρdΩ

e−ρ
2/4R2

M

(4πR2
M)3
|Ψm2,m1 |2

Ψm2,m1 =
∑
LSJ

√
4πiL
√

2L + 1e iσL(1m2
1

2
m1 | SJz)(L0SJz | JJz)ΨLSJJz

I the Jacobi coordinates: x` = rj − ri , y` = r` −
ri+rj

2

I the hyperspherical coordinates ρ =
√

x2
1 + (4/3)y2

1 , Ω ≡ [α1, x̂1, ŷ1]

I The scattering wave function is expanded in partial waves using the HH basis

ΨLSJJz = ρ−5/2
∑
[K ]

u[K ](ρ)YLSJJz
[K ] (Ω)



The pd Correlation Function: partial-wave contributions
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The pd Correlation Function: comparison to experiment
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The ppp correlation function

I Now we consider the ppp correlation function:

Cppp(Q) =

∫
ρ5dρdΩ Sρ0(ρ)|Ψppp|2

with Q the hyper-momentum, Sρ0 the source function defined as

Sρ0(ρ) =
1

π3ρ6
0

e−(ρ/ρ0)2

Ψppp is the ppp scattering wave function

Ψppp =
∑
[K ]

u[K ](ρ)B[K ](Ω) = Ψ0 +

J,K∑
J,[K ]

ΨJ
[K ]

To be noticed that Ψ0 is not well known. In ΨJ
[K ] the interaction has been

considered up to J and K



Considering the Coulomb interaction

The ppp case

As a preliminary step we introduce the hypercentral Coulomb force obtained after
averaging the bare Coulomb force on the hyperangles

VCoul(ρ) =
1

π3

∫
dΩρ

∑
i<j

e2

rij
=

3(4π)2

π3

∫
dα sin2 α cos2 α

e2

ρ cosα
=

16

π

e2

ρ

Now the asymptotic solution is a regular Coulomb function with order K + 3
2 , the

Sommerfeld parameter η = 16me2/(π~2Q). The norm of the continuum wave function

is formally equal to the non Coulomb case replacing JK+2(z) −→
√

2
πz FK+ 3

2
(z):

|Ψ0
s |2Ω =

96

π

1

(Qρ)5

∑
K

F 2
K+3/2(Qρ)(Nm

ST (K ) + 4Na
ST (K ))



Considering the Coulomb interaction: asymptotic behavior
Without considering long-range interaction, the correlation function is

C 0
ppp(Q) =

6

8

26

Q4ρ6
0

∫
ρ dρ e

− ρ
2

ρ2
0

∑
K

J2
K+2(Qρ) [Nm

ST (K ) + 4Na
ST (K )]

When the Coulomb force is considered in its hypercentral approximation it results

C 0,c
ppp(Q) =

96

π

1

Q5ρ6
0

∫
ρ dρ e

− ρ
2

ρ2
0

∑
K

F 2
K+3/2(Qρ) [Nm

ST (K ) + 4Na
ST (K )]

We now introduce the screened hypercentral Coulomb potential

V sc
Coul(ρ) =

16

π

e2

ρ
e−(ρ/ρsc )n

The correlation function results (ε = c , sc)

C 0,ε
ppp(Q) =

∑
K

C 0,ε
K =

6

8

26

Q4ρ6
0

∫
ρ dρ e

− ρ
2

ρ2
0

∑
K

|uK |2(Qρ) [Nm
ST (K ) + 4Na

ST (K )]



The ppp correlation function
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Some remarks

I To compare the experimental and the theoretical correlation functions some
corrections have been considered

I For the pp case the corrected correlation function is defiend as

C (k) = λppCpp(k) + λppΛ
CppΛ

(k) + λXCX(k)

I primary protons λpp = 0.67, secondary protons produced mainly in the decay of
the Λ, λppΛ

= 0.203, misidentification contributions λx = 0.127

I For the ppp case the corrected correlation function is defiend as

C (Q3) = λpppCppp(Q3) + λpppΛ
CpppΛ

(Q3) + λXCX(Q3)

I primary protons λppp = 0.618, secondary protons produced mainly in the decay of
the Λ, λpppΛ

= 0.196, misidentification contributions λx = 0.186



The pp correlation function
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1
2

(
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kr
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+ 1

2

(
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The ppp correlation function
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The ppp correlation function
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The pΛ and ppΛ correlation functions

I The pΛ correlation function is defined as

C (k) =

∫
d3r S(r)|ψpΛ (~r) |2

I ψpΛ is the scattering pΛ wave function. It is governed by the pΛ interaction which
is not very well kown

I The few pΛ scattering data can be described in the context of the EFT at different
orders (see for example J. Haidenbauer et al. Eur. Phys. J. A 59 (2023) 63 )

I At different cutoffs different sets of low-energy scattering parameters appear

NLO13 NLO19 SMS N2LO
C(MeV) 450 500 550 600 650 700 500 550 600 650 500 550 600
a0 (fm) -2.90 -2.91 -2.91 -2.91 -2.90 -2.90 -2.91 -2.90 -2.91 -2.90 -2.80 -2.79 -2.80

r0
e (fm) 2.64 2.86 2.84 2.78 2.65 2.56 3.10 2.93 2.78 2.65 2.82 2.89 2.68
a1 (fm) -1.70 -1.61 -1.52 -1.54 -1.51 -1.48 -1.52 -1.46 -1.41 -1.40 -1.56 -1.58 -1.56

r1
e (fm) 3.44 3.05 2.83 2.72 2.64 2.62 2.62 2.61 2.53 2.59 3.16 3.09 3.17



Introduction to universal physics

I In the 40’s Bargmann and Hulthén, and before Eckart, studied potentials that give
specific representations of the S-matrix

I Here we are interested in the S-matrix representing one shallow state, virtual or
bound

S(k) =
k + i/aB
k − i/aB

k + i/rB
k − i/rB

with the energy of the system E = ~2k2/m

I The energy pole is described by the energy length aB −→ E2 = −~2/ma2
B

I E2 is a bound or virtual state when aB > 0 or aB < 0

I the superfluous pole is described by the length rB = a− aB ,
with a the scattering length. It ensures the correct asymptotic behavior of the
Jost function and it is always positive.

I When rB = 0 implies a contact interaction and the superfluous pole goes to ∞



Shallow states: definition

I The given S-matrix is equivalent to the effective range expansion

k cot δ = −1

a
+

1

2
rek

2

I The physical pole verifies

1

aB
=

1

a
+

1

2

re
a2
B

I The degree of validity of this relation defines the shallow characteristic of the state

I In real systems there are small corrections in the effective range expansion

k cot δ = −1

a
+

1

2
rek

2 +
∑
n=2

vnk
2n

with vn the shape parameters. Inside the region of interest, the universal window,
they are small and the state is shallow



Effective description

I The S-matrix

S(k) =
k + i/aB
k − i/aB

k + i/rB
k − i/rB

is exactly represented by the Eckart potential:

V (r) = −2
~2

mr2
0

βe−r/r0

(1 + βe−r/r0)2


a = 4r0

β
β−1

aB = 2r0
β+1
β−1


re = 2r0

β+1
β

rB = 2r0



Effective description in the plane [re/a, re/ab]
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Physical systems inside the Eckart window
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The universal window in terms of the Gaussian parameters
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Effective description

I System inside the window have been described using different EFT frameworks

I The nuclear system is currently described using chiral potentials or using pionless
EFT

I Atomic helium has been extensively studied using potentials models (Aziz
potentials, TTY potential, etc) and also using contact EFT

I Halo nuclei are currently studied using potential models and also Halo EFT

I Hadron systems as N − Λ and hypernuclei are studied using potential models and
also using chiral or contact EFT

I The above discussion suggests an effective description of a system inside the
universal window based on the Eckart or Gaussian potential

VLO = V [β(a, aB , re), r0(a, aB , re)]

I We consider this description a optimized LO description



The pΛ effective interaction

Using the Gaussian form, we define the effective pΛ interaction as

VpΛ(r) =
∑
S=0,1

VSe
−(r/rS )2PS

NLO13 NLO19 SMS N2LO
C(MeV) 500 550 600 650 500 550 600 650 500 550 600
V0 (MeV) -30.180 -30.574 -31.851 -34.831 -25.954 -28.817 -31.851 -34.831 -31.140 -29.753 -34.273
r0 (fm) 1.467 1.459 1.434 1.380 1.563 1.495 1.434 1.380 1.439 1.466 1.382
V1 (MeV) -29.205 -33.839 -36.258 -38.455 -38.984 -39.470 -42.055 -40.373 -27.544 -28.609 -27.392
r1 (fm) 1.338 1.247 1.216 1.183 1.178 1.163 1.126 1.143 1.361 1.344 1.364

B(3
ΛH) (MeV) 2.8729 2.87956 2.92508 2.98499 2.79212 2.83929 2.90455 3.25522 2.81932 2.79875 2.8785

W3 (MeV) 11.83 11.733 12.32 12.873 10.545 11.056 11.795 12.294 10.65 10.375 11.4
ρ3 (fm) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0



The pΛ correlation function: CpΛ(k) =
∫
d3r S(r) |ΨpΛ|2

CpΛ(k) = λpΛC
th
pΛ (k) + λpΛ

Σ0
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The ppΛ system

Jacobi coordinates for two nucleons of mass m and the Λ of mass M in r3

r−space q−space
x = r2 − r1

y =
√

4
(1+2m/M) (r3 − r1+r2

2 )


k = 1

2 (p2 − p1)

q =
√

m
M

√
m

2m+M (p3 − M
m

p1+p2
2 )

The hyperradius ρ = (x2 + y2)1/2 the hypermomentum Q = (k2 + q2)1/2

[Ωρ ≡ x̂ , ŷ , α = arctan(x/y)] [ΩQ ≡ k̂ , q̂, α̃ = arctan(k/q)]

In terms of the particle distances ρ2

2 = r2
1 + r2

2 + M
m r2

3 − M+2m
m R2

The hypermomentum is related to the total energy E =
p2

1
2m +

p2
2

2m +
p2

3
2M = Q2

m



The ppΛ source function
The correlation function for three particles is given by

C123(Q) =

∫
dr1dr2dr3 S1(r1)S2(r2)S3(r3)|Ψs |2

The source function Si (ri ) is approximated by a Gaussian probability distribution. The
widths of the proton and Λ distributions as Rm and RM , respectively.

S1(r1)S1(r2)S1(r3) =
e
−( ρ

2

2
−(

R2
m

R2
M

−M
m

)r2
3 +M+2m

m
R2)/2R2

m

(2πR2
m)3(2πR2

M)
3
2

with the condition R2
m/R

2
M = M/m after integrating our the center of mass

S123(ρ) =
1

π3ρ6
0

e−(ρ/ρ0)2

with ρ0 = 2Rm



The ppΛ correlation function

C123(Q) =
1

π3ρ6
0

∫
e−(ρ/ρ0)2 |Ψs |2ρ5dρdΩρ

With the three-body scattering wave function

Ψs =
1√
NS

(2π)3

(Qρ)5/2

∑
JJz

∑
Kγ

ΨJJz
Kγ

∑
MLMS

(LMLSMS |JJz)Y`x `yKLML
(ΩQ)∗

NS is the number of spin states and γ ≡ {`x , `y , L, sx , S}. The coordinate wave
functions, ΨJJz

Kγ , in the HH formalism take the general form

ΨJJz
Kγ =

∑
K ′γ′

ΨK ′γ′

Kγ (Q, ρ)ΥK ′γ′

JJz
(Ωρ)

ΥKγ
JJz

(Ωρ) =
∑
MLMS

(LMLSMS |JJz)Y`x `yKLML
(Ωρ)χsx

SMS
.



The ppΛ correlation function

|Ψs |2Ω =
1

π6

∫
dΩρ

∫
dΩQ |Ψs |2

For non-interacting particles ΨK ′γ′

Kγ (Q, ρ) = iK
√
QρJK+2(Qρ)δKK ′δγγ

′

and the norm results, with NST the number of states for a given K

|Ψ0
s |2Ω =

2

NS

26

(Qρ)4

∑
K

J2
K+2(Qρ)NST (K )

CppΛ(Q) =
1

4

26

Q4ρ6
0

∫
ρ dρ e

− ρ
2

ρ2
0

∑
J

(2J + 1)

∣∣∣∣∣ uJn0√
Qρ

∣∣∣∣∣
2

+
∑
K>1

J2
K+2(Qρ)NST (K )


where the sum over J includes the states Jπ = 1/2+, 1/2−, 3/2−, 5/2− with uJn0

the
corresponding wave function.



The ppΛ three-body force

I The optimized LO pΛ potential hase been constructed to describe the scattering
length and effective range in the two spin channels

I Going to NNΛ system this description has to completed including a three-body
force

I This is related to what is called The three-body parameter as in pion-less EFT

I Accordingly, when describing the ppΛ system we consider the following three-body
force

W (r12, r13) = W0e
−(r12/ρ0)2−(r13/ρ0)2

I W0, ρ0 fixed to describe the hypertriton and if possible the N = 4, 5 hypernuclei



The ppΛ correlation function

0 100 200 300 400 500
Q

3
 (MeV/c)

0

20

40

60

80

C
p

p
Λ
(Q

3
)

K=0 adiabatic channel
K=0,2 adiabatic channels

ρ
0
 = 2.6 fm

No three-body force

Three-body force

1/2
+

0 200 400 600 800
Q

3
 (MeV/c)

0

5

10

C
p

p
Λ
(Q

3
)

1/2
+
 (Κ=0)

1/2
−
 (Κ=1)

3/2
−
 (Κ=1)

5/2
−
 (Κ=1)

K>1, free

0 200 400 600 800
Q

3
 (MeV/c)

0

5

10ρ
0
 = 2.6 fm

No three-body force Three-body force

(a) (b)

Contribution of the different partial waves



The ppΛ correlation function
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The ppΛ correlation function

0 200 400 600 800
Q

3
 (MeV/c)

0

10

20

30

40

C
p
p
Λ
(Q

3
)

200 300 400 500 600 700 800
0

2

4

6

8

Three-body force

No three-body force

v18  pp potential

Gauss Ref. [41]

C
ppΛ

=λ
ppΛ

C
ppΛ

th
+1−λ

ppΛ
ρ

0
=2.6 fm

I A NNΛ three-body force is included fixed to describe the B(3
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Summary

I Although its apparent simplicity, the three-body problem is of great complexity

I Measurements of the correlation function allow for new tests of the NN, NNN,
NΛ, NNΛ,... interactions

I In the ppp case the Coulomb interaction couples the asymptotic dynamics
increasing the difficulties of the numerical treatment

I The corrections of the computed pp and ppp correlation functions needs the
kwonledge of the pΛ and ppΛ correlation functions

I The NΛ and NNΛ interactions are not very well known

I The universal window could help to link the correlation function data and the
potential

I Studies on the pΛ and ppΛ correlation functions have been started

I The ppΛ correlation functions could be sensitive to the NNΛ three-body force, an
important ingredient in the studies of compact systems
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