Institute of Space Sciences

The need for accurate nuclear cross sections for solar (and stellar) modeling

CSIC

Marciana 2025 – Lepton Interactions with Nucleons & Nuclei Marciana Marina – June 22nd-27th - 2025

A. Serenelli

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008324 (ChETEC-INFRA).

Outline

The Sun as a cornerstone for astrophysics

(Which?) Solar composition

a view from helioseismology

a view from solar neutrinos

the need for accurate & precise nuclear cross sections

Solar-like stars

convective cores in 1.1 – 1.5 M_{\odot} stars in the context of asteroseismic missions (PLATO)

the need for accurate & precise 14N+p cross section

Why the Sun? It is "foundation" science

~10⁹ individual stars with measurements colors, temperature, luminosity, (composition)

~ 10³ with accurate, precise, (model) independent mass determinations selective club: eclipsing binaries

1 star with accurate, precise, (model) independent age determination meteoritic dating + highly accurate radius & mass

Why the Sun? It is "foundation" science

<u>Helioseismology</u>

>10⁵ eigenmodes \rightarrow inversion of internal structure: sound speed, density, adiabatic index (EoS)

 \rightarrow global quantities:

surface helium, depth of convective envelope

→ beyond standard solar models: internal rotation profile (depth and latitude)

Allows testing theory of stellar evolution by looking at internal structure

Solar neutrinos \rightarrow information on solar core, nuclear physics

Foundation science: Solar spectrum & abundances

EXCELENCIA MARÍA DE MAEZTU

Solar envelope is convective → hydrodynamic models → 3D atmosphere model

Model atmosphere

- ightarrow detailed radiative transfer
- ightarrow synthetic spectrum to compare with observed one
- \rightarrow determination of abundances

Foundation science: Solar spectrum & abundances

Only star that allows detailed tests, e.g. center-to-limb variations

Which solar composition?

GS98: Grevesse & Sauval 1998 LBP25/BLP25: Lodders, Bergemann,

LBP25/BLP25: Lodders, Bergemann, Palme 2025 AAG21: Asplund et al. 2021, MB22: Magg et al. 2022

Chemical abundances are a constraint, not a prediction, of (non-) standard solar models

What helioseismology tells us

What helioseismology tells us

What helioseismology tells us

Dating the Sun "as a star"

CHETEC INFRA Institute of Space Sciences Space Sciences

Cancellation effects limit modes to I=0, 1, 2, (3) for other stars (e.g. Kepler, TESS, PLATO)

The Sun from afar

CHETEC Institute of Space Sciences

No independent age for other stars

$$\nu_{n,\ell} - \nu_{n-1,\ell+2} \propto \frac{1}{4\pi\nu_{n,\ell}} \int_0^R \frac{dc}{dr} \frac{dr}{r}$$

	Solar age (Gyr)	χ² (33 dofs)
Sun	4.568 ± 0.020	
AAG21	4.755 ± 0.034	76.6
MB22	4.611 ± 0.032	38.4

Composition introduces a systematic effect on age determination of about to 250Myr (5%)

However,

Propagation of sound waves carry information about composition through adiabatic index:

 $\Gamma_1 = \left(\frac{\partial \ln P}{\partial \ln \rho}\right)_{\text{ad}}$ = 5/3 (for fully ionized gas) < 5/3 in partial ionization regions

- > It can be determined through inversion of solar oscillations and compared to solar models.
- Only sensitive to total Z (not individual elements)
- Results are degenerate with equation of state

Consensus (as of end of 2022) H-burning x-sections

EXCELENCIA MARÍA DE MAEZTU

INT WORKSHOP INT-22-82W

Solar Fusion Cross Sections III

July 26, 2022 - July 29, 2022

ORGANIZERS

Daniel Bemmerer Helmholtz-Zentrum Dresden-Rossendorf d.bemmerer@hzdr.de

Alessandra Guglielmetti Universita degli Studi di Milano - INFN Milano alessandra.guglielmetti@mi.infn.it

Wick Haxton UC Berkeley haxton@berkeley.edu

Aldo Serenelli Institute of Space Sciences (ICE, CSIC) aldos@ice.csic.es

Note to applicants: This we be held in the David Brov near the UC Berkeley c Berkeley, CA.

WORKING GROUP AN PRESENTATIONS WE

Solar fusion III: New data and theory for hydrogen-burning stars.

B. Acharya

Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

M. Aliotta

SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom

A.B. Balantekin

Department of Physics, University of Wisconsin-Madison, Madison WI 53706, USA

D. Bemmerer

Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany

C.A. Bertulani

Department of Physics and Astronomy, Texas A&M University-Commerce, Commerce, TX 75429-3011, USA

arXiv: 2405.06470 RMP coming (soon)

D.L

00 0004

Reaction	1σ error (SFIII)	1σ error (SFII, 2010)	
p+p	1.5%	0.9%	GA/GV
³ He+ ³ He	6.6%	5.2%	uncert. in protons spectral shape
³ He+ ⁴ He	5.1%	5%	
⁷ Be+p	3.6%	7.5%	halo EFT & Fitting
¹⁴ N+p	8.4%	7.2%	R-matrix and data tension for ground state transition

	cm ⁻² s ⁻¹	AAG21	MB22	Sun
	pp (10 ¹⁰)	6.00 (0.6%)	5.95 (0.6%)	5.94 (0.4%)
	pep (10 ⁸)	1.45 (1.1%)	1.42 (1.1%)	1.42 (1.6%)
	hep (10 ³)	8.16 (30%)	7.92 (30%)	30 (33%)
ſ	⁷ Be (10 ⁹)	4.52 (7.4%)	4.90 (7.6%)	4.93 (2%)
	⁸ B (10 ⁶)	4.31 (12.6%)	5.13 (13.1%)	5.20 (1.9%)

"Sun": experimental results from Gonzalez-García et al. 2024

Model uncertainties >> experimental ones x-sections (S₁₇, S₃₄,S11) 6% for ⁷Be 8% for ⁸B

radiative opacity

Mostly a temperature sequence with slope determined by nuclear reaction rates

cm ⁻² s ⁻¹	AAG21	MB22	Sun
pp (10 ¹⁰)	6.00 (0.6%)	5.95 (0.6%)	5.94 (0.4%)
pep (10 ⁸)	1.45 (1.1%)	1.42 (1.1%)	1.42 (1.6%)
hep (10 ³)	8.16 (30%)	7.92 (30%)	30 (33%)
⁷ Be (10 ⁹)	4.52 (7.4%)	4.90 (7.6%)	4.93 (2%)
⁸ B (10 ⁶)	4.31 (12.6%)	5.13 (13.1%)	5.20 (1.9%)

"Sun": experimental results from Gonzalez-García et al. 2024

Model uncertainties >> experimental ones x-sections (S₁₇, S₃₄,S11) 6% for ⁷Be 8% for ⁸B

radiative opacity

Mostly a temperature sequence with slope determined by nuclear reaction rates

cm ⁻² s ⁻¹	AAG21	MB22	Sun
pp (10 ¹⁰)	6.00 (0.6%)	5.95 (0.6%)	5.94 (0.4%)
pep (10 ⁸)	1.45 (1.1%)	1.42 (1.1%)	1.42 (1.6%)
hep (10 ³)	8.16 (30%)	7.92 (30%)	30 (33%)
⁷ Be (10 ⁹)	4.52 (7.4%)	4.90 (7.6%)	4.93 (2%)
⁸ B (10 ⁶)	4.31 (12.6%)	5.13 (13.1%)	5.20 (1.9%)

"Sun": experimental results from Gonzalez-Garcia et al. 2024

Combination of **composition + radiative opacities >**

→ core temperature consistent with higher opacity (Z?) models

CN-cycle is a trace contribution to solar structure

CN operates against a "fixed" structure determined by pp-chains

Changes in physics affecting CN do not change structure, **i.e. core temperature**,

 \rightarrow retain explicit dependences:

e.g. linear response to bottleneck nuclear reaction
 ¹⁴N(p,γ)¹⁵O

> linear dependence on abundance of catalyzers in solar core: C+N

> one-to-one relation between neutrino fluxes and CN abundance

⁸B as a thermometer

Neutrino fluxes depend on:

solar core temperature – environmental quantities

opacity heavy elements (Si, Mg, Fe) luminosity, age uncertainties in these quantities affect n-fluxes in a fully correlated way

nuclear reaction rates

specific dependence for specific fluxes (e.g. ¹⁴N(p,g)¹⁵O does not affect pp-chain)

catalyzing effect of abundances

C & N abundance in the solar core \rightarrow CN-cycle

⁸B as a thermometer

Neutrino fluxes as power-laws:

X

$$\begin{split} \frac{\phi(^{15}\mathrm{O})}{\phi(^{15}\mathrm{O})^{\mathrm{SSM}}} &= \left[L_{\odot}^{5.942}O^{2.034}A^{1.364}D^{0.382}\right] \\ &\times \left[\mathrm{S}_{11}^{-2.912} \,\,\mathrm{S}_{33}^{0.024} \,\,\mathrm{S}_{34}^{-0.052} \,\,\mathrm{S}_{17}^{0.0} \,\,\mathrm{S}_{e7}^{0.0} \,\,\mathrm{S}_{114}^{1.00}\right] \\ \left[x_{C}^{0.815}x_{N}^{0.217}x_{\mathrm{O}}^{0.112}x_{\mathrm{Ne}}^{0.081}x_{\mathrm{Mg}}^{0.069}x_{\mathrm{Si}}^{0.150}x_{\mathrm{S}}^{0.109}x_{\mathrm{Ar}}^{0.028}x_{\mathrm{Fe}}^{0.397}\right] \\ &\frac{\phi(^{8}\mathrm{B})}{\phi(^{8}\mathrm{B})^{\mathrm{SSM}}} = \left[L_{\odot}^{6.966}O^{2.734}A^{1.319}D^{0.278}\right] \\ &\times \left[\mathrm{S}_{11}^{-2.665} \,\,\mathrm{S}_{33}^{-0.419} \,\,\mathrm{S}_{34}^{0.831} \,\,\mathrm{S}_{17}^{1.028} \,\,\mathrm{S}_{e7}^{-1} \,\,\mathrm{S}_{114}^{0.00}\right] \end{split}$$

 $\times \left[x_{C}^{0.022} x_{N}^{0.007} x_{O}^{0.128} x_{Ne}^{0.102} x_{Mg}^{0.092} x_{Si}^{0.198} x_{S}^{0.138} x_{Ar}^{0.034} x_{Fe}^{0.498} \right]$

⁸B as a thermometer

Thermal uncertainties are cancelled out, absorbed by a ⁸B experimental measurement, down to 0.3%

⁸B as a thermometer

⁸B as a thermometer

CN measurement by Borexino

Institute of space sciences

EXCELENCIA

Institute of

CHETEC

CN neutrinos break the degeneracy between composition and opacity Favor large CN abundance

Nuclear rates largest source of uncertainty, but one we can control

Institute of space sciences

EXCELENCIA

MARÍA

Institute of

CHETEC

CNO vs mass and metallicity

Stellar luminosity: CNO vs pp

Dependence on 14N+p rate

Convective core: to be or not to be

CHETEC Institute of Space Sciences Sciences

CHETEC INFRA Institute of Space Sciences Sciences

Size of chemically homogenous (mixed) core is formed by + truly convective core

+ **overshooting region** (parametrized, α_{ov}, no 1st principles model) It can be measured with astereoseismology

If 14N+p is not controlled, no way to separate the true CC boundary and the OV region

OV is the largest uncertain in stellar modeling

CHETEC Institute of Space Sciences Sciences

Size of chemically homogenous (mixed) core is formed by + truly convective core

+ **overshooting region** (parametrized, α_{ov} , no 1st principles model) It can be measured with astereoseismology

Calibrating OV in stars Only if N14+p well known

Size of chemically homogenous (mixed) core is formed by + truly convective core

+ **overshooting region** (parametrized, α_{ov}, no 1st principles model) It can be measured with astereoseismology

Calibrating OV in M67 Only if N14+p well known

INFRA Space Sciences

CHETEC

Institute of

Parametrization of overshooting for stars in the 1.1-1.4 M_☉ range requires improved 14N+p

Typical OV values are 0.2-0.25 → at low masses, uncertainty is very large

Critical for PLATO science, ESA's planet hunter & asteroseismology mission (launch December 2026)

Estimated mass distribution for FGK PLATO Sample

Summary

EXCELENCIA MARÍA DE MAEZTU

Constraints to compute solar models – composition is the big uncertainty:

- High solar metallicity is favored by (degenerate with opacity): sound speed, surface helium, depth of convective envelope pp-chain solar neutrinos
- but lower solar metallicity is favored by (degenerate with equation of state): adiabatic index
- \succ CNO neutrino break degeneracy with opacity \rightarrow nuclear reactions main (and controllable) uncertainty
- > Uncertainty in composition can be tamed by better CN neutrinos (models and experiments)

For solar-like oscillators:

- main target of PLATO missions finding an Earth analog around solar-like stars
- \succ 14N+p is fundamental to model evolution of stars in range 1.1 to 1.5 M $_{\odot}$
- empirical determinations of overshooting the largest uncertainty in stellar modeling are contigent to our knowledge of 14N+p rate

Future

Orebi-Gann et al. 2021

Future: measurement of diffusive processes in the Suma

EXCELENCIA

DE MAEZTU

MARIA

Institute of

Space Sciences

Solar (stellar) radiative opacities

Impact of metallicity

Solar model with low-Z has overall lower opacity

- → flatter temperature profile
 → slightly lower internal temperature
- → affects helioseismology
 → pp-chain neutrinos

Degeneracy between metals and opacity very difficult to break

Opacities are the worst known fundamental piece of physics in solar/stellar modeling