Search for Exotic Hadrons at GlueX

Marciana 2025: Lepton Interactions with Nucleons and Nuclei

Farah Afzal for the GlueX Collaboration

Ruhr University Bochum

23.06.2025

Exotic hadrons

Hadron spectrum

- Many conventional qq
 q and qqq states have been observed
- QCD allows more complicated configurations as well, e.g. multi-quark states, hybrids, glueballs

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

... Baryons can now be constructed from quarks by using the combinations (q q q), $(q q q q \bar{q})$, etc., while mesons are made out of $(q \bar{q})$, $(q q \bar{q} \bar{q})$, etc...

Phys.Lett. 8 214-215,1964

GlueX experiment: Probing hadron spectrum using photo-induced reactions \rightarrow Focus on exotic hybrid mesons

Predicted light meson spectrum - Lattice QCD

HadSpec: J. Dudek et al. PRD 88 094505 (2013)

Spin-exotic: $J^{PC} = 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+} \dots$ (not allowed for $q\bar{q}$ states!) Clear signature for finding hybrid mesons!

RUB

Recent Lattice QCD calculation ($m_\pi\sim$ 700 MeV): Woss, Dudek et al., PRD 103 (2021) 054502

Important to measure different decay modes to compare to predictions from Lattice QCD!

Experimental evidence for light hybrid mesons

- Experimentally two hybrid meson candidates: $\pi_1(1400)$: GAMS, VES, E852, CBAR, COMPASS $\pi_1(1600)$: VES, E852, COMPASS
- JPAC: coupled channel analysis of $\eta\pi$ and $\eta'\pi$ requires only a single pole

HadSpec: J. Dudek et al. PRD 88 094505(2013)

Experimental evidence for light hybrid mesons

3000 exotic 2500 2^{+-} IPC 2000 1^{-+} $m \, / \, \mathrm{MeV}$ q 1500 $m_{\pi} = 392 \,\mathrm{MeV}$ 1000 $24^3 \times 128$ isoscalar isovector 500

HadSpec: J. Dudek et al. PRD 88 094505(2013)

More recent progress

Experimental evidence for light hybrid mesons

HadSpec: J. Dudek et al. PRD 88 094505(2013)

HADRON 2025 talk by J. Beckers

The GlueX experiment

CEBAF accelerator

 E_{e^-} <12 GeV

Hall D

Linearly polarized photon beam

Important for understanding production mechanism!

The GlueX experiment

- Nearly complete angular coverage for charged and neutral final states
 - \rightarrow Light meson spectroscopy with wide variety of final states possible!

Photoproduction of exotic final states

Photoproduction of exotic final states

Photoproduction of exotic final states

Photoproduction is unique, complementary production mechanism

Advantage: Access to all exotic quantum numbers J^{PC} !

Analysis approach to search for e.g. π_1 :

- 1. Study neutral and charge exchange mechanism
 - \rightarrow Linearly polarized photons help to disentangle different production mechanism
- 2. Study different decay modes of π_1 : e.g. $\pi\eta$, $\pi\eta'$, $\pi\rho$
 - \rightarrow Disentangle different J^{PC} contributions in mass distributions
 - \rightarrow Develop formalism for amplitude analysis

HadSpec: J. Dudek et al. PRD 88 094505(2013)

Probing photoproduction mechanism with $\boldsymbol{\Sigma}$ and SDMEs

Probing photoproduction mechanism with Σ

- Σ is sensitive to exchanged particle J^{PC} Sign of $\Sigma \rightarrow$ naturality: $\eta = P(-1)^J$
- **natural** parity exchange $(\eta = +1)$: $J^P = 0^+, 1^-, 2^+...$
- **unnatural** parity exchange $(\eta = -1)$: $J^P = 0^-, 1^+, 2^-...$

neutral exchange:

- $\pi^0 p$: natural parity (ρ, a_2) exchange dominates
- Similar observations ($\Sigma \approx 1$) for ηp , $\eta' p$ and $K^+ \Sigma^0$ GlueX: PRC 100, 052201 (2019) GlueX: PRC 101, 065206 (2020)

charge exchange:

- Low -t: unnatural exchange ($\Sigma < 0 \rightarrow \pi, b_1$) preferred
- High -t: natural exchange ($\Sigma > 0
 ightarrow
 ho, a_2$) preferred

Study of charge exchange mechanism $\gamma p \rightarrow \pi^- \Delta^{++} \rightarrow \pi^- \pi^+ p$

GlueX: Phys.Lett.B 863 (2025) 139368

Analyzing decay angles of $\Delta^{++} o p\pi^+$ gives access to Spin-density matrix elements!

Study of exchange mechanism with SDMEs in $\gamma p \to \pi^- \Delta^{++} \to \pi^- \pi^+ p$

GlueX: Phys.Lett.B 863 (2025) 139368

RUB

Separation of natural and unnatural exchanges using combinations of SDMEs

н.

• Separation of unnatural-parity (*U*) and natural-parity (*N*) exchanges $\rho_{ii}^{N/U} = \rho_{ii}^0 \pm \rho_{ii}^1$

- JPAC model: π (a_2) is the dominant unnatural (natural) exchange
- Important for charge-exchange reactions e.g. $\gamma p \rightarrow \eta' \pi \Delta^{++}$, $\gamma p \rightarrow 3\pi \Delta^{++}$

Separation of natural and unnatural exchanges using combinations of SDMEs

• Separation of unnatural-parity (*U*) and natural-parity (*N*) exchanges $\rho_{ii}^{N/U} = \rho_{ii}^0 \pm \rho_{ii}^1$

- JPAC model: π (a₂) is the dominant unnatural (natural) exchange
- Important for charge-exchange reactions e.g. $\gamma p o \eta' \pi \Delta^{++}$, $\gamma p o 3\pi \Delta^{++}$

Separation of natural and unnatural exchanges using combinations of SDMEs

• Separation of unnatural-parity (*U*) and natural-parity (*N*) exchanges $\rho_{ij}^{N/U} = \rho_{ij}^0 \pm \rho_{ij}^1$

- JPAC model: π (a_2) is the dominant unnatural (natural) exchange
- Important for charge-exchange reactions e.g. $\gamma p o \eta' \pi \Delta^{++}$, $\gamma p o 3 \pi \Delta^{++}$

Spin-Density Matrix Elements in $\rho(770)$ production

Spin-Density Matrix Elements in $\rho(770)$ production

- High-precision data, uncertainties dominated by systematics
- s-channel helicity conservation: $\rho_{1-1}^1 = 0.5$, $Im\rho_{1-1}^2 = -0.5$ (valid at very low -t)
- Good agreement to JPAC: Regge model at low -t [JPAC: PRD 97 094003 (2018)]
- Natural-parity exchange (P) dominates

Spin-Density Matrix Elements in $\rho(770)$ production

- High-precision data, uncertainties dominated by systematics
- s-channel helicity conservation: $\rho_{1-1}^1 = 0.5$, $Im\rho_{1-1}^2 = -0.5$ (valid at very low -t)
- Good agreement to JPAC: Regge model at low -t [JPAC: PRD 97 094003 (2018)]
- Natural-parity exchange (P) dominates

Towards hybrids at GlueX

Guided search: $\pi_1(1600)$ photoproduction cross section upper limit

Disentangle different J^{PC} contributions in mass distributions

Disentangle different J^{PC} contributions in mass distributions

Production mechanism of $\gamma p ightarrow a_2^-(1320)\Delta^{++}$

$$I(heta,\phi,\Phi) \propto |\sum_{\ell,m} [\ell]^\epsilon_m Y^m_\ell(heta,\phi) e^{-i\Phi}|^2$$

l: orbital angular momentum*m*: spin projection

 $\epsilon :$ reflectivity - product of naturalities of exchanged particle and prod. res.

 $[\ell]_m^\epsilon$: (interfering) partial waves

 $S_0^{\pm}, P_{-1,0,1}^{\pm}, D_{-2,-1,0,1,2}^{\pm}, \dots$

Production mechanism of $\gamma p \rightarrow a_2^-(1320)\Delta^{++}$

$$[heta,\phi,\Phi) \propto |\sum_{\ell,m} [\ell]^\epsilon_m Y^m_\ell(heta,\phi) e^{-i\Phi}|^2$$

 ℓ : orbital angular momentum *m*: spin projection ϵ : reflectivity - product of naturalities of exchanged particle and prod. res.

 $[\ell]_m^{\epsilon}$: (interfering) partial waves

 $S_0^{\pm}, P_{-1,0,1}^{\pm}, D_{-2,-1,0,1,2}^{\pm}, \dots$

1(

 a_2^- is dominantly produced by unnatural parity ($\epsilon = -$) exchange

Production mechanism of $\gamma p ightarrow a_2^0(1320) p$

- Semi-mass dependent method using Breit-Wigner to model a⁰₂(1320)
- $a_2^0(1320)$ is dominantly produced by **natural parity** exchange (D_2^+)
- Polarized photoproduction cross section agrees well with theory (tensor meson dominance model)

GlueX: arXiv:2501.03091, Accepted in PRC

RUB

- Semi-mass dependent method using Breit-Wigner to model a⁰₂(1320)
- $a_2^0(1320)$ is dominantly produced by **natural parity** exchange (D_2^+)
- Polarized photoproduction cross section agrees well with theory (tensor meson dominance model)

Ongoing analysis for $\gamma p \rightarrow \eta' \pi^- \Delta^{++}$ at GlueX

5

- Similar forward/backward asymmetry seen in GlueX н. data consistent with COMPASS data
- Potential indication for interference between odd н. $(\pi_1 \ P\text{-wave})$ and even $(a_2 \ D\text{-wave})$ partial waves

 J/ψ Photoproduction at GlueX

- = Full GlueX-I data yields 2270 \pm 58 J/ψ 's
- J/ψ production near threshold ($E_{\gamma} = 8.2 - 11.8 \text{ GeV}$)
 - \rightarrow probe of proton structure, search for
 - P_c resonances, etc.

J/ψ Photoproduction at GlueX - Different possible production mechanisms

- More data taking (GlueX-III) planned in the future
- Polarization observables desirable to study production mechanism

A natural continuation to the charmonium sector: Spectroscopy of exotic states with $c\bar{c}$

- Many unexpected resonances XYZ observed in e⁺e⁻ collisions and B decays; decay mostly into charmonium and light quarks
- Not much consistency between different production mechanisms → Are these states resonances?
- Photoproduction is free from rescattering effects

A. Accardi et al., arXiv:2306.09360v2

Summary

- GlueX has measured a unique data set with unprecedented statistical precision in the energy range between 6-12 GeV
- Developing amplitude analysis formalism and studying production mechanisms in parallel
- Σ, SDMEs provide important input for modeling exchange mechanism and search for exotic states
- $a_2^0(1320)$ results: first application of amplitude analysis formalism to linearly polarized photoproduction
- Upper limit of $\pi_1(1600)$ photoproduction cross section provides important guidance for future searches \rightarrow Possible dominant contribution in $\eta'\pi$
 - \rightarrow First look at $\eta^\prime\pi$ angular distributions looks promising
- GlueX has measured the first J/ψ photoproduction cross section in the energy range between 8.2-11.8 GeV
- No clear evidence of narrow P_c states, but dip structure at $E_{\gamma} = 9$ GeV with significance of 2.6 σ observed \rightarrow More data will be taken in the future
- GlueX gratefully acknowledges the support of several funding agencies and computing facilities:

 ${\sf gluex.org/thanks}/$