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Specific choices of  kinematics and target nuclei probe different physics:

• Mid-70s to late-80’s: goal was to show sin2θW was the same as in neutrino scattering
• Early 90’s to 2020’s: target couplings probe novel aspects of hadron structure  

 strange quark form factors, neutron RMS radius of heavy nuclei
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Tiny yet measurable deviations from precisely calculable SM processes

must reach Λ ~ 10 TeV

Search for new flavor diagonal neutral currents
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—> weak mixing angle extraction (assume SM)
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✦ PV elastic e-p scattering: Qweak 
✦ theory robust at low beam energy 
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Sensitivity akin to a 500 GeV Lepton Collider
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g-2 (e and 𝝁)
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Heavy Photons   
(A’ mixed with Z0): 

The Dark Z

Many different scenarios give rise to effective 4-electron contact interaction amplitudes: significant discovery potential
H. Davoudiasl, H-S. Lee and W. Marciano

room for 10 σ effects 

Doubly-
Charged 
Scalar

Lepton Number Violation

5 σ for hee ~ 1 and MΔ ~ 1 TeV  

Cirigliano et al
Phys.Rev. D70 (2004) 075007

B. Dev et al
PhysRevD.98.055013

Specific 
Scenario 
for Type-II 
SeeSaw

Specific 
Scenario 
folding in 
Cs APV and 
g-2 (e and 𝝁)
M. Caddedu et al

2104.03280 (hep-ph)

https://arxiv.org/abs/2104.03280
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Showermax

Pion 
Detectors

LAMs

SAMs
Downstream 

Scanners
Upstream 
Scanner

Beam

• ~ 50M$ MIE by US DOE NP 
• ~ 12M$: US NSF and Canada 
CFI/Research Manitoba 
• CD-1 granted in Dec 2020 
• CD-2/3 granted May 2024  
• Construction: 2024-25 
• Installation 2025-2026 
• Commissioning: Early 2027 
• Physics thru 2029 and beyond
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MOLLER Under Construction!

13

3D Printed Model of Apparatus

Tungsten      collimators

Conical detector pipe

Clamped sub-coil

Bellows between spectrometer 
can and drift pipe

Downstream spectrometer 
top hat

Completed Subcoils

Subsoil 4’s
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Liquid Hydrogen Target 
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• up to 70 μA  on 125 cm LH2 target -  3.7 kW  
• Qweak experience: use of CFD (computational fluid dynamics) 

Main requirement: minimize target density fluctuations (Δρ/ρ): 
 Γtarget < 30 ppm  for 70 μA, 5x5 mm2 raster, 1.92 kHz flip

LH2 Target Schematic

He-H heat exchanger
125 cm LH2 cell 

(shown out-of-beam)

LH2 pump motor

LH2 pump volute

Cryostat

Vertical lifter Bellows

Beam line

High power heater

Target chamber

Target chamber stand
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• up to 70 μA  on 125 cm LH2 target -  3.7 kW  
• Qweak experience: use of CFD (computational fluid dynamics) 

Main requirement: minimize target density fluctuations (Δρ/ρ): 
 Γtarget < 30 ppm  for 70 μA, 5x5 mm2 raster, 1.92 kHz flip

LH2 Target Schematic

He-H heat exchanger
125 cm LH2 cell 

(shown out-of-beam)

LH2 pump motor

LH2 pump volute

Cryostat

Vertical lifter Bellows

Beam line

High power heater

Target chamber

Target chamber stand

Entrance window 
flow diverter

Exit window flow 
diverter

Target 
Cell

Test fit of 
scattering 
chamber 
completed

Cryostat 
components
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Spectrometer Design

15

• Accept all Møller scattered 
electrons in range ΘCM = 50o 
– 130o 

• Exploit identical particle 
nature for 100% azimuthal 
acceptance; needs odd 
number of coils 

…are collected 
over here.

UPSTREAM TORUS

Scattered electron 
energy vs COM 
scattering angle

Lab Scattering 
Angle vs scattered 
electron energy

The rays that are 
blocked here…
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Spectrometer Design

15

• Accept all Møller scattered 
electrons in range ΘCM = 50o 
– 130o 

• Exploit identical particle 
nature for 100% azimuthal 
acceptance; needs odd 
number of coils 

…are collected 
over here.

UPSTREAM TORUS

Scattered electron 
energy vs COM 
scattering angle

Lab Scattering 
Angle vs scattered 
electron energy

The rays that are 
blocked here…

e-p elastic

Møllers

2-8 GeV scattered electrons 
6 - 20 mrad scattering angleMust spatially separate 

from background scatters

Primary collimators

DOWNSTREAM TORUS

Beam direction
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Spectrometer Construction
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TM-2

TM-1 complete…

TM1 coil rigging test

TM2 frame ready for loading

TM1 coil loading

Test Lab at JLab

T1 Complete!

Upstream spectrometer innards
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Capturing the Scattered Flux
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Wide variation in flux intensity and weights of different 
scattering processes: 1) e-e, 2) elastic e-p, 3) inelastic e-p

Both radial and azimuthal segmentation 
in scattered flux measurements required 

Heat map on transverse plane 26.5 m from target center 1/7 of the azimuth showing tiling segmentation
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Integrating Detector Assembly

18

Idaho State University 
University of Manitoba
University of Massachusetts
Bartoszek Engineering
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Integrating Detector Assembly
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Idaho State University 
University of Manitoba
University of Massachusetts
Bartoszek Engineering

Integrating 
ADC Board
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MOLLER Detection Overview

19

Physicist 
CAD
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MOLLER Detection Overview
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Physicist 
CAD

Integrating (current mode) detectors:  
asymmetry measurements of both signal and 
background, and beam and target monitoring

Requirement for Ring 5: 
Detector resolution < 25% 
excess noise < 4%
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MOLLER Detection Overview

19

spectrometer calibration, electron scattering angle 
distribution, and background measurements

• Gas electron  multipliers (GEM)  detectors 
• “Pion” acrylic Cherenkov detectors

Tracking (counting mode) detectors: 

Physicist 
CAD

Integrating (current mode) detectors:  
asymmetry measurements of both signal and 
background, and beam and target monitoring

Requirement for Ring 5: 
Detector resolution < 25% 
excess noise < 4%
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MOLLER Detection Overview

19

• Integration mode DAQ & trigger
－Collect & analyaize100% of the helicity windows

• Counting mode DAQ & trigger
－input rates between 10~kHz and 300~kHz

spectrometer calibration, electron scattering angle 
distribution, and background measurements

• Gas electron  multipliers (GEM)  detectors 
• “Pion” acrylic Cherenkov detectors

Tracking (counting mode) detectors: Readout Electronics: 

Physicist 
CAD

Integrating (current mode) detectors:  
asymmetry measurements of both signal and 
background, and beam and target monitoring

Requirement for Ring 5: 
Detector resolution < 25% 
excess noise < 4%



Lepton-Nucleus Topics
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Extracting MOLLER Physics

21
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✦ Black: e-e scattering
✦ Red: elastic e-p scattering
✦ Green: inelastic e-p scattering
✦ Dark blue: elastic e-Al scattering
✦ Light blue: inelastic e-Al scattering
✦ Magenta: Al quasi-elastic scattering
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Inclusive 11 GeV electron scattering off hydrogen

Radial distributions 26.5 m downstream of the liquid hydrogen target
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• 16 different tile asymmetries
• “Pre-subtract” Al and pion asymmetry contributions
• Simultaneous fit to 16 measurements with different 

contributions of e-e, e-p elastic, ep-inelastic
• Extract the “weak charge” for e-e, e-p elastic and 

inelastic e-p for 3 different W ranges

Inclusive 11 GeV electron scattering off hydrogen

Radial distributions 26.5 m downstream of the liquid hydrogen target
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PV Electron-Proton Inelastic Scattering
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first principles: using electroweak 
neutral current structure functions 

€ 

APV =
GFQ

2

2πα
a(x) + f (y)b(x)[ ] APV =

GF Q2

2
√

2πα

[
gA

F γZ
1

F γ
1

+ gV
f(y)

2
F γZ

3

F γ
1

]

At high Q2, one can use quark pdf’s and standard model couplings. At forward angles, the prediction is 
. However, for very low Q2, one needs a model as a function of W.APV /Q2 ∼ 8.5 × 10−5

Deep inelastic scattering

MOLLER 
kinematics:

Ebeam = 11 GeV,  mrad, E’ = 3 to 8 GeV6 < θlab < 20
Q2 ~ 0.001 - 0.02 GeV2, W2 from 1 to 20 GeV2

Diffractive Regime 
(VMD or Pomeron Physics)
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At high Q2, one can use quark pdf’s and standard model couplings. At forward angles, the prediction is 
. However, for very low Q2, one needs a model as a function of W.APV /Q2 ∼ 8.5 × 10−5

Deep inelastic scattering

Mock Fit Extraction with Monte Carlo Trial Data Fit Corrections for Ring-5 Tiles after Fit Extraction
Assumption: APV/Q2 ~ F(W) is constant in 3 W regions
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The Box Diagram Connection

23

Radiative corrections to the theoretical prediction of the weak charge of the proton

FγZ
1,2(Q

2, W2)
In 3 different 
kinematic regimes

• 	 Hall et al, Phys.Lett.B 731 (2014) 287-292, Phys.Lett.B 733 (2014)

AJM Model

DIS Region

M
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ER

P2
Q

w
ea

k

No data!!!!
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The Box Diagram Connection

23

Radiative corrections to the theoretical prediction of the weak charge of the proton

FγZ
1,2(Q

2, W2)
In 3 different 
kinematic regimes

• 	 Hall et al, Phys.Lett.B 731 (2014) 287-292, Phys.Lett.B 733 (2014)

AJM Model

Matsui et al, Gorschein et al, AJM, CJ, 
compared to PVDIS measurements

DIS Region

M
O

LL
ER

P2
Q

w
ea

k

There is no data on  in Region II!  MOLLER will make the first ever measurement!FγZ
1

No data!!!!
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Two-Photon 
Exchange (TPE)

24

✦ High Beam Energy 
✦ Very Forward Angle 
✦ Clean Separation of Inelastics 
✦ Tremendous Statistics

PREX/CREX Bn Measurements on Nuclei

• The asymmetry arises from two-photon 
exchange. A single-photon exchange contribution 
vanishes under time-reversal symmetry. 

𝐴(𝜙) = 𝐴𝑛(𝜃,  𝐸𝑏𝑒𝑎𝑚)𝑃𝑛cos(𝜙)
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https://arxiv.org/abs/2102.11809
https://doi.org/10.1103/PhysRevC.103.064316


Overview of the MOLLER Experiment at JLab Krishna Kumar, September 23, 2024

Two-Photon 
Exchange (TPE)

24

PREX/CREX Bn Measurements on Nuclei

• The asymmetry arises from two-photon 
exchange. A single-photon exchange contribution 
vanishes under time-reversal symmetry. 

𝐴(𝜙) = 𝐴𝑛(𝜃,  𝐸𝑏𝑒𝑎𝑚)𝑃𝑛cos(𝜙)

Theory curves: Koshchii et al: Phys.Rev.C 103 (2021) 6, 064316 • 
e-Print: 2102.11809 • DOI: 10.1103/PhysRevC.103.064316

Phys.Rev.Lett. 128 (2022) 14, 142501 • 
e-Print: 2111.04250 [nucl-ex]

https://arxiv.org/abs/2111.04250
https://arxiv.org/abs/2102.11809
https://doi.org/10.1103/PhysRevC.103.064316


Overview of the MOLLER Experiment at JLab Krishna Kumar, September 23, 2024

Hall C Proposal PR-12-24-007

25

•A fit to the small amount of data available at forward angles produces a 
C=0.02 which is consistent with Mainz Zr-90 data 

•One possible explanation would be that another physics process produces a transverse 
asymmetry with the opposite sign as the TPE that is present in high Z (or A) nuclei

C. Gal (contact), C. Ghosh, S. Park (co-spokespersons)
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Hall C Proposal PR-12-24-007

25

•A fit to the small amount of data available at forward angles produces a 
C=0.02 which is consistent with Mainz Zr-90 data 

•One possible explanation would be that another physics process produces a transverse 
asymmetry with the opposite sign as the TPE that is present in high Z (or A) nuclei

• We propose to measure the beam normal single spin 
asymmetry using targets with a broad range of Z (6 ≤ Z ≤ 90) 

• The experiment aims to measure the asymmetries with an 
absolute uncertainty of 0.5 ppm (stat)  0.2 ppm (syst) 

• New data on intermediate to heavy nuclei will allow us study 
nuclear dependence of the asymmetry

±

C. Gal (contact), C. Ghosh, S. Park (co-spokespersons)



Overview of the MOLLER Experiment at JLab Krishna Kumar, September 23, 2024

Projected Results

26

• TPE calculations suggest 6-7 ppm 
asymmetries for all targets at the 
proposed kinematics 

• Empirical determination of asymmetry 
suppression assuming Z2 corrections 

 
• Lack of data for Z > 40 makes it almost 

impossible to test models for the 
missing contributions 

• The precision proposed in this 
experiment will allow studying the 
nuclear dependence of the asymmetry

𝐴𝑛 ≈ 𝐴0(𝑄)(1 − 𝐶 ⋅ 𝑍2𝛼)

9 Approved PAC days: 2-3 days commissioning, ~ 5 days production data 



Overview of the MOLLER Experiment at JLab Krishna Kumar, September 23, 2024

MOLLER Summary

27

✦ MOLLER is unique probe of  TeV-scale purely leptonic interactions 

✦ There is also sensitivity (e.g. lepton number violation) to low energy 
physics, quite apart from dark-Z’s etc 

✦ If  the current schedule is maintained (US DOE funding for JLab must 
continue to be healthy), then we could publish an E158-level result by 
summer 2028, and reach our ultimate sensitivity by 2030 ( ) 

✦ CMS at LHC released a new number ( ) with pdf  uncertainty 
( ): Window of  opportunity for MOLLER and P2 until HL-LHC 

✦ MOLLER will also explore electroweak nucleon structure in a novel 
kinematic regime; auxiliary measurements at MOLLER and Hall-C might 
produce surprises involving low energy QCD dynamics

±0.00023 ± 0.00012

±0.00031
±0.00027


