A New Proposal to Measure the Nucleon Axial Vector Form Factor at Jefferson Lab

Proposal PR12-25-009 to JLab PAC 53 (July 2025) Spokespersons Todd Averett, Bogdan Wojtsekhowski, Weizhi Xiong, JN

$$\vec{e}^- + p \rightarrow \nu_e + n$$

Jim Napolitano (Temple University, Philadelphia, USA) Marciana 2025 - Lepton Interactions with Nucleons and Nuclei Sunday, June 22, 2025 - Friday, June 27, 2025

What is the Axial Vector Form Factor? Charged Weak Current Analog of the Electromagnetic FF's

Vector Interaction

 $\left\langle p+q \left| J_V^{\mu} \right| p \right\rangle = \bar{u}(p+q) \left| F_1(q^2) \gamma^{\mu} \right|$ You are very familiar with these

Axial-Vector Interaction

$$\langle p + q \,|\, J^{\mu}_{A} \,|\, p \rangle = \bar{u}(p + q) \left[F_{A}(q^{2})\gamma^{\mu}\gamma^{5} + F_{PS}(q^{2})q^{\mu}\gamma^{5} \right] u(p)$$

Well measured at zero momentum transfer (beta decay). Our goal is to measure $F_A(q^2)$ at finite momentum transfer.

$$+\frac{\kappa}{2m}F_2(q^2)i\sigma^{\mu\nu}q_{\nu} \bigg| u(p)$$

form factors.

- The only existing measurements use pion production with PCAC or neutrino reactions, but each have issues with precision of interpretation!

Why Do We Want to Measure It? (Besides being another fundamental QCD observable!)

New constraints on Generalized Parton Distributions

(Peter Kroll)

$$F_A^{(3)}(t) = \int_0^1 \left[\widetilde{H}_v^u(x,\xi,t) - \widetilde{H}_v^d(x,\xi,t) \right] dx \quad \text{Valence quarks} \\
+ 2 \int_0^1 \left[\widetilde{H}^{\bar{u}}(x,\xi,t) - \widetilde{H}^{\bar{d}}(x,\xi,t) \right] dx \quad \text{Sea quarks (small)}$$

Important input for DUNE and other high energy neutrino experiments

(Aaron Meyer)

Axial Vector Form Factor Proposal

prelim)
D]
Rev.D 93 (2016)]
prelim) D]

Important constraints on LQCD calculations needed to untangle neutrino oscillations in DUNE.

(Even a 25% measurement helps a lot.)

What Measurements Currently Exist? No direct measurements with constrained kinematics \rightarrow Dipole fit

 $M_A = 1.026 \pm 0.021$

Inconsistent

Axial Vector Form Factor Proposal

$M_A = 1.069 \pm 0.016$

Jim Napolitano @Marciana 2025 LINN

How Are We Going To Do It?

- Detect the neutron from $\vec{e}^- p \to \nu_\rho n$
- Identify neutron using time-of-flight
- Minimize backgrounds from pion production, elastic *ep*, and other sources
- Subtract remaining background using data from right handed electrons

The primary challenge is to reduce the backgrounds from electromagnetic processes (10⁷ larger than our signal) so that background subtraction yields a statistically useful signal.

٦	e	Ś	
•			

The idea has been around a while!

- LOI to PAC 1 (JN) Not a typo!
- LOI to PAC 25 (A Deur)
- LOI to PAC 52 (JN and BBW)

Axial Vector Form Factor Proposal

- Signal from neutron time-of-flight and calorimetry
- Sweep magnet removes low energy charged particle backgrounds
- Existing GEMs and HCAL reject $\gamma p \rightarrow \pi^+ n$ and ep elastic
- (Investigating "wide angle veto" to deal with $\gamma p \rightarrow \pi^+ \pi^0 n$ background)
- GEMs used for calibrating system with *ep* elastic events

Proposed Realization in Hall C at CEBAF

Axial Vector Form Factor Proposal

- 10cm LH2 target (*pure; low D2*)
- $\theta_n = 48^\circ \text{ so } Q^2 = 1 \text{ GeV}^2$
- $T_n = 525$ MeV, v/c=0.77
- 15m to TOF, 65 ns, $\Delta\Omega$ =75 msr
- Expect to get $\sigma_{TOF}=100$ ps
- $\theta_{\nu} = 30^{\circ} = \theta_{e}$
- $E_e = 1.67 \text{ GeV}$

Beam Structure

Pulses separated by 2ns will lead to background from overlaps

with large bunch spacing.

The Neutron Arm (Schematic)

TOF Front View 8m tall neutrons 140 bars TOF ← 2m wide →

Axial Vector Form Factor Proposal

Side View

- New components to be constructed at JLab
- TOF based on CLAS12, $11 \times 140 = 1540$ bars (Not all are shown!)
- Expect 110 ps resolution
- NCAL is 30m², currently looking for options from some decommissioned experiments.

Potential NCAL Option The STAR Barrel Electromagnetic Calorimeter

We would need to deal with the pointing geometry.

Alternating the modules can fix azimuthal, but we would need to live with rapidity segmentation.

Axial Vector Form Factor Proposal

Compression plate

Shower max, detecto

Simulations: FLUKA for Raw Neutron Yield **Remember: Reducing neutron backgrounds is the key to success**

Axial Vector Form Factor Proposal

$e + liq.H_2 \rightarrow n + X$ at $E_{beam} = 2.2 \text{ GeV} (\emptyset 2cm \times 20cm \text{ target})$

Axial Vector Form Factor Proposal

Estimated Sensitivity Reaction cross section from calculation by Peter Kroll

- Recall E=2.2 GeV, 120 μ A, P=85%, 10cm (active length) LH2 target
- Best current estimate of neutron detection efficiency is 25%
- Rate for $p(e^-, \nu_e)n$ is 0.0022 Hz
- Best current estimate of background rate is 3.4 Hz. Dominant contribution is from $p(\gamma, \pi^+)n$ (after cuts), followed by $Al(e^-, n)X$ on target windows, but we still need to thoroughly research the double pion background.
- a <u>statistical</u> uncertainty of 28% on $F_A(Q^2 = 1 \text{ GeV}^2)$.

• For a 50 day run, obtain 9.6K signal events and 14M background. This leads to

Summary

- There is plenty of interest in determining the axial vector form factor free from model uncertainties at at least one Q² point.
- A direct, fully kinematically constrained measurement appears to be within reach at CEBAF, but it all hinges on beating down the background(s).
- We want to do a test run in Hall C with a prototype neutron detector to confirm background calculations, as well as neutron energy resolution and detector efficiency.
- The PAC 53 Meeting is coming up in July. We'll see what feedback we get.
- A complete experiment, at multiple momentum transfers, would follow our successful demonstration of this principle.

