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1. Prelude
Despite the unpleasant current situation, our institute continues to work in a remote regime, 
allowing us to do some explorations at a distance. In any case, my young coworker, Yan 
Kostylenko, successfully defended his PhD yesteryear.


I order to understand better why I am here, let me remind you of several our papers in the 90s


{KorMelShe90} A. Korchin, Y. Mel’nik, A. Shebeko. Angular distributions and polarization of 
protons in the d(e, e′p)n reaction. Few-Body Syst. 9 (1990) 211;


{MelShe92} Y. Mel’nik, A. Shebeko. Calculation of proton polarization in deuteron disintegration 
with longitudinally polarized electrons. Few-Body Syst. 13 (1992) 59;


{MelShe93} Y. Mel’nik, A. Shebeko. Electrodisintegration of polarized deuterons. Phys. Rev. C 48 
(1993) 1259;


{KotMelShe95}  V. Kotlyar, Y. Mel’nik, A. Shebeko. Studies of polarization phenomena in photo- 
and electrodisintegration of the lightest nuclei at intermediate energies. PEPAN 26 (1995) 192  
with English translation in the AIP Proc. 1995.
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1. Prelude
Then, in this century, we have extended our explorations by applying field theoretical methods. In 
particular, working in the late 90s on the LTP (Dubna) in the papers by M.Shirokov and me


{SheShi00} A. Shebeko, M. Shirokov. Clothing procedure in relativistic quantum field theory and its 
applications to description of electromagnetic interactions with nuclei (bound systems). Progr. Part. Nucl. 
Phys. 44 (2000) 75;


{SheShi01} A. Shebeko, M. Shirokov. Unitary transformations in quantum field theory and bound states. 
Phys. Part. Nucl. 32 (2001) 15;


we developed the notion of the so-called clothed particles, i.e., particles with physical properties, put 
forward in the QFT by Greenberg and Schweber 


{GreSch58} O. Greenberg, S. Schweber. Clothed particle operators in simple models of quantum field 
theory. Nuovo Cim. 8 (1958) 378.


{Sch61} S. Schweber. An Introduction to Relativistic Quantum Field Theory. New York: Row, Peterson & 
Co., 1961.
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2. Clothed Particle Representation (CPR) in Action
within its basic idea to remove from the total Hamiltonian H for a system of 
interacting fields, e.g., meson and nucleon ones, undesirable (bad) terms that prevent 
one-body states to be H eigenvectors, viz., in the case of the nucleon, for instance,





for nucleon momentum  and mass , instead of the bare particle representation 
(BPR), where bare one-particle states  are not the  eigenstates. 


 
In Refs. {SheShi00, SheShi01} we have seen how one can go from the division 

 to  using the unitary clothing transformations (UCTs). By 
the way, it means that .


 For brevity, its polarization index is omitted.

H | ⃗p; cloth⟩ = E ⃗p | ⃗p; cloth⟩, E ⃗p = m2 + ⃗p2

⃗p m (*)

| ⃗p; bare⟩ H

H = H0 + V H = KF + KI
KI | ⃗p; cloth⟩ = 0

(*) 5

(2.1)
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2. Clothed Particle Representation (CPR) in Action
An attractive feature of the UCT method is that it allows to build up both interaction operators 
responsible for physical processes between clothed particles (bosons and fermions)


 
                             


and opens a fresh look at finding the mass and charge shifts (key points in renormalization 
theories): 
{KorShe04} V. Korda, A. Shebeko. Clothed particles representation in quantum field theory: 
mass renormalization. Phys. Rev. D. 70 (2004) 085011; 
{My talk at FB18 conference, Santos, Brazil, 2006} 
{KorCanShe07} V. Korda, L. Canton, A. Shebeko. Relativistic interactions for the meson-two-
nucleon system in the clothed-particle unitary representation. Ann. Phys. 322 (2007) 736; 
{SheDub10} I. Dubovyk, A. Shebeko. The method of unitary clothing transformations in the 
theory of nucleon-nucleon scattering. Few-Body Syst. 48 (2010) 109; 
{My talk at FB20 conference, Fukuoka, 2012} 
{KosShe23} Y. Kostylenko, A. Shebeko. Clothed particle representation in quantum field theory: 
Fermion mass renormalization due to vector boson exchange. Phys. Rev. D. 108 (2023) 125019.

H = KF + KI( ff → ff ) + KI( f̄ f̄ → f̄ f̄ ) + KI( ff̄ → ff̄ ) + KI(bf → bf )
+KI(bf̄ → bf̄ ) + KI(bb → ff̄ ) + KI( ff̄ → bb) + ⋯

(2.2)



3. Links between in(out) and clothed particle states in QFT
As well-known, when evaluating the -matrix in the Heisenberg picture,





one has to deal with the in(out) states (see, e.g., {GoldWat}), in particular, one-particle state





where  is the physical vacuum. The creation (destruction) in(out) operators  ( ) 
meet canonical commutation relations for bosons and fermions. By definition, these states are the 

 eigenstates 


.


{GoldWat} M. Goldberger, K. Watson. Collision Theory. New York, London, Sydney: John Wiley & 
Sons, Inc., 1967.

S

Sif = ⟨ f; out ∣ i; in⟩

| ⃗p; in (out)⟩ = a†
in (out)( ⃗p) Ω⟩,

|Ω⟩ a†
in(out) ain(out)

H

H | ⃗p; in(out)⟩ = E ⃗p | ⃗p; in(out)⟩
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(3.1)

(3.2)

(3.3)



Omitting important details (see also Sec. 4 of {She04} and Sec. 1.4 of {KosThesis24}), one can prove the relations 
between states in the CPR and in(out) formalism for the one particle


  


and two particles








with the Møller operators  that hold under the condition 


 


where the UCT in the D picture  and the limit is implied in the strong sense. 
To some extent, relation (3.4) does not seem unexpected, since both one-particle clothed states and in(out) states, 
being equally normalized, are  eigenvectors. Of course, it does not mean that !


{She04} A. Shebeko, The S-matrix in the method of unitary clothing transformations, Nucl. Phys. A 737 (2004) 252; 
{KosThesis24} Y. Kostylenko, Field-theoretical description of deuteron and positronium properties in the clothed-
particle representation, phd thesis, NSC “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine, 2024.

| ⃗p; in(out)⟩ ≡ a†
in(out)( ⃗p) |Ω⟩ = a†

c ( ⃗p) |Ω⟩,

| ⃗p1 ⃗p2; in⟩ ≡ a†
in( ⃗p1)a†

in( ⃗p2) |Ω⟩ = Ω(+)
c a†

c ( ⃗p1)a†
c ( ⃗p2) |Ω⟩,

| ⃗p1 ⃗p2; out⟩ ≡ a†
out( ⃗p1)a†

out( ⃗p2) |Ω⟩ = Ω(−)
c a†

c ( ⃗p1)a†
c ( ⃗p2) |Ω⟩

Ω(±)
c ≡ lim

t→∓∞
exp(iHt)exp(−iKFt),

lim
t→±∞

WD(t) = 1,

WD(t) = eiHFtWe−iHFt

H ain(out)( ⃗p) = ac( ⃗p)
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3. Links between in(out) and clothed particle states in QFT

(3.4)

(3.5)

(3.6)

(3.7)



4. Two-body currents
Recall that by using the method of unitary clothing transformations, the total field Hamiltonian 

 and other operators of great physical meaning (e.g., the Lorentz boosts and current 
density operators) are expressed through commutators of generators  of UCTs  with 
primary operators, e.g., when calculating the transition matrix elements  between 
the initial  and final  states we will employ the Campbell–Hausdorff formula so





with primary Noether current   in which ”bare” operators  are replaced by the 
clothed partners .


We have proposed in {KorCanShe07} a recursive technique for evaluating multiple 
commutators that inevitably appear along our guideline. This technique has been realized in 
the case of interacting boson and fermion fields with Yukawa-type couplings.


 More exactly, operator  with  taken at the point .

H
R W = eR

⟨ f |Jμ(0) | i⟩
| i⟩ | f⟩

Jμ(0) = eRJμ
c (0)e−R = Jμ

c (0) + [R, Jμ
c (0)] +

1
2

[R, [R, Jμ
c (0)]] + . . . ,

Jμ
c (0) (*) {α}

{αc = W†αW}

(*) Jμ
c (x) x = (t, ⃗x) (0,0⃗) 9

(4.1)
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4. Two-body currents
At this point, let me address the field theoretical description of electron scattering on 
the deuteron. The corresponding amplitude is proportional to the matrix element of 
the current density operator sandwiched between the initial deuteron state  
and final two-nucleon states (  for elastic scattering and  for breakup). It is the 
case where our task is reduced to 


,








For brevity, the Lorentz label is omitted.

| i⟩ = |d⟩
|d⟩ |np⟩

⟨two-body |Jμ(0) |d⟩ = ⟨two-body | [J[1]
μ + J[2]

μ ] |d⟩

J[1] = ⨋ d1′ d1 F(1′ ,1)b†
c (1′ )bc(1),

J[2] = ⨋ d1′ d2′ d1d2 FMEC(1′ ,2′ ,1,2)b†
c (1′ )b†

c (2′ )bc(1)bc(2) .

(4.2)

(4.3)

(4.4)



11

4. Two-body currents

Schematically, this structure looks as

one−body mesonic seagull
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4. Two-body currents
Here, the c-functions are determined by


,


with the Dirac (Pauli) form factor  ( ) and , e.g., for  mesons, looks as


,





                                                                      ,





where , , ,  the coupling constant and  the 
corresponding cutoff factors. Henceforth, we accept the abbreviation . 
Our calculations with such currents are underway.

Fμ(1′ ,1) = e m ū(1′ ){F1[(p′ 1 − p1)2]γμ + iσμν (p′ 1 − p1)ν

2m
F2[(p′ 1 − p1)2]}u(1)

F1 F2 FMEC = FMCC + FMNN π

Fμ
πCC(1′ ,2′ ,1,2) = i

eg2
πm2

2(2π)6
[ ⃗τ1 × ⃗τ2]zgπ

11(p′ 1p1)gπ
11(p′ 2p2)

ū(1′ )γ5u(1)
(p′ 1 − p1)2 − m2

π

ū(2′ )γ5u(2)
(p′ 2 − p2)2 − m2

π
(p′ 2 − p′ 1 + p1 − p2)μ

Fμ
πNN(1′ ,2′ ,1,2) =

eg2
πm2

2(2π)6
gπ

11(p′ 2p2)
ū(2′ )γ5u(2)

(p′ 2 − p2)2 − m2
π [ 1

2 ( ⃗τ1 ⋅ ⃗τ2 + τz
2 − i[ ⃗τ1 × ⃗τ2]z)gπ

11(p1s) ū(1′ )γμΓ(1′ ,2′ ,1,2)γ5u(1)

+ 1
2 ( ⃗τ1 ⋅ ⃗τ2 + τz

2 + i[ ⃗τ1 × ⃗τ2]z)gπ
11(p′ 1s′ ) ū(1′ )γ5Γ(1,2,1′ ,2′ )γμu(1)]

Γ(1′ ,2′ ,1,2) =
1

2E ⃗s [(s + m)
E ⃗p1

− E ⃗p2
+ E ⃗p′ 2

− E ⃗s

(p1 − s)2 − m2
π

+ (s− − m)
E ⃗p1

− E ⃗p2
+ E ⃗p′ 2

+ E ⃗s

(p1 + s−)2 − m2
π ],

s = (E ⃗s, ⃗s), s′ = (E ⃗s′ 
, ⃗s′ ) ⃗s = ⃗p1 + ⃗p2 − ⃗p′ 2 ⃗s′ = ⃗p′ 1 + ⃗p′ 2 − ⃗p2 gπ gπ

11(p′ p)
s = sμγμ

/ /

/

(4.5)

(4.6)

(4.7)
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4. Two-body currents
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Illustration of the mechanisms that contribute to the seagull exchange current. Blue and orange circles correspond to the 
 and  cutoffs, respectively.g11 g12
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4. Two-body currents

(a)
p2

p1 p1
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⇒

Illustration of the mechanisms that contribute to the mesonic meson exchange current. Blue circles correspond to the 
 cutoff.


These figures are taken from {KosThesis24}.

g11
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4. Two-body currents
Many things under our consideration remain intact for describing the scattering 
of other leptons on few-nucleon systems. 
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5. Final state interactions in inclusive and semi-inclusive processes

Special attention in our studies is paid to the effects due to interactions between 
reaction products in processes induced by leptons off nucleons and nuclei below 
and above the pion production threshold. In this context, let me recall our 
collaborative research on the pion photoproduction off the deuterium  


V. Ganenko, A. Shebeko et al. (1973-1979)


and pion electroproduction in the reaction 


L. Levchuk, A. Shebeko. Positive pion electroproduction on the deuteron near 
threshold. Yadernaya Fizika. 62 (1999) 263-271;


L. Levchuk, L. Canton and A. Shebeko. Nuclear effects in positive pion 
electroproduction on the deuteron near threshold. EPJA 21 (2004) 29–36.

d(γ, π+)nn

d(e, e′ π+)nn
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5. Final state interactions in inclusive and semi-inclusive processes
These inclusive (in final states, only pions are detected) and semi-inclusive (pions are observable with 
scattered electrons) reactions are typical to illustrate a general idea, viz., we rewrite the expression


,


,


where  the corresponding transition operator, is the  eigenvector that belongs to the energy 
 of the final -pair, in the form


.


In its turn, the delta function ,


      


with the free resolvent , so evaluation of our cross section reduces to plane wave 
contribution  FSI contribution linear in -matrix of -scattering.


See details in my talk at Gordon Conference on photonuclear reactions, Tilton, 1976.

dσγπd = (2π)4 ⨋nn
δ(Eπ − Eγ + Enn − Ed) |Γnn |2 d ⃗pπ

Γnn = ⟨ψ(−)
nn |Fγπ |d⟩

Fγπ ⟨ψ(−)
nn | H

Enn = En1
+ En2

nn

dσγπd = (2π)4⟨d |F†
γπδ(E − Eπ − H)Fγπ |d⟩d ⃗pπ

δ(x − H) = − π−1Im(x + i0 − H)−1

(x + i0 − H)−1 = g0(x + i0) + g0(x + i0)tnn(x + i0)g0(x + i0)

g0(z) = (z − H0)−1

+ t nn

(5.1)

(5.2)

(5.3)

(5.4)
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5. Final state interactions in inclusive and semi-inclusive processes

Ethr�≃ 140�MeV

the FSI peak

~��� keV

the 4F3

Eγ

d
2σ

dEπ dΩπ

TXDVLIree�NLQePDtLFV

FSI – final state interaction peak 
(very sharp one separated from 

 at the distance ; 
its height is proportional to the 
square of the  scattering 
length ( ) value and width 

). 


The distinctive feature of the 
quasifree peak (QFP) (in general, 
such a wide bump in inclusive 
energy spectra) is that it is 
centered near the energy of the 
reaction  on free 
proton at rest.

Ethr 0.075 MeV

nn
ann

≈ 1.5 KeV

γ + p → π+ + n
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6. Well-forgotten pages from past to future
First of all, we would like to recall that  the electroweak interaction is part of the Standard 
Model and based on a local  gauge symmetry. After spontaneous symmetry 
breaking via the Higgs mechanism, we get for the interaction part of the Lagrangian  
A.W. Thomas, W. Weise. The Structure of the Nucleon. Wiley-VCH, 2001





The weak charged current (CC) , the weak neutral current (NC)  and the 
electromagnetic current (EM)  couple to the charged -boson field , the neutral      

-boson field  and the photon field , respectively. The currents can be separated into 
a leptonic part, denoted by , and a hadronic part :





 Cited from Tina J. Leitner's master thesis.

(*)

SU(2) × U(1)

ℒint = −
g

2 2
(𝒥CC

α Wα† +  h.c. ) −
g

2 cos θW
𝒥NC

α Zα − e𝒥EM
α Aα

𝒥CC
α 𝒥NC

α
𝒥EM

α W Wα

Z Zα Aα

jα Jα

𝒥α = jα + Jα

(*)

(6.1)

(6.2)
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6. Well-forgotten pages from past to future

(6.3)
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In this context, we could address the Fock-Weyl criterion and its consequences. 
 
Gauge invariance and gauge independence of the S-matrix in nonrelativistic 
quantum mechanics and relativistic quantum field theories. Ann. Phys. 142 (1982) 
80 by E. Kazes, T. E. Feuchtwang, P. H. Cutler and H.Grotch. 
 
See also the survey  
 
Historical roots of gauge invariance. Rev. Mod. Phys. 73 (2001) 663 
by J. D. Jackson and L. B. Okun, 
 
Clothing procedure in relativistic quantum field theory and its applications to 
description of electromagnetic interactions with nuclei (bound systems). Progr. 
Part. Nucl. Phys. 44 (2000) 75 by A. Shebeko, M. Shirokov.

6. Well-forgotten pages from past to future
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6. Well-forgotten pages from past to future
Towards gauge-independent treatment of radiative capture in nuclear reactions, 
Phys. Atom. Nuclei 77, 518–527 (2014) by Shebeko

An effective way of ensuring gauge independent treatment of single-photon 
processes on nuclei. Extension of the Siegert theorem

As shown in  
L.G. Levchuk and A.V. Shebeko, Phys. At. Nucl. 56 (1993) 227  
(cf. J. Friar and S. Fallieros, Phys. Rev. C 34 (1986) 2029, 
J.L. Friar and W.C. Haxton, Phys. Rev. C 31 (1985) 2027 and 
A.V. Shebeko, Sov. J. Nucl. Phys. 49 (1989) 30.), 
the photonuclear reaction amplitude of interest (to be more definite for the photon emission with energy  and 
momentum ), given in the conventional form:


    


can be expressed through the electric ( ) and magnetic ( ) field strengths:


  

Eγ⃗k

Tif = [2(2π)3Eγ ]
−1/2

⟨ ⃗P i − ⃗k; f εμ ̂Jμ(0) ⃗P i; i⟩
⃗E ( ⃗k) ⃗H( ⃗k)

⃗E (k) = i [2(2π)3Eγ ]
−1/2

(Eγ ⃗ε( ⃗k) − ⃗kε0( ⃗k)), ⃗H( ⃗k) = i [2(2π)3Eγ ]
−1/2

⃗k × ⃗ε( ⃗k) .

(6.4)

(6.5)
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6. Well-forgotten pages from past to future
these manifestly gauge independent quantities, and the matrix elements 
and of the so-called generalized electric and magnetic dipole moments of 
the nucleus:





Formulas for the matrix elements were first derived in 


L. Levchuk and A. Shebeko, Phys. At. Nucl. 56 (1993) 227


without separation of the center-of-mass (CM) motion, and thus they can be 
used in relativistic nuclear models or in problems, where such a separation 
becomes hardly feasible as for photomeson processes on nuclei  
(see L. Levchuk, L. Canton and A. Shebeko, EPJA 21 (2004) 29 and refs. therein).

⃗Dif( ⃗k)
⃗Mif( ⃗k)

Tif = ⃗E ( ⃗k) ⋅ ⃗Dif( ⃗k) + ⃗H( ⃗k) ⋅ ⃗Mif( ⃗k) . (6.6)



24

6. Well-forgotten pages from past to future
Single-photon emission amplitude in terms of electric and magnetic field strengths

Using the nonrelativistic ansatz we will prove that





with








Here, to comprise both the photon absorption and emission, the four-momentum transfer  is 
determined with  for the photoabsorption and  for the 
photoemission.

⟨ ⃗P i + ⃗q; f εμ ̂Jμ(0) ⃗P i; i⟩ = i [ ⃗qε0(q) − q0 ⃗ε(q)] ⃗D (q) − i [ ⃗q × ⃗ε(q)] ⃗M(q)

⃗D(q) = −
1
q0

1

∫
0

( ⃗P i + λ ⃗q ̂ ⃗R [Ĥ, ̂ρ(0)] ⃗P i) dλ,

⃗M(q) = −
1

∫
0

( ⃗P i + λ ⃗q ̂ ⃗R × ̂ ⃗J (0) ⃗P i) λdλ .

q = (q0, ⃗q)
q0 = Ef − Ei ( ⃗q = ⃗P f − ⃗P i) q0 = Ei − Ef (q = Pi − Pf)

(6.7)

(6.8)

(6.9)
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6. Well-forgotten pages from past to future
It is the case where the l.h.s. of Eq. (6.7) may be written as





and it is convenient to employ the representation





This equation with arbitrary -vectors  and  is valid for the two operators  

and  that meet the commutation relations





Of course, it is implied that each operator  and  is defined on an infinitely dimensional space.


⟨ ⃗P i + ⃗q; f εμ ̂Jμ(0) ⃗P i; i⟩ = ε0(q)⟨ f ( ⃗P i + ⃗q ̂ρ(0) ⃗P i) i⟩ − ⃗ε(q)⟨ f ( ⃗P i + ⃗q ̂ ⃗J (0) ⃗P i) i⟩,

⃗εe ⃗q⋅ ̂ ⃗a =
1

∫
0

{[ ̂b⃗, ( ⃗ε ⋅ ̂ ⃗a)eλ ⃗q⋅ ̂ ⃗a] + λ ̂ ⃗a × [ ⃗ε × ⃗q] eλ ⃗q⋅ ̂ ⃗a} dλ

c ⃗ε ⃗q ̂ ⃗a = ( ̂a1, . . . . , ̂an)
̂b⃗ = (b̂1, . . . . , b̂n)

[ ̂aj, b̂k] = δj,k (j, k = 1,...,n)
ai bi

(6.11)

(6.12)

(6.10)
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6. Well-forgotten pages from past to future
With the help of (6.11) we get


 

                                                             


In fact, one has





where  is the total CM coordinate operator. Now, putting in (A.3) ,  and  we come to


 

                                                             

⃗ε ⋅ ( ⃗P i + ⃗q ̂ ⃗J(0) ⃗P i) = − i
1

∫
0

dλ ( ⃗P i + λ ⃗q ⃗ε ⋅ ̂ ⃗R [Ĥ, ̂ρ(0)] ⃗P i)
−i [ ⃗q × ⃗ε]

1

∫
0

λdλ ( ⃗P i + λ ⃗q ̂ ⃗R × ̂ ⃗J(0) ⃗P i)

( ⃗P i + ⃗q = ( ⃗P i exp (−i ⃗q ̂ ⃗R ),

̂ ⃗R ̂ ⃗a = i ̂ ⃗R ⃗q = − ⃗q ̂b⃗ = − ̂ ⃗P

⃗ε ⋅ ( ⃗P i + ⃗q ̂ ⃗J(0) ⃗P i) = − i
1

∫
0

dλ ( ⃗P i ⃗ε ⋅ ̂ ⃗R e−iλ ⃗q⋅ ̂ ⃗R [ ̂ ⃗P , ̂ ⃗J(0)] ⃗P i)
−i [ ⃗q × ⃗ε]

1

∫
0

λdλ ( ⃗P i e−iλ ⃗q⋅ ̂ ⃗R ̂ ⃗R × ̂ ⃗J(0) ⃗P i)

(6.13)

(6.14)

(6.15)
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6. Well-forgotten pages from past to future
Formula (6.11) works owing to the canonical relations (cf. (6.12))





In addition, we have accounted for the equality





with the matrix elements between the eigenvectors  of a given operator  (in our case ).


The conversion (6.15) is culminative in deriving Eq. (6.13) since it enables us to employ the continuity equation (CE) that 
results in (6.13).


Further,





or


.

[R̂j, ̂Pk] = iδj,k (j, k = 1,2,3)

(A [ ̂A, B̂] A) = 0

A) ̂A ̂A = ⃗P

⟨ f ( ⃗P i + ⃗q ̂ρ(0) ⃗P i) i⟩ = (Ef − Ei)
−1

⟨ f ( ⃗P i + ⃗q [Ĥ, ̂ρ(0)] ⃗P i) i⟩

⟨ f ( ⃗P i + ⃗q ̂ρ(0) ⃗P i) i⟩ = (Ef − Ei)
−1

⟨ f
1

∫
0

dλ
d
dλ ( ⃗P i + λ ⃗q [Ĥ, ̂ρ(0)] ⃗P i) i⟩

(6.16)

(6.17)

(6.18)

(6.19)
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6. Well-forgotten pages from past to future
Once more, the CE in combination with Eq. (6.17) helps us to see that





At last, using the equation





we obtain





Substituting expressions (6.13) and (6.22) into the r.h.s. of Eq. (6.10), we arrive at Eq. (6.7). The 
representation (6.6) follows from (6.7) at ,  .


( ⃗P i [Ĥ, ̂ρ(0)] ⃗P i) = ( ⃗P i [ ̂ ⃗P , ̂ ⃗J (0)] ⃗P i) = 0

d
dλ ( ⃗P i + λ ⃗q = − i ⃗q ( ⃗P i + λ ⃗q ̂ ⃗R

⟨ f ( ⃗P i + ⃗q ̂ρ(0) ⃗P i) i⟩ = − i
⃗q

q0
⟨ f

1

∫
0

dλ ( ⃗P i + λ ⃗q ̂ ⃗R [Ĥ, ̂ρ(0)] ⃗P i) i⟩

q0 = − Eγ ⃗q = − ⃗k

(6.22)

(6.21)

(6.20)
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Gauge independent expression for the amplitude


Nuclear effects in positive pion electroproduction on the deuteron 
near threshold. EPJA 21 (2004) 29–36 by L. Levchuk, L. Canton and 
A. Shebeko.

An incompleteness of the description may lead to results, which are not gauge 
independent. To restore the gauge independence (GI) of the treatment, one often adds an 
extra term to the amplitude making the subtraction 





Of course, this procedure cannot reflect the complexity of the reaction mechanisms such 
as, e.g., the two-body processes. Moreover, it does not affect the transverse 
components of the transition matrix and is not unambiguous admitting extra subtraction 
of an arbitrary vector  such that .

Jμ → Jμ − qμ q ⋅ J/q2 .

Xμ q ⋅ X = 0

(6.23)
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In our consideration, to provide the GI of calculations, we make use of the extension


L. Foldy, Phys. Rev. 92 (1953) 178; 
J. Friar and S. Fallieros, Phys. Rev. C 34 (1986) 2029; 
A. Shebeko, Sov. J. Nucl. Phys. 49 (1989) 30;  
L. Levchuk and A. Shebeko, Phys. At. Nuclei 56 (1993) 227;


of the Siegert theorem expressing the amplitude in an explicitly gauge independent way 
through the Fourier transforms of electric ( ) and magnetic ( ) field strengths, 


 ,


,


, 


with and  being matrix elements of generalized electric and magnetic dipole 
moments of the hadronic system containing the information on the nuclear dynamics. 

⃗E ( ⃗q) ⃗H( ⃗q)

Tif = ⃗E ( ⃗q) ⃗D if + ⃗H( ⃗q) ⃗Mif

⃗E ( ⃗q) = i[2(2π)3ω]− 1
2 (ω ⃗ε − ε0 ⃗q)

⃗H( ⃗q) = i[2(2π)3ω]− 1
2 [ ⃗q × ⃗ε]

⃗D if
⃗Mif

(6.24)

(6.25)

(6.26)
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To get representation (6.24), consider the expression 








Multiplying the space part of the matrix element (6.27) by an arbitrary vector  and applying the Foldy trick


L. Foldy, Phys. Rev. 92 (1953) 178;





with help of the GI condition , we get 





              

δ( ⃗P i + ⃗q − ⃗P f)⟨ ⃗P f, f ∣ Jμ(0) ∣ ⃗P i, i⟩ = (2π)−3 ∫ exp(i ⃗q ⃗s) jμ
if( ⃗s) d ⃗s ,

jμ
if( ⃗s) ≡ (ρif( ⃗s), ⃗j if( ⃗s)) = ⟨ ⃗P f, f ∣ Jμ( ⃗s) ∣ ⃗P i, i⟩ = ⟨ ⃗P f, f ∣ Jμ(0) ∣ ⃗P i, i⟩ e−i( ⃗P f− ⃗P i) ⃗s .

⃗ε( ⃗q)

⃗εei ⃗q ⃗s = ∫
1

0
{∇ ⃗s( ⃗ε ⃗seiλ ⃗q ⃗s) − iλ ⃗s × [ ⃗q × ⃗ε]eiλ ⃗q ⃗s} dλ ,

div ⃗j if( ⃗s) = − i(Ef − Ei)ρif( ⃗s)

δ( ⃗P i + ⃗q − ⃗P f)⟨ ⃗P f, f ∣ ⃗J(0) ∣ ⃗P i, i⟩ = i(Ef − Ei) ⃗dif( ⃗q) − i[ ⃗q × ⃗mif( ⃗q)] ,

⃗dif( ⃗q) = (2π)−3 ∫
1

0
dλ∫ eiλ ⃗q ⃗s ⃗sρif( ⃗s) d ⃗s , ⃗mif( ⃗q) = (2π)−3 ∫

1

0
λdλ∫ eiλ ⃗q ⃗s [ ⃗s × ⃗j if( ⃗s)] d ⃗s . (6.31)

(6.30)

(6.29)

(6.28)

(6.27)
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Then, due to charge conservation, one may write 








Integration of Eq. (6.30) over  with taking into account the relationship (6.33), results in representation (6.24), with 
quantities  and  being defined as 





In case of reaction , one has 








where  is obtained from  replacing the deuteron momentum by . 

∫ i(Ef − Ei) ⃗q ⃗dif( ⃗q) d ⃗P i = ω⟨ ⃗P f, f ∣ J0(0) ∣ ⃗P f − ⃗q, i⟩

−(Ef − Ei( ⃗P f))⟨ ⃗P f, f ∣ J0(0) ∣ ⃗P f, i⟩ = ω⟨ ⃗P f, f ∣ J0(0) ∣ ⃗P f − ⃗q, i⟩
⃗P i⃗Dif

⃗Mif

⃗Dif = − ∫
Ef − Ei

ω
⃗dif( ⃗q) d ⃗P i , ⃗Mif = − ∫ ⃗mif( ⃗q) d ⃗P i .

e + d → e′ + π+ + n + n

⃗Dif = iω−1 ∫
1

0
∇λ ⃗q[ ( ω + Md − M2

d + (1 − λ)2 ⃗q2 ) J0
if(λ ⃗q) ] dλ

⃗Mif = i∫
1

0
∇λ ⃗q × ⃗Jif(λ ⃗q) λ dλ

Jν
if(λ ⃗q) ⟨π+nn; out ∣ Jν(0) ∣ d ⟩ (1 − λ) ⃗q

(6.36)

(6.35)

(6.34)

(6.33)

(6.32)
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It should be noted that, whereas quantities   and  in Eq. (6.30) are singular and not proportional to the delta 
function expressing the momentum conservation, the representation (6.24) is free of singularities. Furthermore, it has 
been derived here (cf. J. L. Friar and S. Fallieros, Phys. Rev. C 34 (1986) 2029) without decomposition of the e.m. 
current into the part associated with the motion of the hadronic system as a whole and the intrinsic current and, 
therefore, can be employed in relativistic calculations. 


This representation generates a correction term additional to the "canonical" expression, which restores the GI of the 
amplitude in calculations that fail to satisfy the requirement . However, when this condition does hold, this 
correction is equal to zero automatically. In the long-wave limit, Eq. (6.24) provides the fulfilment of the Siegert theorem


A. J. F. Siegert, Phys. Rev. 52 (1937) 787;


for electric transitions in reactions with nonmeson channels 


A. V. Shebeko, Sov. J. Nucl. Phys. 49 (1989) 30;    L. Levchuk and A. Shebeko, Phys. At. Nuclei 56 (1993) 227. 


For pion photoproduction on the free nucleon at threshold, it leads (as shown in 


L. G. Levchuk and A. V. Shebeko, Phys. At. Nuclei 58 (1995) 923.) 


to the Kroll-Ruderman result


N. M. Kroll and M. A. Ruderman, Phys. Rev. 93 (1954) 233;


emerging here as a particular case of the Siegert theorem.

⃗dif ⃗mif

qμJμ
if( ⃗q) = 0



Thank you very much for your attention!


