Electrons for Neutrinos New constraints for pion production models

"Lepton Interactions with Nucleons and Nuclei", Elba XVII

Neutrino Physics

• The neutrino sector might hint to physics beyond the Standard model

Ve

- Weakly interacting, extremely hard to detect
- Neutrino oscillations imply their mass and raises many questions

Charge-Parity (CP) violation

Beyond the Standard Model physics

 ν_{μ}

 ν_{μ}

 ν_{μ}

Incoming true flux Modelling Input Measurement $\int P_{\nu_{\mu} \to \nu_{e}}(E_{\nu},L) \Phi(E_{\nu},0) \sigma(E_{\nu}) \epsilon(E_{\nu}) S(E_{\nu},E_{\nu}^{reco}) dE_{\nu} \propto N(E_{\nu}^{rec},L)$

Cross-Section Modelling

- Available models for (e,e')
- Ad-hoc hadron production not constraint by e-data
 - Lack of hadron-production data

Pion-Production is key for DUNE

DUNE Near Detector

Main contribution from pion production events!

Neutrino event generators need constraints

 $\int P_{\nu_{\mu} \to \nu_{e}}(E_{\nu},L) \Phi(E_{\nu},0) \sigma(E_{\nu}) \epsilon(E_{\nu}) S(E_{\nu},E_{\nu}^{reco}) dE_{\nu} \propto N(E_{\nu}^{rec},L)$

This talk focuses on the electron-scattering effort

eA useful to constrain vA model uncertainties

Same nuclear ground state, Final State Interactions (FSI), Hadronization Similar interactions with nuclei

Monochromatic beam **High statistics**

eA useful to test vA energy reconstruction methods

Same nuclear ground state, Final State Interactions (FSI), Hadronization Similar interactions with nuclei

Hadron production with CLAS

- Multi-purpose experiments, large acceptance
- Targets (H, D, C, Ar, etc) and energies (1-6 GeV) of interest for neutrino community
- Low-detection threshold comparable to neutrino experiments
 - 150 (300) MeV/c for $\pi^{\pm}(\gamma)$

New hadron electron production data

1-6 GeV electrons for many targets (e.g. carbon, **argon**)

New $e_{4\nu} \pi$ -production measurements in this talk

 \mathcal{D}

e⁻

Final-State Interactions

Pion Knockout with CLAS

Pion Knockout with CLAS

Pion Production with CLAS

Complex modelling, requires new data

Rich limits for few-GeV experiments:

- Carbon data, 1-4 GeV
- $1p1\pi^{-}$ and $1p1\pi^{+}$, no additional hadrons or photons
 - With π^{\mp} above 150 MeV
 - With γ above 300 MeV
- $1p1\pi^{-}$ Possible at free nucleon level
- $1p1\pi^+$ needs two or more nucleons and or undetected particles (FSI)

First look at C(e,e'1p1 π^{\mp})

 π^{\mp}

 e^{-}

Complex Physics

Complex Physics

 π^{\mp}

 \mathcal{D}

 e^{-}

Hadronic Invariant Mass Bias

 π^{\mp}

5 16 dM_{had} $d^2 \sigma / dW$

e-Scattering Experiments

.2) $d^2 \sigma/dW \, dM_{had} \left[nb \left(Ge V \right) \right]$

 e^{-}

 e^{-}

 π^{\mp}

 $d^2 \sigma/dW dM_{had} [nb (Ge)]$

 π^{\mp}

 e^{-}

 π^{\mp}

Energy Bias Quantification

 π^{\mp}

 e^{-}

 $(e, e'1p1\pi^{-}) E_{Cal}[GeV] = E_{e'} + E_{\pi} + T_p + \epsilon_i$

Beam energy miss-reconstruction

 π^{\mp}

 e^{-}

E_{Cal} [GeV]

Beam energy miss-reconstruction

% Peak)	1.159	2.257	4.453	
Data	67%	22%	8%	
GENIE	77%	52%	41%	

 π^{\mp}

 e^{-}

E_{Cal} [GeV]

Only a fraction of events at 5% of real beam energy

MC does not describe bias

% Peak)	1.159	2.25
$1p1\pi^{-}$ Data	67%	229
GENIE	77%	529

 π^{\mp}

E_{Cal} [GeV]

Peak largely overpredicted by GENIE

Beam energy miss-reconstruction

 π^{\mp}

 e^{-}

Hadronization biases E_{Cal}

e

 e^{-}

 π^{\mp}

% Peak)	Total	$M_{had} \subset [1.10, 1.30] \text{ GeV}$	$M_{had} \subset [1.30, 1.50] \text{ GeV}$	$M_{had} > 1.50 \text{ GeV}$
1 <i>p</i> 1 <i>π</i> ⁻ Data	22%	22%	22%	40%
GENIE	52%	31%	45%	85%

Larger bias for $1p1\pi^+$

 π^{\mp}

 e^{-}

- e-data is key to reduce large cross-section systematics in oscillation experiments • First ${}^{12}C(e, e'1p1\pi^{\mp})$ analysis sets new constraints for event generators • Less than 30% of events reconstructed within 5% true energy at 2 & 4 GeV • GENIE does not describe bias, quality of reconstruction <u>varies across beam energies</u> • Incorrect shower content due to simplistic hadronization model biases W and E_{Cal}

- - GENIE bias reduced for $M_{had} < 1.30$ GeV
- Stay tuned for upcoming measurements!
 - More analysis ongoing for 1-6 GeV electrons on He, C, Ar and many others!

Ar

Thank you for your attention!

The GENIE Event Generator

Tune name in GENIE: GEM21_11a_00_000

Process

Quasi-ELastic and Two-Particle Two-

> RESonance Production

Non-RESonance (SIS)

Deep Inelastic Scattering

Final State Interaction model

> Hadronization model

Nuclear Model

(*) This is the GENIE model used in the talk

UNIVERSAL NEUTRINO GENERATOR & GLOBAL FIT

https://genie-mc.github.io/

	Model
,	SUSAv2 model
	Berger-Sehgal model
	Bodek-Yang model, scaled with multiplicity dependent parameters
	Bodek-Yang model
	hA model
	AGKY model (KNO+Pythia)
	Local Fermi Gas

Roadmap for improving event generators

Pion-Production is key for Oscillations

Validation with the world's fit to (e,e') data

% Peak)	1.15
$1p1\pi^+$ Data	209
GENIE	419

MC induces bias

Pion Kinematic Constraints

 π^{\mp}

Proton Kinematic Constraints

 π^{\mp}

 e^{-}

Transverse Kinematic Imbalance (TKI)

 $p^{l'}$

$\overrightarrow{p}_h = \overrightarrow{p}_p + \overrightarrow{p}_{\pi}$

Missing Transverse Momentum

$\delta \overrightarrow{p}_T = \overrightarrow{p}_T^{l'} + \overrightarrow{p}_T^h$ $\delta p_T = 0$

Beam energy independent

$\delta p_T \neq 0$ Sensitive to FSI and Nuclear dynamics

Missing Transverse Momentum

 π^{\mp}

 e^{-}

Transverse Boosting Angle

$\delta \alpha_T = \cos^{-1} \frac{-\overrightarrow{p}_T^{l'} \cdot \delta \overrightarrow{p}_T}{p_T^{l'} \delta p_T}$

Most sensitive to FSI

 p^h

p'

Transverse Boosting Angle

 π^{\mp}

 e^{-}

Transverse Boosting Angle

 π^{\mp}

 e^{-}

W Miss-Reconstruction

 π^{\mp}

 e^{-}

 π^{\mp}

 e^{-}

E_{Cal} dependence with δp_T