

CUORE-CUPID Hands-on

Huaqi Cao, Gloria Senatore, Marco Zanirato With the great help of: Serena D'Eramo, Shihong Fu, Dounia Helis, Simone Quitadamo and Ing. Rodolfo

CUORE

Cryogenics Underground Observatory for Rare **E**vents

Main goal: $0v\beta\beta$ in 130 Te ($Q_{\beta\beta}$ 2527.5 keV)

 $2\nu\beta\beta$

CUORE

- Cryogenics Underground Observatory for Rare **E**vents
- Main goal: 0vββ in 130 Te ($Q_{\beta\beta}$ 2527.5 keV)
- Detectors → cryogenic bolometers (TeO₂)
- The thermal sensor is a Neutron Transmutation Doped (NTD) Ge thermistor

 $2\nu\beta\beta$

The upgrades we focused on

Cryostat upgrades

Crystal dismounting and calibration spectra fitting

Study of aluminum thermal connectors

The upgrades we focused on

background rejection

- Cuore Upgrade with Particle
 IDentification
 - 0νββ in 100 Mo($Q_{\beta\beta}$ 3034 keV)
- Scintillating bolometers: particle discrimination via Ge LD

The current upgrades we focused on

- Good thermal conductivity
- Strong mechanical coupling
- More flexible
- Foresee vibration transmission reduction

Cryostat upgrades

Study of aluminum thermal connectors

Hands on the detector: Cryostat & Cleanroom

CUPID-CCVR Hall C

Hands on the detector: Cryostat & Cleanroom

Hands on the detector: Cryostat & Cleanroom

The Aluminium strip crafting and mounting in the Pulse Tube Cryocooler System

Leak detection of the cryostat

Calibrated spectra with peaks

LMO1: FWHM & energy bias

Study of aluminium thermalisations

The goal is to measure the thermal conductivity of aluminium-6N from 4 K to ~10 K with the Pulse Tube Cryocooler System in hall di montaggio.

We crafted Al-6N strips as in the photo and mounted one of it in the cryostat, with one end attached to the 4 K stage and the other to the holder equipped with a heater.

Idea of the measurement:

- Evaluate the thermal conductance (thermal conductivity+geometric factor) of the strip at different temperatures.
- Cut one of the two substrips and measure the thermal conductance at different temperatures again → in this way, we decouple the contribution of boundary resistances.
- 3. Plus, by knowing the dimensions of the Al strip, we are able to estimate the intrinsic thermal conductivity of the Al-6N.

Thermal conductivity

[2] "The role of marine microseisms in shaping the performance of CUORE and advancements for CUPID experiment" S. Quitadamo

Summary

1) First part:

- We visited the underground cleanroom, dismounted two crystals under test to be used in CUPID
- We evaluated the energy resolution & energy bias of the two detectors, and extracted the curves used to correct the energy bias

2) Second part:

- We crafted the aluminium-6N thermalisations and mounted one of them in the cryostat in hall di montaggio with the goal of measure its thermal conductivity under 10 K → Problem with the cooling process
- We found a leak in the cryostat with the leak checker \(\omega\)
- The project will continue with cooling down the cryostat and taking data to reconstruct the thermal conductivity curve under 10 K

THANKS!!!

BACKUP

