

Cryogenic calorimeters

Low temperature detectors (LTD) are detectors that operate at very low temperatures ~10 mK.

When particles interact in the absorber they will deposit an amount of energy E, creating a temperature variation $\Delta T \propto E/C(T)$ in the absorber+thermometer system.

Then the system goes back to equilibrium through the conductance G(T) connected to the thermal bath T_0 .

We want to minimize both decay time $\tau \propto C/G$ and the resolution $\sigma_E^2 = k_B^2 T^2 C$. This means that we want a high thermal conductance G(T) but a low capacitance C(T).

One of the main advantages of LTDs is their very low thresholds, usually O(1-10) eV.

 \triangle Smaller detector \rightarrow lower C \rightarrow better resolution and speed.

Detectors overview

Equilibrium detectors used during the hands-on:

Neutron Transmutation Doped Thermistors (NTD):

- Neutron-doped germanium crystals;
- Semiconductor thermistors with $R(T)=R_0 \exp((T/T_0)^{0.5});$
- Negative derivative sensor: ΔRΔT<0;
- High impedance;
- Current bias.

Transition Edge Sensors (TES):

- Working at the transition between normal and superconductivity;
- Positive derivative sensor: ΔRΔT>0;
- Voltage bias.

Heaters to monitor the detector response

A current is sent to the heater

The heater will dissipate a signal in the crystal

The heater pulses are used to monitor the detector response (energy gain correction) over time

The heater signal differs slightly from a particle one to distinguish them

Double readout for particle ID

Double readout:

- Channel 1(LTD): phonon detector (A1);
- Channel 2 scintillation or ionization light (A2);

The ratio A1/A2 (light yield) depends on the interacting particle \rightarrow Particle identification

→ Important to distinguish between nuclear and electronic recoil:

heat-ionization: electrons, photons (higher ionization yield) and α , ions and neutrons;

heat-scintillation: recoil electrons - higher light yield, blue - and nuclear recoil pink.

Crystal absorbers

Indium Arsenide (InAs)

Measurement of of forbidden β decays to investigate axial coupling constant g_{Δ}

Measurement of the β -decay spectrum of Indium 115 \rightarrow Low-energy part is used to study g_{Δ}

Beta decay spectrum of In 115

Gallium Arsenide (GaAs)

sub-GeV dark matter search

Threshold as low as possible to increase the sensitivity \rightarrow 2 NTDs improve the signal to noise ratio

Low energy X-ray spectrum - Mn K_{α} peak measured with $\sigma = 1 \text{ eV}$

Hands-on overview

Gluing of detectors and heaters on crystals

Assembly in the copper frame for future tests at low temperatures

Preparation for measuring the transition temperature of a superconductive film

Wire bonding: micro-welding technique that uses thin metal wires bonded by means of ultrasonic vibration.

Ball Bonding: small ball formed and bonded. No directional constraints.

Gold:

- High electrical conductivity;
- ball bonding;
- can be used with heater and NTD elements (high resistance).

Wedge Bonding – wire pressed and bonded. The wire must follow a straight path from the first bond.

Aluminum:

- Forming a ball is difficult because Al does not melt easily due to oxidation.
- Superconducting at low $T^{\circ} \rightarrow$ used for TES (small stray resistance in bias circuit).

Wire bonding

Gold bonding

Aluminum bonding

More wires \rightarrow better connection to thermal bath

Gluing setup

1. Pins to apply the glue; dot shaped → compromise between phonon collection and thermal mismatch

2. NTD held by vacuum pump

5. xyz-stage to align first the pins and later the NTD with the mask

3. Crystal (InAs or GaAs)

4. Mask for alignment+ fix glue to definedthickness of 25µm

Gluing procedure

1. Prepare the epoxy glue

3. Align the pins with the mask

- **5.** Unscrew the pins without touching the NTD
- 7. Wait for the glue to dry (~2h)

2. Apply some glue on the pins

4. Apply the glue pattern on the wafer lowering the pins (springs prevent damage)

6. Align the NTD with the mask and press down

8. Remove the mask

Final assembly

1. Clean copper frame with citric acid + deionized water to better couple to the bath (cryostat).

3. Tack crystal between PTFE stripes.

Now it can be mounted in the cryostat.

7. Check resistance of the devices and insulation against the frame.

2. Glue pins in frame with same glue as for NTDs; wrapped with tape for electrical insulation.

4. Mount crystal on copper frame.

5. Insert small copper pins and squeeze it tight.

6. Insert the gold wires into the small pins and crimp them.

Setup to measure the transition temperature T_c

The bias current flows through the shunt resistor and switch to the superconductive material when the superconductive state is reached.

 \mathcal{O} (10-100) m Ω

Superconductive material: silicon with a thin layer of tungsten evaporated on top

In the future: SQUID

Tungsten is used because it can tuned Tc, meaning that the transition can be adjusted according to the need of the detector operation.

Thank you very much!

