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Outline
→ Lecture 1:   Introduction 

      Probability

      Hypothesis tests

      Parameter estimation

      Confidence limits

 Lecture 2:   Systematic uncertainties

      Prototype analysis

      Experimental sensitivity

Almost everything is a subset of the University of London course:

       http://www.pp.rhul.ac.uk/~cowan/stat_course.html
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Theory  Statistics  Experiment

Theory (model, hypothesis): Experiment (observation):

+ response of measurement
apparatus

= model prediction
data

Uncertainty enters
on many levels

→  quantify with
probability
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A quick review of probability

Frequentist (A = outcome of
repeatable observation)

Subjective (A = hypothesis)

Conditional probability:

A and B are independent iff:

I.e. if A, B independent, then

E.g. rolling a die, 
outcome n = 1,2,...,6:
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Bayes’ theorem

Use definition of conditional probability and

→ (Bayes’ theorem)

If set of all outcomes S = ∪i Ai 

with Ai disjoint, then law of total 
probability for P(B) says

so that Bayes’ theorem becomes

Bayes’ theorem holds regardless of how probability is 
interpreted (frequency, degree of belief...).

B ∩ Ai

Ai

B

S
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Frequentist Statistics − general philosophy 

In frequentist statistics, probabilities are associated only with
the data, i.e., outcomes of repeatable observations (shorthand: x).

 Probability = limiting frequency

Probabilities such as

 P (string theory is true), 
 P (0.117 < αs < 0.119), 
 P (Whitmer wins in 2028),

etc. are either 0 or 1, but we don’t know which.

The tools of frequentist statistics tell us what to expect, under
the assumption of certain probabilities, about hypothetical
repeated observations.

Preferred theories (models, hypotheses, ...) are those  that 
predict a high probability for data “like” the data observed.
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Bayesian Statistics − general philosophy 

In Bayesian statistics, use subjective probability for hypotheses:

posterior probability, i.e., 
after seeing the data

prior probability, i.e.,
before seeing the data

probability of the data assuming 
hypothesis H (the likelihood)

normalization involves sum 
over all possible hypotheses

Bayes’ theorem has an “if-then” character:  If your prior
probabilities were π(H), then it says how these probabilities
should change in the light of the data.

 No general prescription for priors (subjective!)
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Hypothesis, likelihood

Suppose the entire result of an experiment (set of 
measurements) is a collection of numbers x.  

A (simple) hypothesis is a rule that assigns a probability to each 
possible data outcome:

Note:

 1)  For the likelihood we treat the data x as fixed.

 2)  The likelihood function L(θ) is not a pdf for θ. 

Often we deal with a family of hypotheses labeled by one or
more undetermined parameters (a composite hypothesis):

=   the likelihood of H

=    the “likelihood function”
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Suppose a measurement produces data x; consider a hypothesis H0 
we want to test and alternative H1

 H0, H1 specify probability for x: P(x|H0), P(x|H1)

A test of H0 is defined by specifying a critical region w of the
data space such that there is no more than some (small) probability
α, assuming H0 is correct,  to observe the data there, i.e.,

  P(x ∈ w | H0) ≤ α

Need inequality if data are
discrete.

α is called the size or 
significance level of the test.

If x is observed in the 
critical region, reject H0.

Frequentist hypothesis tests 

data space Ω

critical region w
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Definition of a test (2)

But in general there are an infinite number of possible critical 
regions that give the same size α.

Use the alternative hypothesis H1 to motivate where to place the 
critical region.

Roughly speaking, place the critical region where there is a low 
probability (α) to be found if H0 is true, but high if H1 is true:
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Classification viewed as a statistical test
Suppose events come in two possible types:  

      s (signal) and b (background)

For each event, test hypothesis that it is background, i.e., H0 = b.

Carry out test on many events, each is either of type s or b, i.e., 
here the hypothesis is the “true class label”, which varies randomly 
from event to event, so we can assign to it a frequentist probability.

Select events for which where H0 is rejected as “candidate events of 
type s”.  Equivalent Particle Physics terminology:

background efficiency

signal efficiency
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Example of a test for classification

Suppose we can measure for 
each event a quantity x, where

with 0 ≤ x ≤ 1.

For each event in a mixture of signal (s) and background (b) test

 H0 : event is of type b

using a critical region W of the form:  W = { x : x ≤ xc }, where
xc is a constant that we choose to give a test with the desired size α.
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Classification example (2)

Suppose we want α = 10−4.     Require:

and therefore 

For this test (i.e. this critical region W), the power with respect 
to the signal hypothesis (s) is

Note:  the optimal size and power is a separate question that will 
depend on goals of the subsequent analysis.
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Classification example (3)

Suppose that the prior probabilities for an event to be of  
type s or b are:

   πs = 0.001

   πb = 0.999

The “purity” of the selected signal sample (events where b 
hypothesis rejected) is found using Bayes’ theorem:
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Testing significance / goodness-of-fit

Suppose hypothesis H predicts pdf f (x|H) for a set of
observations x = (x1,...xn). 

We observe a single point in this space: xobs. 

How can we quantify the level of compatibility between the data 
and the predictions of H?

Decide what part of 
the data space represents 
equal or less compatibility  
with H than does the 
point xobs.  (Not unique!) 

ω≤ = { x : x “less 
or eq. compatible” 
with H }

ω> = { x : x “more
compatible” with H }

xobs

xi

xj



p-values
Express level of compatibility between data and hypothesis 
(sometimes ‘goodness-of-fit’) by giving the p-value for H:

= probability, under assumption of H, to observe data 
with equal or lesser compatibility with H relative to the 
data we got. 

= probability, under assumption of H, to observe data as      
discrepant with H as the data we got or more so.

Basic idea:  if there is only a very small probability to find data
with even worse (or equal) compatibility, then H is “disfavoured by 
the data”.

If the p-value is below a user-defined threshold α (e.g. 0.05) then H 
is rejected (equivalent to hypothesis test of size α as seen earlier).
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p-value of H is not P(H)

where π(H) is the prior probability for H.

The p-value of H is not the probability that H is true!

In frequentist statistics we don’t talk about P(H) (unless H 
represents a repeatable observation). 

If we do define P(H), e.g., in Bayesian statistics as a degree of 
belief,  then we need to use Bayes’ theorem to obtain

For now stick with the frequentist approach; 
result is p-value, regrettably easy to misinterpret as P(H).
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The Poisson counting experiment
Suppose we do a counting experiment and observe n events.

 Events could be from signal process or from background – 
 we only count the total number.

Poisson model:  

s = mean (i.e., expected) # of signal events

b = mean # of background events

Goal is to make inference about s, e.g.,

     test s = 0 (rejecting H0 ≈ “discovery of signal process”)

     test all non-zero s  (values not rejected =  confidence interval)

In both cases need to ask what is relevant alternative hypothesis.
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Poisson counting experiment: discovery p-value
Suppose b = 0.5 (known), and we observe nobs = 5.  

Should we claim evidence for a new discovery?  

    Give p-value for hypothesis s = 0, suppose relevant alt. is s > 0.
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Significance from p-value

Often define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.

in ROOT:

p = 1 - TMath::Freq(Z)

Z = TMath::NormQuantile(1-p)

in python (scipy.stats):

p = 1 - norm.cdf(Z) = norm.sf(Z)

Z = norm.ppf(1-p)

Result Z is a “number of sigmas”.  Note this does not mean that 
the original data was Gaussian distributed.
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Poisson counting experiment: discovery significance

In fact this tradition should be 
revisited:  p-value intended to 
quantify probability of a signal-
like fluctuation assuming 
background only; not intended 
to cover, e.g., hidden 
systematics, plausibility signal 
model, compatibility of data with 
signal, “look-elsewhere effect” 
(~multiple testing), etc.

Equivalent significance for p = 1.7 × 10−4:  

Often claim discovery if Z > 5 (p < 2.9 × 10−7, i.e., a “5-sigma effect”)



Gran Sasso 2025 / Lecture 1 22

Particle Physics context for a hypothesis test

high p
T

muons
high p

T
 jets 

of hadrons

missing transverse energy

p p

G. Cowan / RHUL Physics

A simulated SUSY event (“signal”):
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Background events

This event from Standard 
Model ttbar production also
has high  p

T
 jets and muons,

and some missing transverse
energy.

→ can easily mimic a 

      signal event.

G. Cowan / RHUL Physics
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Classification of proton-proton collisions
Proton-proton collisions can be considered to come in two classes:

 signal (the kind of event we’re looking for, y = 1)
 background (the kind that mimics signal, y = 0)

For each collision (event), we measure a collection of features:

 x1 = energy of muon   x4 = missing transverse energy
 x2 = angle between jets  x5 = invariant mass of muon pair
 x3 = total jet energy   x6 = ...

The real events don’t come with true class labels, but computer-
simulated events do.  So we can have a set of simulated events 
that consist of a feature vector x and true class label y (0 for 
background, 1 for signal):

     (x, y)1, (x, y)2, ..., (x, y)N

The simulated events are called “training data”.
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Distributions of the features
If we consider only two 
features x = (x1, x2), we can 
display the results in a scatter 
plot (red:  y = 0, blue: y = 1).

The test’s critical region is  defined by a “decision boundary” – 
without knowing the event type, we can classify them by seeing 
where their measured features lie relative to the boundary.

For each real event test the 
hypothesis that it is background.

(Related to this:  test that a sample 
of events is all background.)

For real events, the dots are 
black (true type is not known).
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Decision function, test statistic

A surface in an n-dimensional 
space can be described by

scalar 
function

constant

Different values of the constant
tc result in a family of surfaces.

Problem is reduced to finding 
the best decision function or test 
statistic t (x).



Gran Sasso 2025 / Lecture 1 27G. Cowan / RHUL Physics

Distribution of t(x)

f (t|H1)f (t|H0)

W

By forming a test statistic t(x), the boundary of the critical region in 
the n-dimensional x-space is determined by a single single value tc.

tc
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Types of decision boundaries

So what is the optimal boundary for the critical region, i.e., what
is the optimal test statistic t(x)?

First find best t(x), later address issue of optimal size of test.

Remember x-space can have many dimensions.

“cuts” linear non-linear
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Test statistic based on likelihood ratio 
How can we choose a test’s critical region in an ‘optimal way’, in 
particular if the data space is multidimensional?

 Neyman-Pearson lemma states:

For a test of H0 of size α, to get the highest power with respect to the
alternative H1 we need for all x in the critical region W

inside W and  ≤ cα outside, where cα is a constant chosen to give a 
test of the desired size.

Equivalently, optimal scalar test statistic is

N.B. any monotonic function of this is leads to the same test.

G. Cowan / RHUL Physics

”likelihood 
ratio (LR)”
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Neyman-Pearson doesn’t usually help

We usually don’t have explicit formulae for the pdfs f (x|s), f (x|b), 

so for a given x we can’t evaluate the likelihood ratio

Instead we may have Monte Carlo models for signal and 
background processes, so we can produce simulated data:

 generate x ~ f (x|s)     →     x1,..., xN

 generate x ~ f (x|b)     →     x1,..., xN

This gives samples of “training data” with events of known type.

Use these to construct a statistic that is as close as possible to the 
optimal likelihood ratio (→ Machine Learning).
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Approximate LR from histograms

Want t(x) = f (x|s)/ f(x|b) for x here

N (x|s) ≈ f (x|s)

N (x|b) ≈ f (x|b)

N
(x

|s
)

N
(x

|b
)

One possibility is to generate
MC data and construct
histograms for both
signal and background.

Use (normalized) histogram 
values to approximate LR:

x

x

Can work well for single 
variable.
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Approximate LR from 2D-histograms
Suppose problem has 2 variables.  Try using 2-D histograms:

Approximate pdfs using N (x,y|s), N (x,y|b) in corresponding cells.

But if we want M bins for each variable, then in n-dimensions we
have Mn cells; can’t generate enough training data to populate.

 → Histogram method usually not usable for n > 1 dimension.

signal back-
ground
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Strategies for multivariate analysis

Neyman-Pearson lemma gives optimal answer, but cannot be
used directly, because we usually don’t have f (x|s), f (x|b).

Histogram method with M bins for n variables requires that
we estimate Mn parameters (the values of the pdfs in each cell),
so this is rarely practical.

A compromise solution is to assume a certain functional form
for the test statistic t (x) with fewer parameters; determine them
(using MC) to give best separation between signal and background.

Alternatively, try to estimate the probability densities f (x|s) and 
f (x|b) (with something better than histograms) and use the 
estimated pdfs to construct an approximate likelihood ratio.
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Multivariate methods    (Machine Learning)
Many new (and some old) methods:

 Fisher discriminant

 (Deep) Neural Networks

 Kernel density methods

 Support Vector Machines

 Decision trees

  Boosting, Boosting 

ML → AI, beyond the scope of these lectures but useful to keep 
in mind the connection to statistics.  Recommend (free online):

C.M. Bishop and H. Bishop, Deep Learning, https://www.bishopbook.com/

James, Witten, Hastie, Tibshirani & Taylor, An Introduction to Statistical Learning, 
https://www.statlearning.com/
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Parameter estimation

The parameters of a pdf are any constants that characterize it, 

r.v.

Suppose we have a sample of observed values: x = (x1, ..., xn)

parameter

We want to find some function of the data to estimate the 
parameter(s):

←  estimator written with a hat

Sometimes we say ‘estimator’ for the function of x1, ..., xn;

‘estimate’ for the value of the estimator with a particular data set.

i.e., θ indexes a
set of hypotheses.
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Properties of estimators

If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

We want small (or zero) bias (systematic error):

→  average of repeated measurements should tend to true value.

And we want a small variance (statistical error):

→  small bias & variance are in general conflicting criteria

biasedlarge
variance

best
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The likelihood function for i.i.d.* data

Consider n independent observations of x:  x1, ..., xn,  where 
x follows f (x; θ).  The joint pdf for the whole data sample is:

In this case the likelihood function is

(xi constant)

* i.i.d. = independent and identically distributed
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Maximum Likelihood Estimators (MLEs)

We define the maximum likelihood estimators or MLEs to be 
the parameter values for which the likelihood is maximum.

Maximizing L 
equivalent to 
maximizing log L

Could have multiple maxima (take highest).

MLEs not guaranteed to have any ‘optimal’ properties, (but 
in practice they’re very good).
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MLE example:  parameter of exponential pdf

Consider exponential pdf,

and suppose we have i.i.d. data,

The likelihood function is

The value of τ for which L(τ) is maximum also gives the 
maximum value of its logarithm (the log-likelihood function):
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MLE example:  parameter of exponential pdf (2)

Find its maximum by setting 

→

Monte Carlo test:  
 generate 50  values
 using τ = 1:

We find the ML estimate:
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MLE example:  parameter of exponential pdf (3)

For the MLE

For the exponential distribution one has for mean, variance:

we therefore find

→

→
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Variance of estimators:  Monte Carlo method
Having estimated our parameter we now need to report its
‘statistical error’, i.e., how widely distributed would estimates
be if we were to repeat the entire measurement many times.

One way to do this would be to simulate the entire experiment
many times with a Monte Carlo program (use ML estimate for MC).

For exponential example, from 
sample variance of estimates
we find:

Note distribution of estimates is roughly
Gaussian − (almost) always true for 
ML in large sample limit.
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Variance of estimators from information inequality
The information inequality (RCF) sets a lower bound on the 
variance of any estimator (not only ML):

Often the bias b is small, and equality either holds exactly or
is a good approximation (e.g. large data sample limit).   Then,

Estimate this using the 2nd derivative of  ln L at its maximum:

Minimum Variance
Bound (MVB) 
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MVB for MLE of exponential parameter

We found for the exponential parameter the MLE 

and we showed b = 0, hence 𝜕b/𝜕τ = 0.

Find 

We find

and since E[ti] = τ for all i,

and therefore (Here MLE is “efficient”)..

,
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Variance of estimators: graphical method
Expand ln L(θ) about its maximum:

First term is ln Lmax, second term is zero, for third term use 
information inequality (assume equality):

i.e.,

→  to get , change θ away from until ln L decreases by 1/2.
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Example of variance by graphical method

ML example with exponential:

Not quite parabolic ln L since finite sample size (n = 50).
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Information inequality for N parameters

Suppose we have estimated N parameters θ = (θ1,...,θN)   

The Fisher information matrix is

The information inequality states that the matrix

and the covariance matrix of estimators θ is 
^

is positive semi-definite:  

 zTMz ≥ 0 for all z ≠ 0, diagonal elements ≥ 0  
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Information inequality for N parameters (2)

In practice the inequality is ~always used in the large-sample limit:

 bias → 0

 inequality → equality, i.e, M = 0, and therefore V−1 = I

That is, 

This can be estimated from data using

Find the matrix V−1 numerically (or with automatic differentiation),
then invert to get the covariance matrix of the estimators
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Confidence intervals by inverting a test

In addition to a ‘point estimate’ of a parameter we should report 
an interval reflecting its statistical uncertainty.  

Confidence intervals for a parameter θ can be found by 
defining a test of the hypothesized value θ (do this for all θ): 

 Specify values of the data that are ‘disfavoured’ by θ 
 (critical region) such that P(data in critical region|θ) ≤ α 

 for a prespecified α, e.g., 0.05 or 0.1.

 If data observed in the critical region, reject the value θ.

Now invert the test to define a confidence interval as:

 set of θ values that are not rejected in a test of size α  
 (confidence level CL is 1− α).
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Relation between confidence interval and p-value

Equivalently we can consider a significance test for each
hypothesized value of θ, resulting in a p-value, pθ.  

 If pθ ≤ α, then we reject θ. 

The confidence interval at CL = 1 – α consists of those values of 
θ  that are not rejected.

E.g. an upper limit on θ is the greatest value for which pθ > α. 

 In practice find by setting pθ = α and solve for θ.

For a multidimensional parameter space θ = (θ1,... θM) use same 
idea – result is a confidence “region” with boundary determined 
by pθ = α.
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Coverage probability of confidence interval

If the true value of θ is rejected, then it’s not in the confidence 
interval.  The probability for this is by construction (equality for 
continuous data):

  P(reject θ|θ) ≤ α = type-I error rate

Therefore, the probability for the interval to contain or “cover” θ is

  P(conf. interval “covers” θ|θ) ≥ 1 − α

This assumes that the set of θ values considered includes the true 
value, i.e., it assumes the composite hypothesis P(x|H,θ).
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Frequentist upper limit on Poisson parameter

Consider again the case of observing n ~ Poisson(s + b).

Suppose b = 4.5, nobs = 5.  Find upper limit on s at 95% CL.

Relevant alternative is s = 0 (critical region at low n)

p-value of hypothesized s is P(n ≤ nobs; s, b)

Upper limit sup at CL = 1 – α found from



53G. Cowan / RHUL Physics Gran Sasso 2025 / Lecture 1

n ~ Poisson(s+b):  frequentist upper limit on s

For low fluctuation of n, formula can give negative result for sup; 
i.e. confidence interval is empty;  all values of s ≥ 0 have ps ≤ α.
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Limits near a boundary of the parameter space

Suppose e.g. b = 2.5 and we observe n = 0.  

If we choose CL = 0.9, we find from the formula for sup

Physicist:  
 We already knew s ≥ 0 before we started; can’t use negative 
 upper limit to report result of expensive experiment!

Statistician:
 The interval is designed to cover the true value only 90%
 of the time — this was clearly not one of those times.

Not uncommon dilemma when testing parameter values for which
one has very little experimental sensitivity, e.g., very small s.
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Expected limit for s = 0

Physicist:  I should have used CL = 0.95 — then sup = 0.496

Even better:  for CL = 0.917923 we get sup = 10−4 !

Reality check:  with b = 2.5, typical Poisson fluctuation in n is
at least √2.5 = 1.6.  How can the limit be so low?

Look at the mean limit for the 
no-signal hypothesis (s = 0)
(sensitivity).

Distribution of 95% CL limits
with b = 2.5, s = 0.

Mean upper limit = 4.44
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Background-free vs background dominated limits

Upper limit on the rate of a signal process is

targets time

For b ≪ 1, 

For b ≫ 1, 

, ,

For →

→

→

(1−α = 0.95)
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Approximate confidence intervals/regions 
from the likelihood function

Suppose we test parameter value(s) θ = (θ1, ..., θn)  using the ratio

Lower λ(θ) means worse agreement between data and 
hypothesized θ.  Equivalently, usually define

so higher tθ means worse agreement between θ and the data.

p-value of θ therefore 

need pdf
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Confidence region from Wilks’ theorem

Wilks’ theorem says (in large-sample limit and provided 
certain conditions hold...)

chi-square dist. with # d.o.f. = 
# of components in θ = (θ1, ..., θn).

Assuming this holds, the p-value is

To find boundary of confidence region set pθ = α and solve for tθ:

Recall also 

← set equal to α 
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Confidence region from Wilks’ theorem (cont.)

i.e., boundary of confidence region in θ space is where

For example, for 1 – α = 68.3% and n = 1 parameter,

and so the 68.3% confidence level interval is determined by

Same as recipe for finding the estimator’s standard deviation, i.e.,

is a 68.3% CL confidence interval.
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Example of interval from ln L(θ) 

For n=1 parameter, CL = 0.683, Qα = 1.

Our exponential 
example, now with
only n = 5 events.

Can report ML estimate
with approx. confidence
interval from ln Lmax – 1/2

as “asymmetric error bar”:
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Multiparameter case

For increasing number of parameters, CL = 1 – α decreases for
confidence region determined by a given 
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Multiparameter case (cont.)

Equivalently, Qα increases with n for a given CL = 1 – α.
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Extra slides



64G. Cowan / RHUL Physics Gran Sasso 2025 / Lecture 1

Some statistics books, papers, etc.
G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998

R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in 
the Physical Sciences, Wiley, 1989

Ilya Narsky and Frank C. Porter, Statistical Analysis Techniques in 
Particle Physics, Wiley, 2014.

Luca Lista, Statistical Methods for Data Analysis in Particle Physics, 
Springer, 2017.

L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986

F. James., Statistical and Computational Methods in Experimental 
Physics, 2nd ed., World Scientific, 2006

S. Brandt, Statistical and Computational Methods in Data Analysis, 
Springer, New York, 1998.
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Proof of Neyman-Pearson Lemma

G. Cowan / RHUL Physics

Consider a critical region W and suppose the LR 
satisfies the criterion of the Neyman-Pearson 
lemma:

 P(x|H1)/P(x|H0)  ≥  cα  for all x in W, 

 P(x|H1)/P(x|H0)  ≤  cα  for all x not in W. 

δW+

Try to change this into a different critical 
region W′ retaining the same size α, i.e.,

δW−

W′

W

To do so add a part δW+, but to keep the 
size α, we need to remove a part δW−, i.e., 
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Proof of Neyman-Pearson Lemma (2)

G. Cowan / RHUL Physics

δW+But we are supposing the LR is higher for 
all x in δW− removed than for the x in 
δW+ added, and therefore

δW−

W′

The right-hand sides are equal and therefore 
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Proof of Neyman-Pearson Lemma (3)

G. Cowan / RHUL Physics

Note W and δW+ are disjoint, and 
W′ and δW− are disjoint, so by 
Kolmogorov’s 3rd axiom,

We have

Therefore

δW+

δW−

W′
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Proof of Neyman-Pearson Lemma (4)

G. Cowan / RHUL Physics

And therefore 

i.e. the deformed critical region W′  cannot have higher power 
than the original one that satisfied the LR criterion of the 
Neyman-Pearson lemma.
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Large-sample (asymptotic) properties of MLEs

Suppose we have an i.i.d. data sample of size n:  x1,...,xn

In the large-sample (or “asymptotic”) limit (n → ∞) and assuming 
regularity conditions one can show that the likelihood and MLE 
have several important properties.

The regularity conditions include:  

• the boundaries of the data space cannot depend on the 
parameter;

• the parameter cannot be on the edge of the parameter space;

• ln L(θ) must be differentiable;

• the only solution to 𝜕ln L/𝜕θ = 0 is θ.
^

In the slides immediately following, the properties are shown 
without proof for a single parameter; the corresponding 
properties hold also for the multiparameter case, θ = (θ1,..., θm).
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log-likelihood becomes quadratic

The likelihood function becomes Gaussian in shape, i.e. 
the log-likelihood becomes quadratic (parabolic).

The MLE becomes increasingly precise as the (log)-likelihood 
becomes more tightly concentrated about its peak,
but L(θ) = P(x|θ) is the probability for x, not a pdf for θ.
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The MLE converges to the true parameter value

In the large-sample limit, the MLE converges in probability
to the true parameter value.

That is, for any ε > 0, 

The MLE is said to be consistent.
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MLE is asymptotically unbiased

In general the MLE can be biased, but in the large-sample limit, 
this bias goes to zero:

(Recall for the exponential parameter we found the bias was
identically zero regardless of the sample size n.)
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The MLE’s variance approaches the MVB

In the large-sample limit, the variance of the MLE approaches 
the minimum-variance bound, i.e., the information inequality 
becomes an equality (and bias goes to zero):

The MLE is said to be asymptotically efficient.
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The MLE’s distribution becomes Gaussian

In the large-sample limit, the pdf of the MLE becomes Gaussian,  

For example, exponential MLE 
with sample size n = 100.

Note that for exponential, MLE 
is arithmetic average, so 
Gaussian MLE seen to stem 
from Central Limit Theorem.

where is the minimum variance bound (note bias is zero).
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Distribution of MLE of exponential parameter
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Multiparameter graphical method for variances

Expand ln L(θ) to 2nd order about MLE:

relate to covariance matrix of 
MLEs using information 
(in)equality.

ln Lmax zero

Result: 

So the surface corresponds to

,  which is the equation of a (hyper-) ellipse.
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Multiparameter graphical method (2)

Distance from MLE to tangent planes gives standard deviations.
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The Bayesian approach to limits

In Bayesian statistics need to start with ‘prior pdf’ π(θ), this 
reflects degree of belief about θ before doing the experiment.

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Integrate posterior pdf  p(θ|x) to give interval with any desired
probability content.  

For e.g. n ~ Poisson(s+b), 95% CL upper limit on s from
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Bayesian prior for Poisson parameter

Include knowledge that s ≥ 0 by setting prior π(s) = 0 for s < 0.

Could try to reflect ‘prior ignorance’ with e.g. 

Not normalized; can be OK provided p(n|s) dies off quickly for large s.

Not invariant under change of parameter — if we had used instead a 
flat prior for a nonlinear function of s, then this would imply a non-
flat prior for s.

Doesn’t really reflect a reasonable degree of belief, but often used as 
a point of reference; or viewed as a recipe for producing an interval 
whose frequentist properties can be studied (e.g., coverage 
probability, which will depend on true s). 
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Bayesian upper limit with flat prior for s

Put Poisson likelihood and flat prior into Bayes’ theorem:

Normalize to unit area:

Upper limit sup determined by

upper incomplete
gamma function
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Bayesian interval with flat prior for s

Solve to find limit sup:

For special case b = 0, Bayesian upper limit with flat prior
numerically same as one-sided frequentist case (‘coincidence’). 

where 
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Bayesian interval with flat prior for s

For b > 0 Bayesian 
limit is everywhere 
greater than the (one 
sided) frequentist 
upper limit.

For b = 0 , Bayesian 
and frequentist upper 
limits come out equal.

Never goes negative.

Doesn’t depend on b 
if n = 0.
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