Cosmic ray -- Theory

Martin Lemoine

Astroparticule & Cosmologie (APC)

CNRS - Université Paris Cité

Outline:

- 1. Introductory remarks
- 2. Cosmic ray transport
 - 2.1 General overview
 - 2.2 Transport physics
 - + current topics / emerging trends
- 3. Cosmic ray acceleration
 - 3.1 General overview
 - 3.2 Acceleration scenarios
 - + current topics / emerging trends

Hands-on 2025 - PhD Summer School @ LNGS - Sept. 2025

- → cosmic rays: a flux of relativistic charged particles propagating through Galactic and extra-Galactic media
 - spans ~12 orders of magnitude in energy
 - ~10⁴ particles/m²/s at 1 GeV...
 - ~1 particle/km²/century at 1011GeV...
 - an approximate powerlaw (with features!)

$$\frac{\mathrm{d}n}{\mathrm{d}\varepsilon}\,\propto\,\varepsilon^{-2.7\to-3.3}$$

- → origin of the bulk of cosmic rays: most likely acceleration at the external shock wave of supernovae remnants, through diffusive Fermi acceleration
- → origin of VHE UHE cosmic rays: some other acceleration process ? in some yet unidentified source, e.g. relativistic supernovae, gamma-ray bursts, active galactic nuclei, radio-galaxies etc. ?

Particle radiation in HE astrophysics: generic processes

 \rightarrow High energy electrons (and e+): $\gamma_e \equiv E_e/(m_ec^2)$

synchrotron radiation, with typical frequency:

$$\nu_{\rm syn} \sim 10 \, {\rm Mhz} \, E_{\rm GeV}^2 B_{\mu \rm G}$$

inverse Compton on seed photon: $e + \gamma \rightarrow e + \gamma$

$$E_{\gamma}' \simeq 2\gamma_e^2 E_{\gamma} \sim 10 \, \mathrm{keV} \, E_{\mathrm{GeV}}^2 E_{\gamma,\mathrm{CMB}}$$

SSC = synchrotron-self-Compton = IC on synchrotron photons (+bremsstrahlung)

→ High energy protons:

p-p interaction: $p+p \rightarrow p+(p \text{ or } n)+\pi+\dots$

p-y interaction: $p + \gamma \rightarrow (p \text{ or } n) + \pi + \dots$

hence neutrino production: $\pi^+ \rightarrow \mu^+ + \nu_\mu$

and gamma production: $\pi^0 \rightarrow \gamma + \gamma$

(+pair production p+y→p+e+e with small inelasticity, possibly synchrotron radiation in strong magnetic fields, etc.)

large loss rates imply that most radiation is of leptonic origin (in general!)

astrophysical v: unambiguous signature of hadron acceleration

Definitions

A cosmic ray ≡ a relativistic charged particle engaged in a long-term relationship with electromagnetic fields (E, B) ...

$$\rightarrow \frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} = q\left(\mathbf{E} + \frac{\boldsymbol{v}}{c} \times \mathbf{B}\right)$$

 $\rightarrow \frac{\mathrm{d} \boldsymbol{p}}{\mathrm{d} t} = q \left(\mathbf{E} + \frac{\boldsymbol{v}}{c} \times \mathbf{B} \right) \qquad \qquad \boldsymbol{p} \leftrightarrow \mathbf{E} \ \ \text{describes acceleration because } \\ \boldsymbol{p} \leftrightarrow \mathbf{B} \ \ \text{describes transport because } \ \ |\mathbf{E}| \ll |\mathbf{B}| \ \ \text{in general}$

ightarrow defined by its mass m, charge q=eZ, energy arepsilon pprox pc / momentum p / Lorentz factor γ and gyroradius $r_q \simeq pc/|q|B$ note: use of Gaussian c.g.s. units

pitch-angle θ , cosine $\mu \equiv \cos\theta$ defines orientation wrt **B**: $p_{\parallel} \equiv \pmb{p} \cdot \pmb{B} \ / \ p \ B = p \ \mu \ p_{\perp} = p \ (1 - \mu^2)^{1/2}$

gyrofrequency: $\Omega \equiv |q|Bc / \varepsilon = |q|B/\gamma mc$, Larmor radius: $r_L \equiv p_\perp c/|q|B$

- \rightarrow interactions with e.m. fields scale with ε/Ze (rigidity)
- o one-to-one relation between energy arepsilon or momentum p and length scales (r_g): $r_g \simeq 1$ pc $arepsilon_{
 m PeV}$ $B_{\mu
 m G}^{-1}$ Z^{-1}

Origin of (the bulk of) Galactic cosmic rays: supernova remnants (SNR), most likely

Source: particles can be accelerated to high energies at the shock front of supernova remnants \dots

Order of magnitude (OoM) for energetics: assume that

- each supernova (Galactic rate $r_{SN} \sim 2/100 \text{ yr}$) injects 10% of its shock kinetic energy ($E_{SN} \sim 10^{51} \text{ erg}$) in cosmic rays >GeV $\Rightarrow L_{CR} \sim 10^{41} \text{ erg/s}$
- CRs are confined in the Galaxy (volume $V\sim 300~\rm kpc^3\sim 10^{67}~cm^3$)(?) for a duration $\tau_{\rm esc}\sim 10^7~\rm yrs$ (?)...

then, average energy density of CRs: $u_{\rm cr} \sim \frac{L_{\rm CR} au_{\rm esc}}{V} \sim 1\,{\rm eV\,cm^{-3}}$

Spectrum:

accelerated particle energy distribution inferred around SNR of the form $dn/d\varepsilon \propto \varepsilon^{-2.3}$... if $\tau_{\rm esc} \propto \varepsilon^{-0.4}$, as observed(?), all-sky spectrum recovered... at least up to ~the knee...

Cosmic ray -- Theory

Martin Lemoine

Astroparticule & Cosmologie (APC)

CNRS – Université Paris Cité

Outline:

- 1. Introductory remarks
- 2. Cosmic ray transport
 - 2.1 General overview
 - 2.2 Transport physics
 - + current topics / emerging trends
- 3. Cosmic ray acceleration
 - 3.1 General overview
 - 3.2 Acceleration scenarios
 - + current topics / emerging trends

Hands-on 2025 – PhD Summer School @ LNGS – Sept. 2025

Cosmic-ray confinement in the Galaxy

The magnetized Milky way:

Polarized emission from dust © Planck

- ... a mean magnetic field of strength $B \sim O(\mu G)$ with a complex morphology, incl. spiral pattern in disk, halo component etc, with typical curvature scale $\sim O(\text{kpc})$
- ... an irregular component associated with turbulence, characterized (at least) by outer scale $\ell_c \sim O(100 {\rm pc})$ and amplitude $\delta B/B \sim O(1)$...
- \Rightarrow magnetic fluctuations on all scales, from $\sim O(1 {\rm AU})$ to $\sim O(100 {\rm pc})$, with characteristic scaling $\delta B_l \sim \delta B \ (l/\ell_c)^{0.3}$

OoM for transport:

 $r_g \sim 1$ pc $\varepsilon_{\mathrm{PeV}} B_{\mu\mathrm{G}}^{-1} Z^{-1} \ll \ell_c \Rightarrow \mathrm{Galactic\ CRs\ (GCRs)}$ are "magnetized"... diffuse in Galactic turbulence $r_g \sim 1$ kpc $\varepsilon_{\mathrm{EeV}} B_{\mu\mathrm{G}}^{-1} Z^{-1} \gg \ell_c \Rightarrow \mathrm{UHECRs\ are\ not\ confined\ in\ the\ Galaxy\ (\Rightarrow extra-galactic\ origin)}$

Diffusive transport: random walk with mean free path λ (isotropic?), diffusion coefficient $\kappa \sim \lambda c/3$ (isotropic?) \Rightarrow confinement time in the Galaxy $\tau_{\rm esc} \sim H^2/\kappa$ where $H \sim$ characteristic size of confining volume

Cosmic-ray transport in the Galaxy

Phenomenological model: ``leaky-box''

 \leftrightarrow CRs are produced in disk (SNRs + ...), diffuse in disk and halo, to eventually escape on timescale $\tau_{\rm esc}(p)...$

 \dots during transport, suffer interactions \to photons, neutrinos, other nuclei through spallation and nuclear decay, etc.

Methods:

Monte Carlo: track many individual CRs, modelling transport as a random walk (Brownian motion)

· Solve a transport equation describing the evolution of the CR distribution function

Transport equation: in its simplest form, for species s

$$\partial_t f_s = \partial_{x^i} D_{ij} \partial_{x^j} f_s + Q_s(\boldsymbol{r}, t, p) + \dots$$

 f_s : distribution function (density $n_s = \int d^3p f_s$)

 Q_s : injection term, production by sources in Galactic disk

 $D_{i,i}$: spatial diffusion coefficient

Cosmic-ray transport in the Galaxy

Phenomenological model: "leaky-box"

 \leftrightarrow CRs are produced in disk (SNRs + ...), diffuse in disk and halo, to eventually escape on timescale $\tau_{esc}(p)...$

 \dots during transport, suffer interactions \to photons, neutrinos, other nuclei through spallation and nuclear decay, etc.

Improved transport equation: for species s

nuclear decay or inelastic collisions from heavier nuclei

Standard solutions of leaky box... a successful model

Stationary solutions:

- → for « primary » CRs (produced at source): assuming that sources inject powerlaw spectra with slope s
- → for « secondary » CRs (produced by interactions of primaries):

$$\begin{split} \frac{\mathrm{d}n^I}{\mathrm{d}\varepsilon} &\sim Q_{\mathrm{inj}}\tau_{\mathrm{esc}}\frac{V_{\mathrm{disk}}}{V_{\mathrm{conf.}}} \propto \varepsilon^{-s}\tau_{\mathrm{esc}} \\ \frac{\mathrm{d}n^{II}}{\mathrm{d}\varepsilon} &\sim \frac{\mathrm{d}n^I}{\mathrm{d}\varepsilon}\frac{1}{\tau_{\mathrm{int}}}\tau_{\mathrm{esc}}\frac{V_{\mathrm{disk}}}{V_{\mathrm{conf.}}} \propto \varepsilon^{-s}\tau_{\mathrm{esc}}^2 \end{split}$$

$$\tau_{\rm esc} \sim \frac{H^2}{\kappa}$$

 $\tau_{\rm esc}\,\sim\,\frac{H^2}{\kappa}\qquad {\rm H~scale~height~for~escape} \\ \kappa~{\rm diffusion~coefficient}$

if
$$\tau_{\rm esc} \propto \varepsilon^{-\alpha}$$
 then $dn^I/d\varepsilon \propto \varepsilon^{-s-\alpha}$

if $\tau_{\rm esc} \propto \varepsilon^{-\alpha}$ then $dn^I/d\varepsilon \propto \varepsilon^{-s-\alpha}$... vs observations: $s \simeq 2.3$, $s + \alpha \simeq 2.7 \Rightarrow \alpha \simeq 0.4$

Consistency test: measured spectra of secondary species (e.g. Li, Be, B), produced by spallation interactions of primaries with ISM gas, and take ratio to primary spectra to extract $au_{
m esc}$

$$\rightarrow \tau_{\rm esc} \sim 10^7 {\rm yrs} \, (\varepsilon/1 {\rm GeV})^{-0.4}$$

... suggesting an average $\kappa(\varepsilon) \propto \varepsilon^{0.4}$ at > 10 GeV

Cosmic-ray transport in magnetized turbulence: toward a microphysical picture(?)

High-energy particle transport in astrophysical plasmas: in collisionless regime, transport regulated by wandering with large-scale field combined with scattering on magnetic perturbations and perpendicular transport...

on short length scales ($<\ell_c$), CRs follow field lines, their pitch angle undergoes a random walk with mean free path:

 $\lambda_{\parallel}(p)=c/
u_{
m scatt}$, with $u_{
m scatt}\equiv D_{\mu\mu}=\langle\Delta\mu^2
angle/2\Delta t$ spatial diffusion coefficient: $\kappa_{\parallel}(p) \sim c\lambda_{s}$

on intermediate scales, CRs diffuse across B... associated diffusion coefficient D_1 ? field lines themselves diffuse and bend on large scales... overall diffusion coefficient κ ?

Notion of scattering resonance between gyromotion and perturbation wavelength

Particle scattering in a turbulent plasma: particles with r_g in inertial range of turbulence interact with a broad range of modes (i.e. scales defined by length l or wavenumber $k \sim l^{-1}$)

Spatial diffusion coefficient k: heuristics and classical quasilinear theory

Heuristic calculation: if every step of length $l\sim r_g$, particles experience random deflection $\delta\theta\sim\pm O(\delta B_l/{\rm B})$, then after ${\rm c}\Delta t/l$ steps, variation $\langle\Delta\theta^2\rangle\sim \left\langle\delta B_l^2\right\rangle\!/B^2\,c\Delta t/l\,$ i.e. scattering rate $\,\nu_{\rm scatt}\simeq \langle\Delta\theta^2\rangle/\Delta t\propto \left(r_g/\ell_c\right)^{-0.5\,\dots-0.3}$

... i.e., a spatial diffusion coefficient
$$\kappa_{\parallel} = \lambda_{\parallel} c \,=\, c^2/\nu_{\rm scatt} \,\approx\, (\delta B/B)^{-2}\,\ell_{\rm c}\,(r_{\rm g}/\ell_{\rm c})^{0.3...0.5} \,\propto\, \varepsilon^{0.3...0.5}$$

Formal calculation: in the context of perturbative quasi-linear theory, assume (1) that particles gyrate around a fixed background magnetic field and collect the influence of perturbations along their motion; (2) that the turbulence is composed of a large number of uncorrelated plane waves...

$$u_{
m scatt} \simeq \int {
m d} {f k} \; \dots \; \delta \left(k_{\parallel} \mu c - \omega_k + n c / r_{
m g} \right) \; {\cal P}_{f k}$$

picks up gyroresonant modes out of power spectrum of magnetic fluctuations $P_{f k}$

Perpendicular transport: dominated by field line wandering combined with parallel transport ("compound diffusion"), giving $\kappa_{\perp} \sim (\delta B/B)^4 \kappa_{\parallel}$ (4 = approximate exponent)

⇒ theory complete and OK?

Spatial diffusion coefficient κ: from mirrors and anisotropy to confusion...

Issues with the theory:

 large-scale compressive perturbations can trap particles through mirroring... requires finite-amplitude perturbations (not predicted by theory)...

 turbulence assumed isotropic, i.e. equal shape and power along and perpendicular to magnetic field... in modern theories (Goldreich-Sridhar) for Alfvén turbulence, eddies elongated along mean field → destroys resonances

... eddies become progressively more elongated along mean magnetic field at smaller length scales... $k_\parallel \sim k_\perp^{2/3} l_{\rm c}^{-1/3} \Rightarrow k_\parallel \ll k_\perp$

... resonances disappear: if $k_{\parallel} \sim r_g^{-1}$ then $k_{\perp} \ r_g \gg 1$, which implies that during a gyration, the particle explores many uncorrelated modes in the transverse direction...

⇒ inefficient scattering ...

Spatial diffusion coefficient k: structures rather than plane waves?

Issues with the theory:

assumption "turbulence is composed of a large number of uncorrelated plane waves" known to be wrong...
likely a major impact on diffusion coefficient, affected by interactions with localized structures rather than a
continuous bath of waves

Definitions: $\mu = \mathbf{p} \cdot \mathbf{b}/p \text{ pitch-angle cos}$ M(t): magnetic moment $\widehat{M} \equiv M(t)/M(0)$ $\widehat{\kappa} \equiv \kappa \langle B \rangle/B$ $\text{note: } \widehat{\kappa} \langle r_g \rangle \sim \max(\kappa r_g)$

... pitch-angle evolves "adiabatically" between large-scale mirrors

... scattering is seen as jumps of M, localized events associated with sharp curvature bends of the field

Spatial diffusion coefficient κ: accounting for CR feedback on the turbulence

CR feedback on turbulence: CRs exchange energy and momentum with turbulence through scattering

... cosmic ray w/ mean velocity $\langle v_\parallel \rangle$ larger than v_A excite Alfvén waves, which in turn scatter CRs!

CR streaming instability: net motion along $B \leftrightarrow$ anisotropy...

- ightarrow weak for CRs on average, but pronounced if no scattering mechanism
- ... instability growth dominant at $k r_g \sim 1 \Rightarrow \text{only } n_{\text{CR}}(> \varepsilon)$ with $r_s = s/sR$ contributes to exciting waves at k

with $r_g = \varepsilon/eB$ contributes to exciting waves at k ...

→ in principle, more effective for low-energy CRs (more numerous)

Self-regulation of transport:

- \dots amplified waves can be damped by turbulent cascade, or by other channels (e.g. ion-neutral friction) \dots
- \rightarrow equilibrium: growth rate balanced by damping ... determines κ

... in practice, relevant for CRs with energy \lesssim 300 GeV: stream along field lines at mean velocity v_A + diffuse with self-regulated κ

... for $\varepsilon \gtrsim 300 \text{GeV}$, growth rate too slow ... no self-regulation

Transport of UHE cosmic rays: catastrophic photo-hadronic losses

Greisen-Zatsepin-Kuzmin suppression:

- \dots at UHE, CMB photons are seen as $\sim\!$ gamma-rays in the rest frame of the proton...
- ... $p+\gamma \rightarrow \cdots +\pi$ leads to catastrophic on length scales $\sim 50 \text{Mpc}$ for $\varepsilon \gtrsim 50 \text{EeV}$ (+production of cosmogenic neutrinos)
- ... protons can also pair-produce on CMB (Bethe-Heitler)

Interactions for nuclei:

- \dots for nuclei, interactions dominated by photo-dissociation (ripping off nucleons or α nuclei) on CMB + infrared photon backgrounds \dots
- ... threshold $\varpropto \gamma \;$ while $\varepsilon \varpropto \gamma A \; m_p \;$ implies lighter nuclei have lower threshold energy ...

→ much more this afternoon in Hands On session!

Transport for VHE to UHE CRs: semi-ballistic transport, $\lambda_{\parallel} \gg \ell_c$

Small-angle deflection regime at high energy: if, when crossing a coherence cell of size ℓ_c , $\delta\theta \ll 1$

- ... through crossing a given cell, deflection $\delta\theta \sim \pm O(\ell_c/r_{\!g})$
- ... after $c\Delta t/\ell_c$ steps, accumulated $~\langle\Delta\theta^2\rangle\sim\delta\theta^2~c\Delta t/\ell_c$
- ... scattering rate/frequency: $\nu_{\rm scatt} = \langle \Delta \theta^2 \rangle / \Delta t \sim c \; \ell_c/r_g^2 \propto \varepsilon^{-2}$
- ... mean free path to deflection: $\lambda_{\parallel} = c/\nu_{\rm scatt} \sim r_g^2/\ell_c \propto \varepsilon^2$ (if no mean field: $\lambda_{\parallel} \to \lambda_{\rm scatt}$)

Application to UHE cosmic rays:

- ... at VHE in Galaxy: for $B\sim~\mu{\rm G}, \ell_c\sim 100{\rm pc}, \lambda_{\rm scatt}\sim 10~{\rm kpc}~\varepsilon_{\rm EeV}~Z^{-1}$
- ... extra-galactic rms B field unknown, but assuming $B\sim 1~n{\rm G}$ with coherence length $\ell_c\sim 100{\rm kpc}$ gives $\lambda_{\rm scatt}\sim 1~{\rm Gpc}~\epsilon_{\rm 10EeV}~Z^{-1}~!$
 - ... to determine transport regime, compare to source distance:

ballistic for close-by sources / high rigidity (\ll Gpc, $\varepsilon \gtrsim 10$ EeV, or $Z \sim 1$) diffusive for far-away sources / low rigidity (\gtrsim Gpc, $\varepsilon \lesssim 10$ EeV, or $Z \gg 1$)

Transport of UHE cosmic rays in the magnetized Universe

More detailed picture:

- most of scattering likely associated with localized regions of enhanced B field, e.g. galaxies, clusters, filaments, superclusters... as in a billiard
- sources of highest energy CRs must be close-by → expect weak deflection at UHE
 - note: 1. GZK effect implies that max source distances ${\bf \searrow}$ with $\varepsilon \not \! \! / \! \! \! \! /$
 - 2. most of flux comes from farthest sources (Olber's paradox)

Different regimes of transport:

- · diffusive at low energy, ballistic at high-energy...
- + possible diffusion in local supercluster
- possible existence of a energy-dependent magnetic horizon, introducing low-energy cut-off around 0.1-1~Z EeV note: horizon from $t(E)=D^2/\lambda \leq H^{-1}$ (D source distance, H^{-1} age of Universe)

Some (old or new) pressing questions and emerging topics

- What is the physical mechanism controlling particle transport in a turbulent plasma!?
 - \rightarrow relation between turbulence anisotropy, compressible modes down to small length scales $\sim r_a(\text{TeV})$...
 - → role of coherent turbulent structures on transport (mirrors and sharp curvature bends)?
 - → detailed physics of the streaming instability in a realistic turbulent context?
- How to interpret the breaks in the all-particle or individual CR spectra?
 - → distinguish effects resulting from different transport regimes from other causes?
 - → are there different types of sources? e.g. do recent sources (microquasars) detected at PeV contribute?
- Cosmic rays as tools in cosmology and particle physics?
 - → use of cosmic rays as a laboratory for beyond-standard-model physics?
 - → importance of cosmic rays in Galactic dynamics: the cosmic-ray feedback and hydrodynamics picture
- At UHE, similar questions, but a lot less data...
 - → interpretation of breaks seen in data, signatures of evolving chemical composition?
 - → transport of UHE cosmic rays in the local environment, in the large-scale structure?
 - → understanding the chemical composition: origin of UHECRs as a nucleosynthesis problem!

Cosmic ray -- Theory

Martin Lemoine

Astroparticule & Cosmologie (APC)

CNRS – Université Paris Cité

Outline:

- 1. Introductory remarks
- 2. Cosmic ray transport
 - 2.1 General overview
 - 2.2 Transport physics
 - + current topics / emerging trends
- 3. Cosmic ray acceleration
 - 3.1 General overview
 - 3.2 Acceleration scenarios
 - + current topics / emerging trends

Hands-on 2025 – PhD Summer School @ LNGS – Sept. 2025

Basic notions about particle acceleration...

 $\rightarrow \text{Recall:} \quad \frac{\mathrm{d} \boldsymbol{p}}{\mathrm{d} t} \, = \, q \left(\mathbf{E} + \frac{\boldsymbol{v}}{c} \times \mathbf{B} \right) \quad \text{ but } \quad \frac{\mathrm{d} \varepsilon}{\mathrm{d} t} \, = \, q \, \boldsymbol{v} \cdot \mathbf{E}$

... yet, $\mathbf{E} \leftrightarrow \mathbf{B}$ in a change of reference frame: beware of illusions!

Fundamental example: MHD flows \leftrightarrow plasmas of "infinite" conductivity, $\mathbf{E} \simeq -v_E \times \mathbf{B}/c$ with v_E drift velocity... ... v_E = velocity of magnetic field lines frozen into plasma motion ...

... MHD approximation: relevant on large scales (>> skin depth and thermal gyroradius), in practice relevant in most astrophysical media except: 1. magnetospheres of compact objects; 2. small spatial scales

ion skin depth: $c/\omega_{\rm pi}\sim 10^7\,{\rm cm}\ n_0^{-1/2}$ ion thermal gyroradius: $r_{\rm g,\,th}\sim 10^8\,{\rm cm}\ T_4^{1/2}B_{\rm \mu G}^{-1}$

... here, all throughout: assume MHD flows → Fermi acceleration scenarios

... note: particle acceleration takes place in collisionless systems (collision m.f.p. » relevant scales)!

Particle acceleration schemes in HE astrophysics... Fermi's model (1949, 1954)

→ Fermi picture of acceleration:

high conductivity implies small electric fields \leftrightarrow in the plasma rest frame $E\sim 0$ everywhere on length/time scales of interest...

... however, in a plasma moving at velocity v_E , $\mathbf{E} = -v_E \times \mathbf{B}/c \Rightarrow$ particle acceleration in inductive electric fields associated with plasma motion!

- ... Issue 1: $\mathbf{E} \perp \mathbf{B} \Rightarrow$ need a mechanism to ensure cross-field transport... turbulence!
- ... Issue 2: if v_E uniform in space and time, no E field anywhere anytime in plasma frame \Rightarrow no acceleration
- → original Fermi picture: particles gain (or lose) energy by scattering on randomly moving magnetized inhomogeneities
- → Application: the Hillas bound on maximal energy
 - ... at most, particles crossing a length scale L (< size of source) reach energy $\varepsilon_{max}=Z~e~E~L$
 - ... with $E \sim B v_E/c$,

 $\varepsilon_{\rm max} \sim Ze\,B\,L\,v_E/c$

... e.g., for SNR $L\sim 1$ pc, $B\sim 1\mu$ G, $v_E/c\sim 0.1$: $\varepsilon_{\rm max}\sim 0.1~{\rm PeV}$... a strict upper limit \rightarrow issue with the knee!

The family tree of Fermi acceleration scenarios

- ightarrow acceleration is controlled by the spatial (or time) variation of the velocity flow v_E
 - ... recall: ideal MHD conditions \rightarrow **E** vanishes in frame moving at $v_E = c \mathbf{E} \times \mathbf{B}/B^2 \Rightarrow$ no acceleration in absence of shear

 \rightarrow in a turbulent flow: $\partial_i v_E^j \neq 0$

The fundamental idea of Fermi acceleration

a particle, with initial velocity v_i interacts with a scattering center (mass M) moving at v_E to achieve final velocity v_f key assumption: interaction is elastic in reference frame of scattering center

→ kinematical view:

conservation of energy, momentum:

$$rac{E_{
m f}-E_{
m i}}{E_{
m i}}=rac{oldsymbol{v_E}\cdot\Deltaoldsymbol{v}}{c^2}$$
 (assumes $oldsymbol{v_E}\ll c$)

 $\Delta v = v_f - v_i$ if oriented toward same half-plane as v_E then particle has taken energy from scattering center, otherwise particle has given energy

in detail:

$$\frac{M\boldsymbol{v_{Ef}} + \boldsymbol{p_f} = M\boldsymbol{v_E} + \boldsymbol{p_i}}{\frac{1}{2}M{v_E}_f^2 + E_f} = \frac{1}{2}M{v_E}^2 + E_i} \right\} \quad \frac{E_f - E_i}{E_i} = \frac{\boldsymbol{v_E} \cdot (\boldsymbol{p_f} - \boldsymbol{p_i})}{E_i} + \mathcal{O}\left(\frac{(\boldsymbol{p_f} - \boldsymbol{p_i})^2}{ME_i}\right)$$

(test-particle: $M \to \infty$)

Shock acceleration: particles gain energy through head-on collisions with the moving plasma

→ systematic energy gain: whether downstream or upstream, a particle returning to the shock sees a converging flow, thus suffers head-on collisions with energy gain, if it further returns to the shock...

i.e. as long as the particle bounces back and forth across the shock, it gains energy...

shocked ↔ downstream:

unshocked ↔ upstream: inflowing into shock

as viewed from upstream frame

shock

→ at each cycle around the shock (up – down – up):

$$\langle \Delta p \rangle \simeq \frac{4}{3} \frac{v_{\rm u} - v_{\rm d}}{v} \, p > 0 \label{eq:deltap}$$

positive on average ↔ systematic acceleration

escape downstream with prob. $\langle P_{\rm esc} \rangle = \frac{4}{r} \frac{v_{
m sh}}{v}$

 $r = v_u/v_d \simeq 4$

Microscopic picture of shock acceleration: some questions

- ightharpoonup One cycle: shock ightharpoonup downstream ightharpoonup shock $\left\langle \frac{\Delta p}{p} \right\rangle = +\frac{4}{3} \frac{v_{\mathrm{u}} v_{\mathrm{d}}}{v_{\mathrm{i}}} + \mathcal{O}\left(v_{\mathrm{u}}^2/c^2\right)$
- → where does the energy come from?
 - → as viewed in the shock frame, both upstream and downstream plasmas carry motional turbulent electric fields:

$$\delta E_{
m d} = -v_{
m d} imes \delta B_{
m d}/c$$
 $\delta E_{
m u} = -v_{
m u} imes \delta B_{
m u}/c$

- → in calculations, the electric field was "illusioned away" by a trick: Lorentz transform to and from the frame in which it vanishes, in which particles undergo elastic pitch angle scattering...
- ... as viewed from the shock frame, the actual trajectory:

... turbulent δB_d ensures pitch-angle scattering, associated δE_d leads to energy gain/loss, cumulative effect of δE_d fields experienced along trajectory captured by trick of Lorentz transform!

 \rightarrow in MHD approximation, δB field is tied to the plasma: energy reservoir is bulk plasma motion!

Diffusive shock acceleration: standard results in the test-particle limit

in short: gain in momentum per cycle

$$\langle \Delta \ln p \rangle \, \simeq \, + \frac{4}{3} \frac{v_{
m sh}}{v} \left(\frac{r-1}{r} \right)$$

$$\langle P_{\rm esc} \rangle = \frac{4}{\pi} \frac{v_{\rm sh}}{r} \qquad (r \sim 4)$$

competition between energy gain and escape leads to powerlaw

gain in momentum per cycle $\langle \Delta \ln p \rangle \simeq + \frac{4}{3} \frac{v_{\rm sh}}{v} \left(\frac{r-1}{r} \right)$ probability of escape per cycle $\langle P_{\rm esc} \rangle = \frac{4}{r} \frac{v_{\rm sh}}{v}$ $(r \sim 4)$... shapes a powerlaw spectrum: $\frac{{\rm d}N}{{\rm d}p} \propto \left(\frac{p}{p_0} \right)^{-s}$, $s=1+\frac{\ln \langle P_{\rm esc} \rangle}{\langle \Delta \ln p \rangle} \simeq 2$

... with a characteristic acceleration timescale: $t_{
m acc} \simeq rac{\kappa}{v_{
m ob}^2}$

$$_{\rm acc} \simeq \frac{\kappa}{v_{\rm ob}^2}$$

(κ spatial diffusion coefficient)

Particle acceleration beyond the SNR paradigm: from PeV to EeV's

Going relativistic: as $E\sim B\ v_E/c$, particle acceleration to very high energies generally requires $v_E\sim c...$ i.e., relativistic shock waves, relativistic turbulence, relativistic shear acceleration, relativistic reconnection etc. ... key question for phenomenology: $t_{\rm acc}$ acceleration timescale (vs ε)

Improved Hillas bound for acceleration in (relativistic) outflow:

... write acceleration timescale (comoving plasma frame) as: $t_{
m acc} = {\cal A} \ r_{
m g}/c$

e.g. shock waves:
$$t_{\rm acc} \sim \kappa/v_{\rm sh}^2 > r_g c/v_{\rm sh}^2 \Rightarrow A > (c/v_{\rm sh})^2 \gg 1$$

... compare
$$t_{\rm acc}$$
 and age $t_{\rm dyn}=R/(\beta\Gamma c)$: $t_{\rm acc}\leq t_{\rm dyn}\Rightarrow \varepsilon_{\rm obs}\leq \mathcal{A}^{-1}ZeBR/\beta$

... relate $\it BR$ to the magnetic luminosity of the source: $L_B = 2\pi R^2 \Theta^2 {B^2\over 8\pi} \Gamma^2 eta c$

... invert to write a lower bound on $\emph{L}_\emph{B}$ to reach $\emph{arepsilon}_{
m obs}$: $ig| L_{
m tot} \, \geq \, L_B$

$$L_{\rm tot} \ge L_B \gtrsim 10^{43} \dots \mathcal{A}^2 \left(\frac{\varepsilon}{Z \times 10^{19} \, {\rm eV}}\right)^2 \, {\rm erg/s}$$

 $\gtrsim 10^{35} \dots \mathcal{A}^2 \left(\frac{\varepsilon}{1 \, {\rm PeV}}\right)^2 \, {\rm erg/s}$

... for references: Eddington luminosity

$$L_{\rm edd} \sim 10^{38} (M_{\rm BH}/M_{\odot}) \, {\rm erg/s}$$

 $L_{\rm GRB} \sim 10^{51}\,{\rm erg/s}$

gamma-ray burst luminosity

Particle acceleration in turbulence (aka « stochastic » or « Fermi type-II »)

... a key question: how to describe stochastic acceleration in random electric fields...

... at each "interaction", particles can gain or lose energy: a diffusive process in energy space (aka Fermi II, vs Fermi I at shock)

 \Rightarrow acceleration characterized (?) by advection and diffusion coefficients (vs ε)

The standard Fokker-Planck scheme for modeling turbulent acceleration

→ Transport equation:

$$\frac{\partial}{\partial t} f(p,t) = \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 D_{pp} \frac{\partial}{\partial p} f(p,t) \right] - \frac{1}{p^2} \partial_p \left[|\dot{p}_{\rm loss}| \, p^2 f(p,t) \right] - \frac{f(p,t)}{t_{\rm esc}} + \dots$$

(1) no loss, no escape, $D_{pp} = v p^2$:

$$\frac{\mathrm{d}n}{\mathrm{d}p} = 4\pi p^2 f(p,t) = \sqrt{\frac{4\pi}{\nu p^2 t}} e^{-[\ln(p/p_0) - 3\nu t]^2/(4\nu t)}$$

(2) w/ loss, escape, $D_{pp} = v p^2$:

e.g., modeling of SED of blazar PKS2155-304

Standard schemes to model particle acceleration in turbulence

→ Original Fermi (49,54) acceleration: scattering off discrete magnetic scatterers, with E=0 in local rest frame

ightarrow kinematics: two-body collision, isotropic + elastic scattering in scattering center rest frame $ightarrow \Delta p > 0$ for head-on, $\Delta p < 0$ tail-on

$$D_{pp} \equiv \frac{\left\langle \Delta p^2 \right\rangle}{2\Delta t} = \frac{1}{3} \left(\frac{v_E}{c} \right)^2 \frac{p^2}{t_{\rm int}}$$

→ transport equation = Fokker-Planck:

→ Quasilinear theory: transport in a bath of linear waves (e.g. Alfvén, magnetosonic)... energy gain through resonant interactions

... interactions dominated by resonances, e.g. $k r_g \sim 1 \,$...

$$D_{pp} \sim \frac{\langle \delta B^2 \rangle}{B^2} \, \left(\frac{v_{\rm A}}{c}\right)^2 \, \frac{p^2}{\ell_c/c} \, \left(\frac{r_{\rm g}}{\ell_c}\right)^{q-2} \\ \begin{array}{c} \ell_c \text{ coherence scale of turbulence} \\ r_g \text{ gyroradius of particles} \\ \text{q index of } \delta \text{B spectrum (~>5/3)} \end{array}$$

$$\frac{\partial}{\partial t} f(p,t) = \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 D_{pp} \frac{\partial}{\partial p} f(p,t) \right]$$

The Fermi picture for particle acceleration (1949, 1954)

→ assumption: perfectly conducting magnetized plasma composed of moving scattering centers... particle acceleration on motional electric fields ${\pmb E} = -{\pmb v}_{\pmb E} imes {\pmb B}/c$

- → sequence of discrete interactions with point-like scattering centers... in each scattering center rest frame: elastic collision (ideal MHD $\Rightarrow E = 0$ in rest frame)
- → kinematics: same as two-body collision, or gravitational assist! energy gain if $\Delta p \cdot v_E > 0$, energy loss otherwise
- → stochastic acceleration (diffusion in momentum space)... e.g. Fokker-Planck equation:

$$\begin{split} \frac{\partial}{\partial t}f(p,t) &= \frac{1}{p^2}\frac{\partial}{\partial p}\left[p^2\,D_{pp}\,\frac{\partial}{\partial p}f(p,t)\right]\\ \text{momentum diffusion coefficient:} \quad D_{pp} &\sim \frac{v_E^2}{c^2}\frac{p^2}{t_{\rm int}} \end{split}$$

→ an issue: implementing stochastic acceleration in turbulence?

Quasilinear calculations of momentum diffusion coefficient

 $\rightarrow \text{Momentum diffusion coefficient:} \quad D_{pp} \, = \, \left(\frac{v_{\rm A}}{c}\right)^2 \, \sum_{r} \, \int \mathrm{d}\boldsymbol{k} \, [\ldots] \, \, \mathcal{S}_{\boldsymbol{k}} \, \delta \left(k_{\parallel} v_{\parallel} - \omega_{\boldsymbol{k}} + n \omega_{\rm g}\right) J_n \left(k_{\perp} v_{\perp} r_{\rm g}/c\right)$

gyroresonances $n \neq 0$: along background magnetic field, phase of electric field changes by $\Delta\phi=k_\parallel\Delta z-\omega_k\Delta t$ in time Δt ; in one gyro-orbit $\Delta t=2\pi r_q/c$, particle has come back to same location, displaced by $\Delta z=v_\parallel \Delta t$... At gyroresonance $n\neq 0$, phase change $\Delta \phi=2n\pi$: particle in phase with E field

in practice, $\omega_k \ll k ~~{\rm for}~~ v_A \ll c ~~{\rm hence}$ gyroresonance means $~k~r_g \sim n \sim 1$

 $kr_{\rm g}\gg 1$ small scale modes average out

... recall that Fermi picture ↔ angular deflection + moving wave = energy gain/loss

Phhenomenological bounds on the sources of UHECRs

Main critical properties of UHECR sources:

ightarrow a large (apparent) source density: $n_{\rm UHECR} \gtrsim 10^{-5}\,/{\rm Mpc}^3$

ightarrow a high output of cosmic rays: $\dot{e}_{
m UHECR} \sim 10^{44}\,{
m erg/Mpc^3/yr}$

... a non-trivial constraint: e.g. $~L_{UHE}/L_{\gamma} \sim 10$ for HL GRBs...

e.g. $L_{UHE}/L \sim \mathcal{O}(1\%)$ for radio-galaxies...

ightarrow large/magnetized to confine UHECRs: $r_{
m g} \leq L \Rightarrow E \leq 10^{20}\,{
m eV}\,ZB_{\mu{
m G}}L_{100\,{
m kpc}}$

ightarrow a high magnetic luminosity: $L_{
m tot} \gtrsim 10^{45}\,{
m erg/s}\,\ldots \left(rac{t_{
m acc}}{t_{
m g}}
ight)^2 \left(rac{E/Z}{10^{20}\,{
m eV}}
ight)^2$

... leading contenders, for accelerating intermediate nuclei (Z \sim 10):

 \rightarrow powerful radio-galaxies, L $\sim 10^{44}$ erg/s, $\,$ mildly relativistic outflows u \sim c ...

 \rightarrow relativistic supernovae, L \sim 10⁴⁴ erg/s, mildly relativistic outflows u \sim c ...

... need extreme sources for accelerating light nuclei (Z \sim 1) to highest energies:

 \rightarrow gamma-ray bursts, fast-spinning magnetar/pulsar wind nebulae...

→ most powerful FRII like radio-galaxies

Some (old or new) pressing questions and emerging topics

- To make progress from the theoretical side: a view from first principles?
 - → how do accelerated particles backreact on the shock and modify acceleration?
 - → what is the detailed mechanism for particle acceleration in a turbulent plasma?
 - → what is reconnection on large astrophysical scales?
- To make progress using numerical simulations: new schemes?
 - ightarrow current self-consistent simulations are limited in dynamic range, starting from the smallest scales...
 - → bring simulations closer to reality: including losses, radiative feedback etc.
- How to connect acceleration with observations?
 - → need to develop theoretical models that extrapolate results of simulations to realistic scales
 - → develop improved macroscopic transport equations to model particle acceleration
 - → include acceleration theory into MHD simulations of sources on large scales
- At UHE, similar questions, but a lot less data...
 - \rightarrow a window on most extreme accelerators: get information from multi-messenger channels (ν, γ)
 - → chemical composition: a clue on the accelerator?

A tiny bit of bibliography

→ Transport & Phenomenology:

V. Berezinsky, S. V. Bulanov, V. A. Dogiel, V. L Ginzburg, V. S. Ptsukin, « Astrophysics of cosmic rays » (1990, North-Holland)

+ ask the world experts in l'Aquila: R. Aloisio, P. Blasi, D. Boncioli, C. Evoli, and others

→ The founding papers on acceleration:

- E. Fermi, "On the origin of cosmic radiation", Phys. Rev. 75, 1169 (1949)
- E. Fermi, "Galactic magnetic fields and the origin of cosmic radiation", Astrophys. J. 119, 1 (1954)

→ Shock acceleration:

- L. O'C. Drury, "An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas", Rep. Prog. Phys. 46, 973 (1983)
- R. Blandford & D. Eichler, "Particle acceleration at astrophysical shock waves: a theory of cosmic ray origin", Phys. Rep. 154, 1 (1987)
- R. Schlickeiser "Cosmic-ray astrophysics", Springer-Berlin (2002)

→ Fermi-type acceleration:

- G. Webb, "Relativistic transport theory for cosmic rays", Astrophys. J. 296, 319 (1985)
- M. Lemoine, "Generalized Fermi acceleration", Phys. Rev. D 99, 083006 (2019)