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Extension beyond few-nucleons thanks to: 

• Soft (nearly perturbative) effective nuclear forces 

• Diagrammatic many-body approaches

• 283 stable isotopes 
• ≈3,000 are known 
• ≈7,000 predicted to exist
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Wave Function-Based Methods

Early years

Open challenges: 

• Accuracy (better theory of nuclear forces) 

• Mass number limit (optimised model spaces) 

• Precision & scattering (high-order diag. resummations)

Legnaro Natl’ Lab Mid Term Plan; Eur. Phys. J. Plus 138, 709 (2023) 



All Ladders (GT) and ring modes (GW) are coupled 
to all orders. Two approaches: 

• Faddev-RPA allows for RPA modes 

• ADC(3) Tamn-Dancoff version using 3rd order 
diagrams as ‘seeds’: 

The Faddev-RPA and ADC(3) methods in a few words

n p

“Extended” 
Hartree-Fock

Σ★(ω) = R(2p1h) R(2h1p)

F-RPA:  
Phys. Rev. C63, 034313 (2001) 
Phys. Rev. A76, 052503 (2007) 
Phys. Rev. A83, 042517 (2011) 

ADC(3): 
Lect. Notes in Phys 936 (2017)- 
Chapter 11.

Compute the nuclear self energy to extract both scattering (optical potential) and spectroscopy. 
Both ladders and rings are needed for atomi nuclei:
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Explicit expressions for effective 1B and 2N interaction
operators are

Ũ =
∑

αβ

Ũαβ a†
αaβ , (13)

with

Ũαβ = −Uαβ +
∑

γ δ

Vαγ ,βδ ρδγ + 1
4

∑

γ ϵ
δη

Wαγ ϵ,βδη (δη,γ ϵ, (14)

and

Ṽ = 1
4

∑

αγ
βδ

[

Vαβ,γ δ +
∑

ϵη

Wαβϵ,γ δη ρηϵ

]

a†
αa

†
βaδaγ , (15)

where, in the averaging of 2NFs and 3NFs, one- and two-
body reduced density matrices of the many-body system are
produced,

ρδγ =
〈
)A

0

∣∣ a†
γ aδ

∣∣)A
0

〉
= −ih̄ gδγ (t − t+), (16)

(δη,γ ϵ =
〈
)A

0

∣∣ a†
γ a†

ϵaηaδ

∣∣)A
0

〉
= ih̄ gII

δη,γ ϵ(t − t+). (17)

The two-body density of Eq. (17) is obtained when the
opportune limits are taken in the time arguments of the 2B
Green’s function in Eq. (2).

We note that when the irreducible self-energy is computed
with the effective Hamiltonian of Eq. (12), a portion of the
many-body effects is incorporated in the interactions, which
become system dependent. This is done in a systematic way
and the procedure is in principle superior to the usual normal
ordering approach. Here the density matrices ρ and ( entering
the contraction of the interaction vertex are obtained from the
true correlated propagators; i.e., they are not computed from
the reference state.

The separation of a simple unperturbed Hamiltonian Ĥ0
from Eq. (11) is instrumental to any approach based on
perturbation theory (or on all-orders resummations): it allows
us to define a reference state upon which a perturbative series
is constructed and it also leads to the expansion of the Green’s
function in Feynman diagrams. Nevertheless, the auxiliary
potential Û eventually cancels from the SCGF formalism.
Considering the decomposition of Eq. (9), the irreducible
static self-energy *∞

αβ is given exactly by the 1B effective
interaction [22]:

*∞
αβ = Ũαβ . (18)

Since Û is added to the definition of the reference propagator
g(0) but subtracted in Eq. (14), it eventually cancels out exactly
from the Dyson equation [see Eq. (28)]. The dynamic self-
energy *̃αβ(ω) can still depend on the auxiliary potential
through the perturbative expansion in g

(0)
αβ (ω). However, in

the full self-consistent approach, the perturbative series is
restricted to skeleton diagrams where fully correlated propaga-
tors gαβ(ω) replace the uncorrelated ones. Thus, the partition
of the Hamiltonian into a uncorrelated part and residual part
is completely lost in the exact SCGF formalism and one may
think of the correlated propagator as playing the role of an
improved reference state.

(a) (b)

FIG. 1. One-particle irreducible, skeleton, and interaction-
irreducible self-energy diagrams appearing at second order in the
expansion of Eq. (9), using the effective Hamiltonian of Eq. (12).
The wiggly lines represent the 2N effective interaction of Eq. (15),
while the long-dashed lines represent the interaction-irreducible
3NF Ŵ .

For the irreducible self-energy, all one-particle irreducible,
skeleton and interaction-irreducible diagrams up to third order
have been derived in Ref. [22]. Within the skeleton expansion,
i.e., when single-particle propagators are correlated, the irre-
ducible self-energy up to the third order is given by the exact
static part, Eq. (18), the two second-order diagrams of Fig. 1,
and the 17 third-order diagrams of Figs. 2 and 6. In this case,
the energy-dependent part of the self-energy contains only
effective 2NFs and irreducible 3NFs as interaction insertions.
Note that because of Eq. (15), the contribution of Fig. 1(a)
actually corresponds to four separate diagrams if expressed
in terms of the bare Hamiltonian Eq. (10), of which three are
interaction reducible [22]. Likewise, many more reducible di-
agrams would appear at third order. Without propagator renor-
malization, when one considers the diagrammatic expansion
with reference propagators g

(0)
αβ (ω) as internal fermionic lines,

other diagrams with different topologies must be included
to take into account explicitly additional correlations in both
the static and dynamic part of the self-energy. These terms
contain also nonskeleton diagrams that include Ũ and are
presented in Appendix C.

In Fig. 1 we show the only two one-particle irreducible,
skeleton, and interaction-irreducible diagrams at second order.
These diagrams imply different sets of intermediate state

(a) (b)

(c)

FIG. 2. As described in the caption of Fig. 1 but for the third-order
diagrams with only 2p1h and 2h1p intermediate state configurations.

054308-4

FRANCESCO RAIMONDI AND CARLO BARBIERI PHYSICAL REVIEW C 97, 054308 (2018)

Explicit expressions for effective 1B and 2N interaction
operators are
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Since Û is added to the definition of the reference propagator
g(0) but subtracted in Eq. (14), it eventually cancels out exactly
from the Dyson equation [see Eq. (28)]. The dynamic self-
energy *̃αβ(ω) can still depend on the auxiliary potential
through the perturbative expansion in g

(0)
αβ (ω). However, in

the full self-consistent approach, the perturbative series is
restricted to skeleton diagrams where fully correlated propaga-
tors gαβ(ω) replace the uncorrelated ones. Thus, the partition
of the Hamiltonian into a uncorrelated part and residual part
is completely lost in the exact SCGF formalism and one may
think of the correlated propagator as playing the role of an
improved reference state.

(a) (b)

FIG. 1. One-particle irreducible, skeleton, and interaction-
irreducible self-energy diagrams appearing at second order in the
expansion of Eq. (9), using the effective Hamiltonian of Eq. (12).
The wiggly lines represent the 2N effective interaction of Eq. (15),
while the long-dashed lines represent the interaction-irreducible
3NF Ŵ .
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Nuclear ELM response 
and dipole polarisability, αD
[Phys Rev. C77, 024304 (2008)]FRANCESCO RAIMONDI AND CARLO BARBIERI PHYSICAL REVIEW C 99, 054327 (2019)
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FIG. 7. Isovector E1 photoabsorption cross sections of 14,16,22,24O computed with the NNLOsat interaction and the SCGF many-body
method. The reference gOpRS

MF (ω) propagator is computed using an ADC(3) self-energy. The curves are obtained by folding the discrete spectra
with Lorentzian widths " = 3.0 MeV. Experimental data for 16O in (b) are from Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49]
(green circles); experimental data for 22O in (c) are from Leistenschneider et al. [48].

D. 68Ni

The isovector dipole response in the neutron-rich 68Ni was
recently measured and the corresponding dipole polarizability
extracted by Rossi et al. [52]. The experimental data are
shown in Fig. 9 and compared with the computed SCGF
curve. The few experimental points at ∼9.5 MeV and around
∼17 MeV excitation energies are interpreted as pygmy and
giant dipole resonances, respectively. We refer to Table IV

TABLE III. 40Ca and 48Ca isovector dipole polarizabilities αD of
Eq. (22) compared with those calculated with the CC-LIT method in
Refs. [28,29,50] and those extracted from the experimental spectra
of Refs. [47,51] for 40Ca and of Ref. [50] for 48Ca.

Nucleus SCGF CC-LIT Expt.

40Ca 1.79 fm3 2.23(3) fm3 1.87(3) fm3

48Ca 2.06 fm3 2.25(8) fm3 2.07(22) fm3

for a comparison with the closest peaks in the computed
discrete RPA spectrum, which is also displayed in Fig. 9. In
particular, the computed strength at low energy is fragmented
in two principal peaks at 10.68 MeV and 10.92 MeV, located
at higher energy than the experimental PDR. For the GDR,
Table IV reports the centroid calculated from the DRPA
response around the main peak after the Lorentzian folding.

The αD computed by integrating the DRPA spectrum is
in agreement with the experiment, also reported in Table IV.
The 3.88(31) fm3 value is obtained by including corrections
from a theoretical extrapolation of the low-energy and high-
energy parts of the spectrum [6], which were not accessible
in the experiment of Rossi et al. [52]. Both the discrete peaks
and the convoluted response in Fig. 9 confirm that the com-
puted spectrum is somehow shifted towards higher energy as
compared to the experimental excitation energies. The
strength of the PDR is also underestimated.

The lack of strength in the low-energy part of the spectrum
could point to insufficient constraints on the isospin-violating
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FIG. 9. Isovector dipole response for 68Ni computed using a
gOpRS

MF (ω) reference from Dyson-ADC(3). The lower (upper) panel
shows the discrete (convoluted) spectrum obtained from DRPA. The
convolution uses a Lorentzian width " = 3.0 MeV. Experimental
data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).

SCGF Exp

EPDR (MeV) 10.68 9.55(17)
10.92

EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)
3.88(31)
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FIG. 10. Photoabsorption cross sections of 16O computed with
g̃OpRS

p!1 (ω). The computed DRPA spectrum is convoluted with a
Lorentzian width of " = 3.0 MeV. Experimental data are from
Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
circles).

the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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spectroscopic factors and asymptotic normalization coef-
ficients that can be employed for the consistent computa-
tion of nucleon capture and knockout processes.
Results.—We first compare to early NCSM-RGM results

from Ref. [19], where neutron scattering off 16O was
computedwith a NN-only interaction derived from the chiral
next-to-next-to-next-to-leading order force of Ref. [41]
(EM500) and evolved with free space similarity renormal-
ization group (SRG) [42] to a cutoff λ ¼ 2.66 fm−1. This soft
interaction facilitates model space convergence and allows
for amoremeaningful benchmark. These earlyNCSM-RGM
computations did not include virtual excitations of the target
nucleus. For consistence, we performed our SCGF calcu-
lations with the same Hamiltonian but evaluated the phase
shifts using only the static self-energy,Σð∞Þ. The comparison
is shown in the upper panel of Fig. 1, and it is very
satisfactory for the jπ ¼ 1=2þ and 5=2þ partial waves.
For this light nucleus, the discrepancy of about 1 MeV for
the energy of the 3=2þ resonance is also consistent with the
uncertainty in the transformation to the center ofmass system
done in Eq. (5). As we discuss below, doorway excitations of
the target nucleus have a strong impact on the energies of
single particle resonances. To account for this, we performed
new NCSMC calculations that can also include low-lying
excitations of 17O. Extrapolating from model spaces of
NNCSM ¼ 6–10ℏΩ, we find quasiparticle energies of −3.4,
−2.7, and 3.2 MeV for the 5=2þ; 1=2þ bound states and the
3=2þ resonance, respectively. The corresponding results
from the SCGF, including the full Σ⋆ðωÞ self-energy, are

−6.3, −5.5, and 0.5 MeV. These should be expected to be
more bound since SCGF introduces a larger number of 2p1h
doorway configurations. At the same, time the excitation
energies relative to the 17O ground state agree to within
200 keV,which is a satisfactory agreement given the different
many-body truncations of the two approaches.
We performed an analogous comparison for the chiral

next-to-next-to-leading order NNþ 3N interaction of
Ref. [32] (named NNLOsat). For NCSM techniques, 16O
is more difficult to converge because the interaction is
harder and the additional 3N matrix elements limit the
applicability of importance truncation [43]. We performed
our NCSM-RGM calculations at NNCSM ¼ 8ℏΩ and esti-
mated an uncertainty of 1 to 2 MeV for the position of
resonances. The SCGF still allows computations with
Nmax ¼ 13, and we find that phase shifts are well con-
verged up to 15 MeV for this space. This puts into evidence
the advantage of the latter approach to address ab initio
scattering off medium mass isotopes. The NNLOsat bench-
mark is displayed in the lower panel of Fig. 1, and it is
qualitatively similar to the case of the soft EM500-SRG
interaction, with the jπ ¼ 1=2þ and 5=2þ waves agreeing
best. For both Hamiltonians, the largest discrepancies are
for the jπ ¼ 3=2þ and 7=2− resonances, which are more
affected by correlations in the continuum and the different
many-body truncations of the two approaches. NNLOsat
was explicitly constructed to reproduce correct nuclear
saturation properties of medium mass nuclei, including
binding energies and radii. The constraint on radii is crucial
to predicting elastic scattering observables that can be
reasonably compared to the experiment; hence, we will
focus on this Hamiltonian in the following.

FIG. 1. Real part of nuclear phase shifts, δðEc:m:Þ, for neutrons
scattering off 16O as a function of energy obtained from the (upper
panel) EM500-SRG and (lower panel) NNLOsat interactions. The
solid lines are SCGF calculations using only the static part of the
self-energy Σð∞Þ in a Nmax ¼ 13 space. The dashed lines are for
NCSM-RGM, which included only the ground state of 16O
and used a no-core model space up to (top, from Ref. [19])
NNCSM ¼ 18ℏΩ and (bottom) 8ℏΩ.

FIG. 2. Real phase shifts, δðEc:m:Þ, for neutrons scattering off
16O using the complete self-energy, Eq. (2), and NNLOsat in an
oscillator space of frequency ℏΩ ¼ 20 MeV and size Nmax ¼ 13.
(Upper panel) Positive parity, (central panel) l ¼ 1, and (lower
panel) l ¼ 3 partial waves are shown.
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Elastic neutron scattering [Phys Rev. Lett. 123, 092501 (2013)]

Virtual excitations of the target have the double effect of
increasing the attraction of the real part of the optical
potential (and hence lowering the single particle spectrum)
and of generating a large number of narrow resonances.
This is clearly seen in Fig. 2, which displays the phase
shifts for neutron elastic scattering predicted by the whole
self-energy of Eq. (2). Most of the virtual excitations
responsible for this, especially at low energy, are accessed
by coupling to hundreds of 2p1h configurations for 17O and
appear as clear spikes or “smoothed” oscillations in the
figure. The SCGF-ADC(3) approach has the advantage of
including these states naturally, even at large energies, so it
describes efficiently the relevant physics. Table I compares
the energies of some representative bound and scattering
states to the experiment. The 3=2þ single particle resonance
is computed at 0.91 MeV in the c.m. frame, very close to
the experimental value. The first 1=2− and 3=2− are both
predicted as bound states, although experimentally they are
found inverted with the 3=2− in the continuum. We
calculate a narrow width for the 5=2− and 7=2− resonances,
corresponding to excited states, close to the ones observed
at 3.02 and 3.54 MeV [44]. However, there are other very
narrow f-wave resonances, measured between 1.55 and
2.82 MeV, that our SCGF calculations do not resolve. In
general, we find that NNLOsat predicts the location of
dominant quasiparticle and hole states with an accuracy of
≲1 MeV for this nucleus.

Figure 3 compares the low-energy differential cross
sections originating from Eq. (5) to neutron scattering data
for 16O at 3.286 MeVand 40Ca at 3.2 MeV. The minima are
reproduced well for 16O (and close to the experiment for
40Ca), confirming the correct prediction of density distri-
butions for NNLOsat [32,34,46]. However, the results are
somewhat overestimated and hint at a general lack of
absorption that is usually faced by attempts at computing
the optical potentials ab initio. This is likely related to
missing doorway configurations (3p2h and beyond) that
should be propagated in the denominators of Eq. (2) but are
neglected by state-of-the-art approaches. Note that there are
more than 200 experimentally observed excitations already
between the ground state and the neutron separation
threshold in 41Ca [47], while the SCGF ADC(3) predicts
only about 40 of them. This issue is likely to worsen at
higher energies, where configurations more complex than
2p1h become relevant. We investigated this problem by
computing total nþ 16O elastic cross sections, σðEc:m:Þ,
with only Σð∞Þ, suppressing 50% of the 2p1h and 2h1p
states (evenly across all energies), and by using the
complete ADC(3) self-energy. Figure 4 shows that
σðEc:m:Þ presents oscillations up to about 5 MeV. These
are in part reproduced by theory and are sensible to

TABLE I. Excitation spectrum of 17O with respect to the nþ 16O threshold, as obtained from Eq. (5) and the
NNLOsat interaction and compared to the experiment [45]. Broad resonances in the continuum (most notably, the
5=2þ) are computed at midpoint. The asterisk subscripts indicate higher excited states, above the lowest one, for
each partial wave.

ε (MeV) 5=2þ 1=2þ 1=2− 5=2− 3=2− 3=2þ 5=2þ$ 5=2−$ 7=2−$

Exp −4.14 −3.27 −1.09 −0.30 0.41 0.94 3.23 3.02 3.54
NNLOsat −5.06 −3.58 −0.15 −1.23 −2.24 0.91 4.57 3.36 3.37

FIG. 3. Differential cross section for neutron elastic scattering
off 16O (40Ca) at 3.286 (3.2) MeV of neutron energy, with
NNLOsat and compared to the empirical data from Refs. [44,50].

FIG. 4. Total elastic cross section for neutron elastic scattering
on 16O form SCGFADC(3) at different incident neutron energies
compared to the experiment in Ref. [51]. The dashed, dotted-
dashed, and solid lines correspond to the sole static self-energy
Σð∞Þ, to retaining 50% of the 2p1h and 2h1p doorway configu-
rations and to the complete Eq. (2), respectively.
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FIG. 7. Isovector E1 photoabsorption cross sections of 14,16,22,24O computed with the NNLOsat interaction and the SCGF many-body
method. The reference gOpRS

MF (ω) propagator is computed using an ADC(3) self-energy. The curves are obtained by folding the discrete spectra
with Lorentzian widths " = 3.0 MeV. Experimental data for 16O in (b) are from Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49]
(green circles); experimental data for 22O in (c) are from Leistenschneider et al. [48].

D. 68Ni

The isovector dipole response in the neutron-rich 68Ni was
recently measured and the corresponding dipole polarizability
extracted by Rossi et al. [52]. The experimental data are
shown in Fig. 9 and compared with the computed SCGF
curve. The few experimental points at ∼9.5 MeV and around
∼17 MeV excitation energies are interpreted as pygmy and
giant dipole resonances, respectively. We refer to Table IV

TABLE III. 40Ca and 48Ca isovector dipole polarizabilities αD of
Eq. (22) compared with those calculated with the CC-LIT method in
Refs. [28,29,50] and those extracted from the experimental spectra
of Refs. [47,51] for 40Ca and of Ref. [50] for 48Ca.

Nucleus SCGF CC-LIT Expt.

40Ca 1.79 fm3 2.23(3) fm3 1.87(3) fm3

48Ca 2.06 fm3 2.25(8) fm3 2.07(22) fm3

for a comparison with the closest peaks in the computed
discrete RPA spectrum, which is also displayed in Fig. 9. In
particular, the computed strength at low energy is fragmented
in two principal peaks at 10.68 MeV and 10.92 MeV, located
at higher energy than the experimental PDR. For the GDR,
Table IV reports the centroid calculated from the DRPA
response around the main peak after the Lorentzian folding.

The αD computed by integrating the DRPA spectrum is
in agreement with the experiment, also reported in Table IV.
The 3.88(31) fm3 value is obtained by including corrections
from a theoretical extrapolation of the low-energy and high-
energy parts of the spectrum [6], which were not accessible
in the experiment of Rossi et al. [52]. Both the discrete peaks
and the convoluted response in Fig. 9 confirm that the com-
puted spectrum is somehow shifted towards higher energy as
compared to the experimental excitation energies. The
strength of the PDR is also underestimated.

The lack of strength in the low-energy part of the spectrum
could point to insufficient constraints on the isospin-violating
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FIG. 9. Isovector dipole response for 68Ni computed using a
gOpRS

MF (ω) reference from Dyson-ADC(3). The lower (upper) panel
shows the discrete (convoluted) spectrum obtained from DRPA. The
convolution uses a Lorentzian width " = 3.0 MeV. Experimental
data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).

SCGF Exp

EPDR (MeV) 10.68 9.55(17)
10.92

EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)
3.88(31)
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FIG. 10. Photoabsorption cross sections of 16O computed with
g̃OpRS

p!1 (ω). The computed DRPA spectrum is convoluted with a
Lorentzian width of " = 3.0 MeV. Experimental data are from
Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
circles).

the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type

054327-10

FRANCESCO RAIMONDI AND CARLO BARBIERI PHYSICAL REVIEW C 99, 054327 (2019)

5 10 15 20 25 30 35
EX [MeV]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
h̄

c
σ

(E
X

)/2
π

2
E

2 X
[f

m
3 /

M
eV

]

68Ni
Nmax=13, h̄ω=20 MeV

DysADC3 RPA
Rossi (2018)

5 10 15 20 25 30 35
EX [MeV]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

h̄
c

σ
(E

X
)/2

π
2
E

2 X
[f

m
3 /

M
eV

]

68Ni
Nmax=13, h̄ω=20 MeV

DysADC3 RPA

FIG. 9. Isovector dipole response for 68Ni computed using a
gOpRS

MF (ω) reference from Dyson-ADC(3). The lower (upper) panel
shows the discrete (convoluted) spectrum obtained from DRPA. The
convolution uses a Lorentzian width " = 3.0 MeV. Experimental
data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).

SCGF Exp

EPDR (MeV) 10.68 9.55(17)
10.92

EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)
3.88(31)
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FIG. 10. Photoabsorption cross sections of 16O computed with
g̃OpRS

p!1 (ω). The computed DRPA spectrum is convoluted with a
Lorentzian width of " = 3.0 MeV. Experimental data are from
Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
circles).

the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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MF (ω) reference from Dyson-ADC(3). The lower (upper) panel
shows the discrete (convoluted) spectrum obtained from DRPA. The
convolution uses a Lorentzian width " = 3.0 MeV. Experimental
data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).

SCGF Exp

EPDR (MeV) 10.68 9.55(17)
10.92

EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)
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p!1 (ω). The computed DRPA spectrum is convoluted with a
Lorentzian width of " = 3.0 MeV. Experimental data are from
Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
circles).

the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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spectroscopic factors and asymptotic normalization coef-
ficients that can be employed for the consistent computa-
tion of nucleon capture and knockout processes.
Results.—We first compare to early NCSM-RGM results

from Ref. [19], where neutron scattering off 16O was
computedwith a NN-only interaction derived from the chiral
next-to-next-to-next-to-leading order force of Ref. [41]
(EM500) and evolved with free space similarity renormal-
ization group (SRG) [42] to a cutoff λ ¼ 2.66 fm−1. This soft
interaction facilitates model space convergence and allows
for amoremeaningful benchmark. These earlyNCSM-RGM
computations did not include virtual excitations of the target
nucleus. For consistence, we performed our SCGF calcu-
lations with the same Hamiltonian but evaluated the phase
shifts using only the static self-energy,Σð∞Þ. The comparison
is shown in the upper panel of Fig. 1, and it is very
satisfactory for the jπ ¼ 1=2þ and 5=2þ partial waves.
For this light nucleus, the discrepancy of about 1 MeV for
the energy of the 3=2þ resonance is also consistent with the
uncertainty in the transformation to the center ofmass system
done in Eq. (5). As we discuss below, doorway excitations of
the target nucleus have a strong impact on the energies of
single particle resonances. To account for this, we performed
new NCSMC calculations that can also include low-lying
excitations of 17O. Extrapolating from model spaces of
NNCSM ¼ 6–10ℏΩ, we find quasiparticle energies of −3.4,
−2.7, and 3.2 MeV for the 5=2þ; 1=2þ bound states and the
3=2þ resonance, respectively. The corresponding results
from the SCGF, including the full Σ⋆ðωÞ self-energy, are

−6.3, −5.5, and 0.5 MeV. These should be expected to be
more bound since SCGF introduces a larger number of 2p1h
doorway configurations. At the same, time the excitation
energies relative to the 17O ground state agree to within
200 keV,which is a satisfactory agreement given the different
many-body truncations of the two approaches.
We performed an analogous comparison for the chiral

next-to-next-to-leading order NNþ 3N interaction of
Ref. [32] (named NNLOsat). For NCSM techniques, 16O
is more difficult to converge because the interaction is
harder and the additional 3N matrix elements limit the
applicability of importance truncation [43]. We performed
our NCSM-RGM calculations at NNCSM ¼ 8ℏΩ and esti-
mated an uncertainty of 1 to 2 MeV for the position of
resonances. The SCGF still allows computations with
Nmax ¼ 13, and we find that phase shifts are well con-
verged up to 15 MeV for this space. This puts into evidence
the advantage of the latter approach to address ab initio
scattering off medium mass isotopes. The NNLOsat bench-
mark is displayed in the lower panel of Fig. 1, and it is
qualitatively similar to the case of the soft EM500-SRG
interaction, with the jπ ¼ 1=2þ and 5=2þ waves agreeing
best. For both Hamiltonians, the largest discrepancies are
for the jπ ¼ 3=2þ and 7=2− resonances, which are more
affected by correlations in the continuum and the different
many-body truncations of the two approaches. NNLOsat
was explicitly constructed to reproduce correct nuclear
saturation properties of medium mass nuclei, including
binding energies and radii. The constraint on radii is crucial
to predicting elastic scattering observables that can be
reasonably compared to the experiment; hence, we will
focus on this Hamiltonian in the following.

FIG. 1. Real part of nuclear phase shifts, δðEc:m:Þ, for neutrons
scattering off 16O as a function of energy obtained from the (upper
panel) EM500-SRG and (lower panel) NNLOsat interactions. The
solid lines are SCGF calculations using only the static part of the
self-energy Σð∞Þ in a Nmax ¼ 13 space. The dashed lines are for
NCSM-RGM, which included only the ground state of 16O
and used a no-core model space up to (top, from Ref. [19])
NNCSM ¼ 18ℏΩ and (bottom) 8ℏΩ.

FIG. 2. Real phase shifts, δðEc:m:Þ, for neutrons scattering off
16O using the complete self-energy, Eq. (2), and NNLOsat in an
oscillator space of frequency ℏΩ ¼ 20 MeV and size Nmax ¼ 13.
(Upper panel) Positive parity, (central panel) l ¼ 1, and (lower
panel) l ¼ 3 partial waves are shown.
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Elastic neutron scattering [Phys Rev. Lett. 123, 092501 (2013)]

Virtual excitations of the target have the double effect of
increasing the attraction of the real part of the optical
potential (and hence lowering the single particle spectrum)
and of generating a large number of narrow resonances.
This is clearly seen in Fig. 2, which displays the phase
shifts for neutron elastic scattering predicted by the whole
self-energy of Eq. (2). Most of the virtual excitations
responsible for this, especially at low energy, are accessed
by coupling to hundreds of 2p1h configurations for 17O and
appear as clear spikes or “smoothed” oscillations in the
figure. The SCGF-ADC(3) approach has the advantage of
including these states naturally, even at large energies, so it
describes efficiently the relevant physics. Table I compares
the energies of some representative bound and scattering
states to the experiment. The 3=2þ single particle resonance
is computed at 0.91 MeV in the c.m. frame, very close to
the experimental value. The first 1=2− and 3=2− are both
predicted as bound states, although experimentally they are
found inverted with the 3=2− in the continuum. We
calculate a narrow width for the 5=2− and 7=2− resonances,
corresponding to excited states, close to the ones observed
at 3.02 and 3.54 MeV [44]. However, there are other very
narrow f-wave resonances, measured between 1.55 and
2.82 MeV, that our SCGF calculations do not resolve. In
general, we find that NNLOsat predicts the location of
dominant quasiparticle and hole states with an accuracy of
≲1 MeV for this nucleus.

Figure 3 compares the low-energy differential cross
sections originating from Eq. (5) to neutron scattering data
for 16O at 3.286 MeVand 40Ca at 3.2 MeV. The minima are
reproduced well for 16O (and close to the experiment for
40Ca), confirming the correct prediction of density distri-
butions for NNLOsat [32,34,46]. However, the results are
somewhat overestimated and hint at a general lack of
absorption that is usually faced by attempts at computing
the optical potentials ab initio. This is likely related to
missing doorway configurations (3p2h and beyond) that
should be propagated in the denominators of Eq. (2) but are
neglected by state-of-the-art approaches. Note that there are
more than 200 experimentally observed excitations already
between the ground state and the neutron separation
threshold in 41Ca [47], while the SCGF ADC(3) predicts
only about 40 of them. This issue is likely to worsen at
higher energies, where configurations more complex than
2p1h become relevant. We investigated this problem by
computing total nþ 16O elastic cross sections, σðEc:m:Þ,
with only Σð∞Þ, suppressing 50% of the 2p1h and 2h1p
states (evenly across all energies), and by using the
complete ADC(3) self-energy. Figure 4 shows that
σðEc:m:Þ presents oscillations up to about 5 MeV. These
are in part reproduced by theory and are sensible to

TABLE I. Excitation spectrum of 17O with respect to the nþ 16O threshold, as obtained from Eq. (5) and the
NNLOsat interaction and compared to the experiment [45]. Broad resonances in the continuum (most notably, the
5=2þ) are computed at midpoint. The asterisk subscripts indicate higher excited states, above the lowest one, for
each partial wave.

ε (MeV) 5=2þ 1=2þ 1=2− 5=2− 3=2− 3=2þ 5=2þ$ 5=2−$ 7=2−$

Exp −4.14 −3.27 −1.09 −0.30 0.41 0.94 3.23 3.02 3.54
NNLOsat −5.06 −3.58 −0.15 −1.23 −2.24 0.91 4.57 3.36 3.37

FIG. 3. Differential cross section for neutron elastic scattering
off 16O (40Ca) at 3.286 (3.2) MeV of neutron energy, with
NNLOsat and compared to the empirical data from Refs. [44,50].

FIG. 4. Total elastic cross section for neutron elastic scattering
on 16O form SCGFADC(3) at different incident neutron energies
compared to the experiment in Ref. [51]. The dashed, dotted-
dashed, and solid lines correspond to the sole static self-energy
Σð∞Þ, to retaining 50% of the 2p1h and 2h1p doorway configu-
rations and to the complete Eq. (2), respectively.
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FIG. 7. Isovector E1 photoabsorption cross sections of 14,16,22,24O computed with the NNLOsat interaction and the SCGF many-body
method. The reference gOpRS

MF (ω) propagator is computed using an ADC(3) self-energy. The curves are obtained by folding the discrete spectra
with Lorentzian widths " = 3.0 MeV. Experimental data for 16O in (b) are from Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49]
(green circles); experimental data for 22O in (c) are from Leistenschneider et al. [48].

D. 68Ni

The isovector dipole response in the neutron-rich 68Ni was
recently measured and the corresponding dipole polarizability
extracted by Rossi et al. [52]. The experimental data are
shown in Fig. 9 and compared with the computed SCGF
curve. The few experimental points at ∼9.5 MeV and around
∼17 MeV excitation energies are interpreted as pygmy and
giant dipole resonances, respectively. We refer to Table IV

TABLE III. 40Ca and 48Ca isovector dipole polarizabilities αD of
Eq. (22) compared with those calculated with the CC-LIT method in
Refs. [28,29,50] and those extracted from the experimental spectra
of Refs. [47,51] for 40Ca and of Ref. [50] for 48Ca.

Nucleus SCGF CC-LIT Expt.

40Ca 1.79 fm3 2.23(3) fm3 1.87(3) fm3

48Ca 2.06 fm3 2.25(8) fm3 2.07(22) fm3

for a comparison with the closest peaks in the computed
discrete RPA spectrum, which is also displayed in Fig. 9. In
particular, the computed strength at low energy is fragmented
in two principal peaks at 10.68 MeV and 10.92 MeV, located
at higher energy than the experimental PDR. For the GDR,
Table IV reports the centroid calculated from the DRPA
response around the main peak after the Lorentzian folding.

The αD computed by integrating the DRPA spectrum is
in agreement with the experiment, also reported in Table IV.
The 3.88(31) fm3 value is obtained by including corrections
from a theoretical extrapolation of the low-energy and high-
energy parts of the spectrum [6], which were not accessible
in the experiment of Rossi et al. [52]. Both the discrete peaks
and the convoluted response in Fig. 9 confirm that the com-
puted spectrum is somehow shifted towards higher energy as
compared to the experimental excitation energies. The
strength of the PDR is also underestimated.

The lack of strength in the low-energy part of the spectrum
could point to insufficient constraints on the isospin-violating
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FIG. 9. Isovector dipole response for 68Ni computed using a
gOpRS

MF (ω) reference from Dyson-ADC(3). The lower (upper) panel
shows the discrete (convoluted) spectrum obtained from DRPA. The
convolution uses a Lorentzian width " = 3.0 MeV. Experimental
data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).

SCGF Exp

EPDR (MeV) 10.68 9.55(17)
10.92

EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)
3.88(31)
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FIG. 10. Photoabsorption cross sections of 16O computed with
g̃OpRS

p!1 (ω). The computed DRPA spectrum is convoluted with a
Lorentzian width of " = 3.0 MeV. Experimental data are from
Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
circles).

the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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FIG. 9. Isovector dipole response for 68Ni computed using a
gOpRS

MF (ω) reference from Dyson-ADC(3). The lower (upper) panel
shows the discrete (convoluted) spectrum obtained from DRPA. The
convolution uses a Lorentzian width " = 3.0 MeV. Experimental
data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).

SCGF Exp

EPDR (MeV) 10.68 9.55(17)
10.92

EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)
3.88(31)
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FIG. 10. Photoabsorption cross sections of 16O computed with
g̃OpRS

p!1 (ω). The computed DRPA spectrum is convoluted with a
Lorentzian width of " = 3.0 MeV. Experimental data are from
Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
circles).

the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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MF (ω) reference from Dyson-ADC(3). The lower (upper) panel
shows the discrete (convoluted) spectrum obtained from DRPA. The
convolution uses a Lorentzian width " = 3.0 MeV. Experimental
data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).

SCGF Exp

EPDR (MeV) 10.68 9.55(17)
10.92

EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)
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Lorentzian width of " = 3.0 MeV. Experimental data are from
Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
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the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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spectroscopic factors and asymptotic normalization coef-
ficients that can be employed for the consistent computa-
tion of nucleon capture and knockout processes.
Results.—We first compare to early NCSM-RGM results

from Ref. [19], where neutron scattering off 16O was
computedwith a NN-only interaction derived from the chiral
next-to-next-to-next-to-leading order force of Ref. [41]
(EM500) and evolved with free space similarity renormal-
ization group (SRG) [42] to a cutoff λ ¼ 2.66 fm−1. This soft
interaction facilitates model space convergence and allows
for amoremeaningful benchmark. These earlyNCSM-RGM
computations did not include virtual excitations of the target
nucleus. For consistence, we performed our SCGF calcu-
lations with the same Hamiltonian but evaluated the phase
shifts using only the static self-energy,Σð∞Þ. The comparison
is shown in the upper panel of Fig. 1, and it is very
satisfactory for the jπ ¼ 1=2þ and 5=2þ partial waves.
For this light nucleus, the discrepancy of about 1 MeV for
the energy of the 3=2þ resonance is also consistent with the
uncertainty in the transformation to the center ofmass system
done in Eq. (5). As we discuss below, doorway excitations of
the target nucleus have a strong impact on the energies of
single particle resonances. To account for this, we performed
new NCSMC calculations that can also include low-lying
excitations of 17O. Extrapolating from model spaces of
NNCSM ¼ 6–10ℏΩ, we find quasiparticle energies of −3.4,
−2.7, and 3.2 MeV for the 5=2þ; 1=2þ bound states and the
3=2þ resonance, respectively. The corresponding results
from the SCGF, including the full Σ⋆ðωÞ self-energy, are

−6.3, −5.5, and 0.5 MeV. These should be expected to be
more bound since SCGF introduces a larger number of 2p1h
doorway configurations. At the same, time the excitation
energies relative to the 17O ground state agree to within
200 keV,which is a satisfactory agreement given the different
many-body truncations of the two approaches.
We performed an analogous comparison for the chiral

next-to-next-to-leading order NNþ 3N interaction of
Ref. [32] (named NNLOsat). For NCSM techniques, 16O
is more difficult to converge because the interaction is
harder and the additional 3N matrix elements limit the
applicability of importance truncation [43]. We performed
our NCSM-RGM calculations at NNCSM ¼ 8ℏΩ and esti-
mated an uncertainty of 1 to 2 MeV for the position of
resonances. The SCGF still allows computations with
Nmax ¼ 13, and we find that phase shifts are well con-
verged up to 15 MeV for this space. This puts into evidence
the advantage of the latter approach to address ab initio
scattering off medium mass isotopes. The NNLOsat bench-
mark is displayed in the lower panel of Fig. 1, and it is
qualitatively similar to the case of the soft EM500-SRG
interaction, with the jπ ¼ 1=2þ and 5=2þ waves agreeing
best. For both Hamiltonians, the largest discrepancies are
for the jπ ¼ 3=2þ and 7=2− resonances, which are more
affected by correlations in the continuum and the different
many-body truncations of the two approaches. NNLOsat
was explicitly constructed to reproduce correct nuclear
saturation properties of medium mass nuclei, including
binding energies and radii. The constraint on radii is crucial
to predicting elastic scattering observables that can be
reasonably compared to the experiment; hence, we will
focus on this Hamiltonian in the following.

FIG. 1. Real part of nuclear phase shifts, δðEc:m:Þ, for neutrons
scattering off 16O as a function of energy obtained from the (upper
panel) EM500-SRG and (lower panel) NNLOsat interactions. The
solid lines are SCGF calculations using only the static part of the
self-energy Σð∞Þ in a Nmax ¼ 13 space. The dashed lines are for
NCSM-RGM, which included only the ground state of 16O
and used a no-core model space up to (top, from Ref. [19])
NNCSM ¼ 18ℏΩ and (bottom) 8ℏΩ.

FIG. 2. Real phase shifts, δðEc:m:Þ, for neutrons scattering off
16O using the complete self-energy, Eq. (2), and NNLOsat in an
oscillator space of frequency ℏΩ ¼ 20 MeV and size Nmax ¼ 13.
(Upper panel) Positive parity, (central panel) l ¼ 1, and (lower
panel) l ¼ 3 partial waves are shown.
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Elastic neutron scattering [Phys Rev. Lett. 123, 092501 (2013)]

Virtual excitations of the target have the double effect of
increasing the attraction of the real part of the optical
potential (and hence lowering the single particle spectrum)
and of generating a large number of narrow resonances.
This is clearly seen in Fig. 2, which displays the phase
shifts for neutron elastic scattering predicted by the whole
self-energy of Eq. (2). Most of the virtual excitations
responsible for this, especially at low energy, are accessed
by coupling to hundreds of 2p1h configurations for 17O and
appear as clear spikes or “smoothed” oscillations in the
figure. The SCGF-ADC(3) approach has the advantage of
including these states naturally, even at large energies, so it
describes efficiently the relevant physics. Table I compares
the energies of some representative bound and scattering
states to the experiment. The 3=2þ single particle resonance
is computed at 0.91 MeV in the c.m. frame, very close to
the experimental value. The first 1=2− and 3=2− are both
predicted as bound states, although experimentally they are
found inverted with the 3=2− in the continuum. We
calculate a narrow width for the 5=2− and 7=2− resonances,
corresponding to excited states, close to the ones observed
at 3.02 and 3.54 MeV [44]. However, there are other very
narrow f-wave resonances, measured between 1.55 and
2.82 MeV, that our SCGF calculations do not resolve. In
general, we find that NNLOsat predicts the location of
dominant quasiparticle and hole states with an accuracy of
≲1 MeV for this nucleus.

Figure 3 compares the low-energy differential cross
sections originating from Eq. (5) to neutron scattering data
for 16O at 3.286 MeVand 40Ca at 3.2 MeV. The minima are
reproduced well for 16O (and close to the experiment for
40Ca), confirming the correct prediction of density distri-
butions for NNLOsat [32,34,46]. However, the results are
somewhat overestimated and hint at a general lack of
absorption that is usually faced by attempts at computing
the optical potentials ab initio. This is likely related to
missing doorway configurations (3p2h and beyond) that
should be propagated in the denominators of Eq. (2) but are
neglected by state-of-the-art approaches. Note that there are
more than 200 experimentally observed excitations already
between the ground state and the neutron separation
threshold in 41Ca [47], while the SCGF ADC(3) predicts
only about 40 of them. This issue is likely to worsen at
higher energies, where configurations more complex than
2p1h become relevant. We investigated this problem by
computing total nþ 16O elastic cross sections, σðEc:m:Þ,
with only Σð∞Þ, suppressing 50% of the 2p1h and 2h1p
states (evenly across all energies), and by using the
complete ADC(3) self-energy. Figure 4 shows that
σðEc:m:Þ presents oscillations up to about 5 MeV. These
are in part reproduced by theory and are sensible to

TABLE I. Excitation spectrum of 17O with respect to the nþ 16O threshold, as obtained from Eq. (5) and the
NNLOsat interaction and compared to the experiment [45]. Broad resonances in the continuum (most notably, the
5=2þ) are computed at midpoint. The asterisk subscripts indicate higher excited states, above the lowest one, for
each partial wave.

ε (MeV) 5=2þ 1=2þ 1=2− 5=2− 3=2− 3=2þ 5=2þ$ 5=2−$ 7=2−$

Exp −4.14 −3.27 −1.09 −0.30 0.41 0.94 3.23 3.02 3.54
NNLOsat −5.06 −3.58 −0.15 −1.23 −2.24 0.91 4.57 3.36 3.37

FIG. 3. Differential cross section for neutron elastic scattering
off 16O (40Ca) at 3.286 (3.2) MeV of neutron energy, with
NNLOsat and compared to the empirical data from Refs. [44,50].

FIG. 4. Total elastic cross section for neutron elastic scattering
on 16O form SCGFADC(3) at different incident neutron energies
compared to the experiment in Ref. [51]. The dashed, dotted-
dashed, and solid lines correspond to the sole static self-energy
Σð∞Þ, to retaining 50% of the 2p1h and 2h1p doorway configu-
rations and to the complete Eq. (2), respectively.

PHYSICAL REVIEW LETTERS 123, 092501 (2019)

092501-4

0           100          200         300       

10-1

101

102

1

pB(MeV/c)

dσ

(q,ω)

Two-nucleon emission: 16O(e,e’pn)14N
[Eur. Phys. J. A43, 137 (2010)]

Nuclear ELM response 
and dipole polarisability, αD
[Phys Rev. C77, 024304 (2008)]FRANCESCO RAIMONDI AND CARLO BARBIERI PHYSICAL REVIEW C 99, 054327 (2019)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
EX [MeV]

0

5

10

15

20

25

30

σ
(E

X
)[

m
b]

(a)

14O
Nmax=13, h̄ω=20 MeV

DysADC3 RPA

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
EX [MeV]

−10

0

10

20

30

40

50

σ
(E

X
)[

m
b]

(b)

16O
Nmax=13, h̄ω=20 MeV

DysADC3 RPA
Ahrens (1975)
Ishkhanov (2002)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
EX [MeV]

−10

−5

0

5

10

15

20

25

30

35

σ
(E

X
)[

m
b]

(c)

22O
Nmax=13, h̄ω=20 MeV

DysADC3 RPA
Leistenschneider (2001)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
EX [MeV]

0

5

10

15

20

25

30

35

40

σ
(E

X
)[

m
b]

(d)

24O
Nmax=13, h̄ω=20 MeV

DysADC3 RPA

FIG. 7. Isovector E1 photoabsorption cross sections of 14,16,22,24O computed with the NNLOsat interaction and the SCGF many-body
method. The reference gOpRS

MF (ω) propagator is computed using an ADC(3) self-energy. The curves are obtained by folding the discrete spectra
with Lorentzian widths " = 3.0 MeV. Experimental data for 16O in (b) are from Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49]
(green circles); experimental data for 22O in (c) are from Leistenschneider et al. [48].

D. 68Ni

The isovector dipole response in the neutron-rich 68Ni was
recently measured and the corresponding dipole polarizability
extracted by Rossi et al. [52]. The experimental data are
shown in Fig. 9 and compared with the computed SCGF
curve. The few experimental points at ∼9.5 MeV and around
∼17 MeV excitation energies are interpreted as pygmy and
giant dipole resonances, respectively. We refer to Table IV

TABLE III. 40Ca and 48Ca isovector dipole polarizabilities αD of
Eq. (22) compared with those calculated with the CC-LIT method in
Refs. [28,29,50] and those extracted from the experimental spectra
of Refs. [47,51] for 40Ca and of Ref. [50] for 48Ca.

Nucleus SCGF CC-LIT Expt.

40Ca 1.79 fm3 2.23(3) fm3 1.87(3) fm3

48Ca 2.06 fm3 2.25(8) fm3 2.07(22) fm3

for a comparison with the closest peaks in the computed
discrete RPA spectrum, which is also displayed in Fig. 9. In
particular, the computed strength at low energy is fragmented
in two principal peaks at 10.68 MeV and 10.92 MeV, located
at higher energy than the experimental PDR. For the GDR,
Table IV reports the centroid calculated from the DRPA
response around the main peak after the Lorentzian folding.

The αD computed by integrating the DRPA spectrum is
in agreement with the experiment, also reported in Table IV.
The 3.88(31) fm3 value is obtained by including corrections
from a theoretical extrapolation of the low-energy and high-
energy parts of the spectrum [6], which were not accessible
in the experiment of Rossi et al. [52]. Both the discrete peaks
and the convoluted response in Fig. 9 confirm that the com-
puted spectrum is somehow shifted towards higher energy as
compared to the experimental excitation energies. The
strength of the PDR is also underestimated.

The lack of strength in the low-energy part of the spectrum
could point to insufficient constraints on the isospin-violating
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FIG. 9. Isovector dipole response for 68Ni computed using a
gOpRS

MF (ω) reference from Dyson-ADC(3). The lower (upper) panel
shows the discrete (convoluted) spectrum obtained from DRPA. The
convolution uses a Lorentzian width " = 3.0 MeV. Experimental
data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).

SCGF Exp

EPDR (MeV) 10.68 9.55(17)
10.92

EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)
3.88(31)
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FIG. 10. Photoabsorption cross sections of 16O computed with
g̃OpRS

p!1 (ω). The computed DRPA spectrum is convoluted with a
Lorentzian width of " = 3.0 MeV. Experimental data are from
Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
circles).

the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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FIG. 9. Isovector dipole response for 68Ni computed using a
gOpRS

MF (ω) reference from Dyson-ADC(3). The lower (upper) panel
shows the discrete (convoluted) spectrum obtained from DRPA. The
convolution uses a Lorentzian width " = 3.0 MeV. Experimental
data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).

SCGF Exp

EPDR (MeV) 10.68 9.55(17)
10.92

EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)
3.88(31)
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p!1 (ω). The computed DRPA spectrum is convoluted with a
Lorentzian width of " = 3.0 MeV. Experimental data are from
Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
circles).

the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that
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with those calculated with the SCGF method at ADC(3)-DRPA level
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radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value
(See Table I). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values
between parentheses are calculated without the 1σu level of N2. The column labeled ADC(3) represents the ADC(3) results from Ref. [28].
Experimental values are from Refs. [28,29].

HF Level HF FTDA FTDA(c) ADC(3) FRPA FRPA(c) Expt.

HF
1π 17.17 16.22 16.46 16.48 16.05 16.35 16.05
3σ 20.98 20.14 20.33 20.36 20.03 20.24 20.0

CO
5σ 15.10 14.48 13.88 13.94 14.37 13.69 14.01
1π 17.44 17.02 16.93 16.98 16.95 16.84 16.91
4σ 21.99 20.05 20.11 20.19 19.46 19.59 19.72

N2

3σg 17.25 16.14 15.65 15.72 15.76 15.18 15.60
1πu 16.73 17.20 16.82 16.85 17.71 17.14 16.98
2σu 21.25 19.35 18.99 19.06 18.29 17.90 18.78

H2O
1b1 13.86 12.80 12.83 12.86 12.62 12.67 12.62
3a1 15.93 15.06 15.11 15.15 14.91 14.98 14.74
1b2 19.56 19.15 19.19 19.21 19.06 19.13 18.51

#̄ (eV) 1.26(1.14) 0.34(0.31) 0.27(0.28) 0.30(0.30) 0.25(0.23) 0.31(0.26)
#max (eV) 2.47(2.27) 0.64(0.64) 0.68(0.68) 0.70(0.70) 0.73(0.73) 0.88(0.62)

A. Ground-state and ionization energies at
equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
sets. The differences in ionization energies between the basis
sets with double zeta functions and these with triple zeta
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value
(See Table I). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values
between parentheses are calculated without the 1σu level of N2. The column labeled ADC(3) represents the ADC(3) results from Ref. [28].
Experimental values are from Refs. [28,29].

HF Level HF FTDA FTDA(c) ADC(3) FRPA FRPA(c) Expt.

HF
1π 17.17 16.22 16.46 16.48 16.05 16.35 16.05
3σ 20.98 20.14 20.33 20.36 20.03 20.24 20.0

CO
5σ 15.10 14.48 13.88 13.94 14.37 13.69 14.01
1π 17.44 17.02 16.93 16.98 16.95 16.84 16.91
4σ 21.99 20.05 20.11 20.19 19.46 19.59 19.72

N2

3σg 17.25 16.14 15.65 15.72 15.76 15.18 15.60
1πu 16.73 17.20 16.82 16.85 17.71 17.14 16.98
2σu 21.25 19.35 18.99 19.06 18.29 17.90 18.78

H2O
1b1 13.86 12.80 12.83 12.86 12.62 12.67 12.62
3a1 15.93 15.06 15.11 15.15 14.91 14.98 14.74
1b2 19.56 19.15 19.19 19.21 19.06 19.13 18.51

#̄ (eV) 1.26(1.14) 0.34(0.31) 0.27(0.28) 0.30(0.30) 0.25(0.23) 0.31(0.26)
#max (eV) 2.47(2.27) 0.64(0.64) 0.68(0.68) 0.70(0.70) 0.73(0.73) 0.88(0.62)

A. Ground-state and ionization energies at
equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
sets. The differences in ionization energies between the basis
sets with double zeta functions and these with triple zeta
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value
(See Table I). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values
between parentheses are calculated without the 1σu level of N2. The column labeled ADC(3) represents the ADC(3) results from Ref. [28].
Experimental values are from Refs. [28,29].

HF Level HF FTDA FTDA(c) ADC(3) FRPA FRPA(c) Expt.
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1π 17.17 16.22 16.46 16.48 16.05 16.35 16.05
3σ 20.98 20.14 20.33 20.36 20.03 20.24 20.0
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5σ 15.10 14.48 13.88 13.94 14.37 13.69 14.01
1π 17.44 17.02 16.93 16.98 16.95 16.84 16.91
4σ 21.99 20.05 20.11 20.19 19.46 19.59 19.72

N2

3σg 17.25 16.14 15.65 15.72 15.76 15.18 15.60
1πu 16.73 17.20 16.82 16.85 17.71 17.14 16.98
2σu 21.25 19.35 18.99 19.06 18.29 17.90 18.78

H2O
1b1 13.86 12.80 12.83 12.86 12.62 12.67 12.62
3a1 15.93 15.06 15.11 15.15 14.91 14.98 14.74
1b2 19.56 19.15 19.19 19.21 19.06 19.13 18.51

#̄ (eV) 1.26(1.14) 0.34(0.31) 0.27(0.28) 0.30(0.30) 0.25(0.23) 0.31(0.26)
#max (eV) 2.47(2.27) 0.64(0.64) 0.68(0.68) 0.70(0.70) 0.73(0.73) 0.88(0.62)

A. Ground-state and ionization energies at
equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
sets. The differences in ionization energies between the basis
sets with double zeta functions and these with triple zeta
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value
(See Table I). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values
between parentheses are calculated without the 1σu level of N2. The column labeled ADC(3) represents the ADC(3) results from Ref. [28].
Experimental values are from Refs. [28,29].
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A. Ground-state and ionization energies at
equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
sets. The differences in ionization energies between the basis
sets with double zeta functions and these with triple zeta
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spectroscopic factors and asymptotic normalization coef-
ficients that can be employed for the consistent computa-
tion of nucleon capture and knockout processes.
Results.—We first compare to early NCSM-RGM results

from Ref. [19], where neutron scattering off 16O was
computedwith a NN-only interaction derived from the chiral
next-to-next-to-next-to-leading order force of Ref. [41]
(EM500) and evolved with free space similarity renormal-
ization group (SRG) [42] to a cutoff λ ¼ 2.66 fm−1. This soft
interaction facilitates model space convergence and allows
for amoremeaningful benchmark. These earlyNCSM-RGM
computations did not include virtual excitations of the target
nucleus. For consistence, we performed our SCGF calcu-
lations with the same Hamiltonian but evaluated the phase
shifts using only the static self-energy,Σð∞Þ. The comparison
is shown in the upper panel of Fig. 1, and it is very
satisfactory for the jπ ¼ 1=2þ and 5=2þ partial waves.
For this light nucleus, the discrepancy of about 1 MeV for
the energy of the 3=2þ resonance is also consistent with the
uncertainty in the transformation to the center ofmass system
done in Eq. (5). As we discuss below, doorway excitations of
the target nucleus have a strong impact on the energies of
single particle resonances. To account for this, we performed
new NCSMC calculations that can also include low-lying
excitations of 17O. Extrapolating from model spaces of
NNCSM ¼ 6–10ℏΩ, we find quasiparticle energies of −3.4,
−2.7, and 3.2 MeV for the 5=2þ; 1=2þ bound states and the
3=2þ resonance, respectively. The corresponding results
from the SCGF, including the full Σ⋆ðωÞ self-energy, are

−6.3, −5.5, and 0.5 MeV. These should be expected to be
more bound since SCGF introduces a larger number of 2p1h
doorway configurations. At the same, time the excitation
energies relative to the 17O ground state agree to within
200 keV,which is a satisfactory agreement given the different
many-body truncations of the two approaches.
We performed an analogous comparison for the chiral

next-to-next-to-leading order NNþ 3N interaction of
Ref. [32] (named NNLOsat). For NCSM techniques, 16O
is more difficult to converge because the interaction is
harder and the additional 3N matrix elements limit the
applicability of importance truncation [43]. We performed
our NCSM-RGM calculations at NNCSM ¼ 8ℏΩ and esti-
mated an uncertainty of 1 to 2 MeV for the position of
resonances. The SCGF still allows computations with
Nmax ¼ 13, and we find that phase shifts are well con-
verged up to 15 MeV for this space. This puts into evidence
the advantage of the latter approach to address ab initio
scattering off medium mass isotopes. The NNLOsat bench-
mark is displayed in the lower panel of Fig. 1, and it is
qualitatively similar to the case of the soft EM500-SRG
interaction, with the jπ ¼ 1=2þ and 5=2þ waves agreeing
best. For both Hamiltonians, the largest discrepancies are
for the jπ ¼ 3=2þ and 7=2− resonances, which are more
affected by correlations in the continuum and the different
many-body truncations of the two approaches. NNLOsat
was explicitly constructed to reproduce correct nuclear
saturation properties of medium mass nuclei, including
binding energies and radii. The constraint on radii is crucial
to predicting elastic scattering observables that can be
reasonably compared to the experiment; hence, we will
focus on this Hamiltonian in the following.

FIG. 1. Real part of nuclear phase shifts, δðEc:m:Þ, for neutrons
scattering off 16O as a function of energy obtained from the (upper
panel) EM500-SRG and (lower panel) NNLOsat interactions. The
solid lines are SCGF calculations using only the static part of the
self-energy Σð∞Þ in a Nmax ¼ 13 space. The dashed lines are for
NCSM-RGM, which included only the ground state of 16O
and used a no-core model space up to (top, from Ref. [19])
NNCSM ¼ 18ℏΩ and (bottom) 8ℏΩ.

FIG. 2. Real phase shifts, δðEc:m:Þ, for neutrons scattering off
16O using the complete self-energy, Eq. (2), and NNLOsat in an
oscillator space of frequency ℏΩ ¼ 20 MeV and size Nmax ¼ 13.
(Upper panel) Positive parity, (central panel) l ¼ 1, and (lower
panel) l ¼ 3 partial waves are shown.

PHYSICAL REVIEW LETTERS 123, 092501 (2019)

092501-3

Elastic neutron scattering [Phys Rev. Lett. 123, 092501 (2013)]

Virtual excitations of the target have the double effect of
increasing the attraction of the real part of the optical
potential (and hence lowering the single particle spectrum)
and of generating a large number of narrow resonances.
This is clearly seen in Fig. 2, which displays the phase
shifts for neutron elastic scattering predicted by the whole
self-energy of Eq. (2). Most of the virtual excitations
responsible for this, especially at low energy, are accessed
by coupling to hundreds of 2p1h configurations for 17O and
appear as clear spikes or “smoothed” oscillations in the
figure. The SCGF-ADC(3) approach has the advantage of
including these states naturally, even at large energies, so it
describes efficiently the relevant physics. Table I compares
the energies of some representative bound and scattering
states to the experiment. The 3=2þ single particle resonance
is computed at 0.91 MeV in the c.m. frame, very close to
the experimental value. The first 1=2− and 3=2− are both
predicted as bound states, although experimentally they are
found inverted with the 3=2− in the continuum. We
calculate a narrow width for the 5=2− and 7=2− resonances,
corresponding to excited states, close to the ones observed
at 3.02 and 3.54 MeV [44]. However, there are other very
narrow f-wave resonances, measured between 1.55 and
2.82 MeV, that our SCGF calculations do not resolve. In
general, we find that NNLOsat predicts the location of
dominant quasiparticle and hole states with an accuracy of
≲1 MeV for this nucleus.

Figure 3 compares the low-energy differential cross
sections originating from Eq. (5) to neutron scattering data
for 16O at 3.286 MeVand 40Ca at 3.2 MeV. The minima are
reproduced well for 16O (and close to the experiment for
40Ca), confirming the correct prediction of density distri-
butions for NNLOsat [32,34,46]. However, the results are
somewhat overestimated and hint at a general lack of
absorption that is usually faced by attempts at computing
the optical potentials ab initio. This is likely related to
missing doorway configurations (3p2h and beyond) that
should be propagated in the denominators of Eq. (2) but are
neglected by state-of-the-art approaches. Note that there are
more than 200 experimentally observed excitations already
between the ground state and the neutron separation
threshold in 41Ca [47], while the SCGF ADC(3) predicts
only about 40 of them. This issue is likely to worsen at
higher energies, where configurations more complex than
2p1h become relevant. We investigated this problem by
computing total nþ 16O elastic cross sections, σðEc:m:Þ,
with only Σð∞Þ, suppressing 50% of the 2p1h and 2h1p
states (evenly across all energies), and by using the
complete ADC(3) self-energy. Figure 4 shows that
σðEc:m:Þ presents oscillations up to about 5 MeV. These
are in part reproduced by theory and are sensible to

TABLE I. Excitation spectrum of 17O with respect to the nþ 16O threshold, as obtained from Eq. (5) and the
NNLOsat interaction and compared to the experiment [45]. Broad resonances in the continuum (most notably, the
5=2þ) are computed at midpoint. The asterisk subscripts indicate higher excited states, above the lowest one, for
each partial wave.

ε (MeV) 5=2þ 1=2þ 1=2− 5=2− 3=2− 3=2þ 5=2þ$ 5=2−$ 7=2−$

Exp −4.14 −3.27 −1.09 −0.30 0.41 0.94 3.23 3.02 3.54
NNLOsat −5.06 −3.58 −0.15 −1.23 −2.24 0.91 4.57 3.36 3.37

FIG. 3. Differential cross section for neutron elastic scattering
off 16O (40Ca) at 3.286 (3.2) MeV of neutron energy, with
NNLOsat and compared to the empirical data from Refs. [44,50].

FIG. 4. Total elastic cross section for neutron elastic scattering
on 16O form SCGFADC(3) at different incident neutron energies
compared to the experiment in Ref. [51]. The dashed, dotted-
dashed, and solid lines correspond to the sole static self-energy
Σð∞Þ, to retaining 50% of the 2p1h and 2h1p doorway configu-
rations and to the complete Eq. (2), respectively.
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FIG. 7. Isovector E1 photoabsorption cross sections of 14,16,22,24O computed with the NNLOsat interaction and the SCGF many-body
method. The reference gOpRS

MF (ω) propagator is computed using an ADC(3) self-energy. The curves are obtained by folding the discrete spectra
with Lorentzian widths " = 3.0 MeV. Experimental data for 16O in (b) are from Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49]
(green circles); experimental data for 22O in (c) are from Leistenschneider et al. [48].

D. 68Ni

The isovector dipole response in the neutron-rich 68Ni was
recently measured and the corresponding dipole polarizability
extracted by Rossi et al. [52]. The experimental data are
shown in Fig. 9 and compared with the computed SCGF
curve. The few experimental points at ∼9.5 MeV and around
∼17 MeV excitation energies are interpreted as pygmy and
giant dipole resonances, respectively. We refer to Table IV

TABLE III. 40Ca and 48Ca isovector dipole polarizabilities αD of
Eq. (22) compared with those calculated with the CC-LIT method in
Refs. [28,29,50] and those extracted from the experimental spectra
of Refs. [47,51] for 40Ca and of Ref. [50] for 48Ca.

Nucleus SCGF CC-LIT Expt.

40Ca 1.79 fm3 2.23(3) fm3 1.87(3) fm3

48Ca 2.06 fm3 2.25(8) fm3 2.07(22) fm3

for a comparison with the closest peaks in the computed
discrete RPA spectrum, which is also displayed in Fig. 9. In
particular, the computed strength at low energy is fragmented
in two principal peaks at 10.68 MeV and 10.92 MeV, located
at higher energy than the experimental PDR. For the GDR,
Table IV reports the centroid calculated from the DRPA
response around the main peak after the Lorentzian folding.

The αD computed by integrating the DRPA spectrum is
in agreement with the experiment, also reported in Table IV.
The 3.88(31) fm3 value is obtained by including corrections
from a theoretical extrapolation of the low-energy and high-
energy parts of the spectrum [6], which were not accessible
in the experiment of Rossi et al. [52]. Both the discrete peaks
and the convoluted response in Fig. 9 confirm that the com-
puted spectrum is somehow shifted towards higher energy as
compared to the experimental excitation energies. The
strength of the PDR is also underestimated.

The lack of strength in the low-energy part of the spectrum
could point to insufficient constraints on the isospin-violating
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FIG. 9. Isovector dipole response for 68Ni computed using a
gOpRS

MF (ω) reference from Dyson-ADC(3). The lower (upper) panel
shows the discrete (convoluted) spectrum obtained from DRPA. The
convolution uses a Lorentzian width " = 3.0 MeV. Experimental
data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).

SCGF Exp
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EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)
3.88(31)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
EX [MeV]

−5

0

5

10

15

20

25

30

35

σ
(E

X
)[

m
b] 16O

Nmax=13, h̄ω=20 MeV

DysADC3 RPA
Ahrens (1975)
Ishkhanov (2002)

FIG. 10. Photoabsorption cross sections of 16O computed with
g̃OpRS

p!1 (ω). The computed DRPA spectrum is convoluted with a
Lorentzian width of " = 3.0 MeV. Experimental data are from
Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
circles).

the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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68Ni:

considered. Among the nuclei studied in this Letter, only
100Sn and 132Sn are doubly magic and can be computed at
the ADC(3) truncation level. Our investigations show that,
as observed previously on lighter nuclei [8,36,56], the
difference between the ADC(2) and ADC(3) values for the
charge radius (and similarly for the charge density dis-
tribution) is very small, such that it is basically converged at
the ADC(2) level. As such, we do not discuss differences
between ADC(2) and ADC(3) results any further in this
Letter. In the following, we will hence represent our results
as a band obtained for frequencies from 10 to 14 MeV at
Nmax ¼ 13 and from 12 to 14 MeV at Nmax ¼ 11 for
E3max ¼ 16.
From this procedure, the charge radius of 132Xe is

estimated to be 4.824" 0.124 fm, which agrees with the
value recently extracted from the SCRIT experiment of
hr2i1=2 ¼ 4.79þ0.11

−0.08 fm [10]. For comparison, the calcula-
tions have been reproduced using the newly
proposed NN þ 3NðlnlÞ interaction [36], which is known
to have good convergence properties with respect to the
model space size and to give results similar to the very
successful 1.8=2.0ðEMÞ interaction [33]. In contrast to
NNLOsat, the charge radius obtained for 132Xe is
4.070" 0.045 fm, largely underestimating the experi-
mental value consistently with studies on lighter nuclei
[36]. Despite this failure at reproducing the experimental
value of the charge radius, one notices that values obtained
from NN þ 3NðlnlÞ converge better than for NNLOsat, as
expected from the softness of NN þ 3NðlnlÞ. This relative
hardness of NNLOsat, tied to the nonlocal cutoff on the
three-body terms, has been shown to play an important role
for saturation properties of nuclear matter [57] and thus
helps for a good reproduction of both energies and radii, in
contrast to NN þ 3NðlnlÞ.
In addition to the sole charge radius, another quantity

that can be computed from SCGF calculations is the charge
density distribution. In the case of 132Xe, the SCRIT group
extracted the constants c and t for a two-parameter Fermi
charge distribution ρðrÞ ¼ ρ0=f1þ exp½4 ln 3ðr − cÞ=t'g.
Figure 2 displays this two-point Fermi distribution as a
dotted line with a gray band representing the error bars,
while the green band represents our SCGF calculations. It
can be observed that while the SCGF calculations agree
with the two-point Fermi distribution at the surface of the
nucleus, though slightly overpredicting the charge radius,
we obtain an oscillating behavior for the density inside the
nucleus that cannot be reproduced with only a two-
point Fermi distribution. Extracting a three-point Fermi
distribution from the experiment would require an increase
in its luminosity such that possible discrepancies
between theory and experiment cannot be discussed any
further here.
To better gauge the discrepancies between the theoretical

and experimental bands in Fig. 2, we compare the
computed electron scattering cross sections directly to

SCRIT data. Figure 3 displays the differential cross
sections multiplied by the luminosity as a function of
the effective momentum transfer for the three experimental
electron beam energies of Ee ¼ 151 MeV, 201 MeV, and

FIG. 2. Charge density distribution for 132Xe obtained from
Gorkov SCGF calculations at ADC(2). The dotted line with gray
band corresponds to the two-point Fermi distribution with
parameter and error bars extracted from Ref. [10].

FIG. 3. Luminosity multiplied by the differential cross section
for 132Xe obtained from Gorkov SCGF calculations at ADC(2).
The values for the NN þ 3NðlnlÞ interaction have been scaled by
102 for clarity. The gray bands correspond to the two-point Fermi
distribution with parameter and error bars extracted from
Ref. [10]. Experimental values are taken from [10] and duplicated
with a scaling of 102 for comparison with NN þ 3NðlnlÞ values,
where error bars have been removed for clarity.
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value
(See Table I). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values
between parentheses are calculated without the 1σu level of N2. The column labeled ADC(3) represents the ADC(3) results from Ref. [28].
Experimental values are from Refs. [28,29].

HF Level HF FTDA FTDA(c) ADC(3) FRPA FRPA(c) Expt.

HF
1π 17.17 16.22 16.46 16.48 16.05 16.35 16.05
3σ 20.98 20.14 20.33 20.36 20.03 20.24 20.0

CO
5σ 15.10 14.48 13.88 13.94 14.37 13.69 14.01
1π 17.44 17.02 16.93 16.98 16.95 16.84 16.91
4σ 21.99 20.05 20.11 20.19 19.46 19.59 19.72

N2

3σg 17.25 16.14 15.65 15.72 15.76 15.18 15.60
1πu 16.73 17.20 16.82 16.85 17.71 17.14 16.98
2σu 21.25 19.35 18.99 19.06 18.29 17.90 18.78

H2O
1b1 13.86 12.80 12.83 12.86 12.62 12.67 12.62
3a1 15.93 15.06 15.11 15.15 14.91 14.98 14.74
1b2 19.56 19.15 19.19 19.21 19.06 19.13 18.51

#̄ (eV) 1.26(1.14) 0.34(0.31) 0.27(0.28) 0.30(0.30) 0.25(0.23) 0.31(0.26)
#max (eV) 2.47(2.27) 0.64(0.64) 0.68(0.68) 0.70(0.70) 0.73(0.73) 0.88(0.62)

A. Ground-state and ionization energies at
equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
sets. The differences in ionization energies between the basis
sets with double zeta functions and these with triple zeta
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with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
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ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
sets. The differences in ionization energies between the basis
sets with double zeta functions and these with triple zeta
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value
(See Table I). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values
between parentheses are calculated without the 1σu level of N2. The column labeled ADC(3) represents the ADC(3) results from Ref. [28].
Experimental values are from Refs. [28,29].

HF Level HF FTDA FTDA(c) ADC(3) FRPA FRPA(c) Expt.

HF
1π 17.17 16.22 16.46 16.48 16.05 16.35 16.05
3σ 20.98 20.14 20.33 20.36 20.03 20.24 20.0
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5σ 15.10 14.48 13.88 13.94 14.37 13.69 14.01
1π 17.44 17.02 16.93 16.98 16.95 16.84 16.91
4σ 21.99 20.05 20.11 20.19 19.46 19.59 19.72

N2

3σg 17.25 16.14 15.65 15.72 15.76 15.18 15.60
1πu 16.73 17.20 16.82 16.85 17.71 17.14 16.98
2σu 21.25 19.35 18.99 19.06 18.29 17.90 18.78

H2O
1b1 13.86 12.80 12.83 12.86 12.62 12.67 12.62
3a1 15.93 15.06 15.11 15.15 14.91 14.98 14.74
1b2 19.56 19.15 19.19 19.21 19.06 19.13 18.51

#̄ (eV) 1.26(1.14) 0.34(0.31) 0.27(0.28) 0.30(0.30) 0.25(0.23) 0.31(0.26)
#max (eV) 2.47(2.27) 0.64(0.64) 0.68(0.68) 0.70(0.70) 0.73(0.73) 0.88(0.62)

A. Ground-state and ionization energies at
equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
sets. The differences in ionization energies between the basis
sets with double zeta functions and these with triple zeta
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spectroscopic factors and asymptotic normalization coef-
ficients that can be employed for the consistent computa-
tion of nucleon capture and knockout processes.
Results.—We first compare to early NCSM-RGM results

from Ref. [19], where neutron scattering off 16O was
computedwith a NN-only interaction derived from the chiral
next-to-next-to-next-to-leading order force of Ref. [41]
(EM500) and evolved with free space similarity renormal-
ization group (SRG) [42] to a cutoff λ ¼ 2.66 fm−1. This soft
interaction facilitates model space convergence and allows
for amoremeaningful benchmark. These earlyNCSM-RGM
computations did not include virtual excitations of the target
nucleus. For consistence, we performed our SCGF calcu-
lations with the same Hamiltonian but evaluated the phase
shifts using only the static self-energy,Σð∞Þ. The comparison
is shown in the upper panel of Fig. 1, and it is very
satisfactory for the jπ ¼ 1=2þ and 5=2þ partial waves.
For this light nucleus, the discrepancy of about 1 MeV for
the energy of the 3=2þ resonance is also consistent with the
uncertainty in the transformation to the center ofmass system
done in Eq. (5). As we discuss below, doorway excitations of
the target nucleus have a strong impact on the energies of
single particle resonances. To account for this, we performed
new NCSMC calculations that can also include low-lying
excitations of 17O. Extrapolating from model spaces of
NNCSM ¼ 6–10ℏΩ, we find quasiparticle energies of −3.4,
−2.7, and 3.2 MeV for the 5=2þ; 1=2þ bound states and the
3=2þ resonance, respectively. The corresponding results
from the SCGF, including the full Σ⋆ðωÞ self-energy, are

−6.3, −5.5, and 0.5 MeV. These should be expected to be
more bound since SCGF introduces a larger number of 2p1h
doorway configurations. At the same, time the excitation
energies relative to the 17O ground state agree to within
200 keV,which is a satisfactory agreement given the different
many-body truncations of the two approaches.
We performed an analogous comparison for the chiral

next-to-next-to-leading order NNþ 3N interaction of
Ref. [32] (named NNLOsat). For NCSM techniques, 16O
is more difficult to converge because the interaction is
harder and the additional 3N matrix elements limit the
applicability of importance truncation [43]. We performed
our NCSM-RGM calculations at NNCSM ¼ 8ℏΩ and esti-
mated an uncertainty of 1 to 2 MeV for the position of
resonances. The SCGF still allows computations with
Nmax ¼ 13, and we find that phase shifts are well con-
verged up to 15 MeV for this space. This puts into evidence
the advantage of the latter approach to address ab initio
scattering off medium mass isotopes. The NNLOsat bench-
mark is displayed in the lower panel of Fig. 1, and it is
qualitatively similar to the case of the soft EM500-SRG
interaction, with the jπ ¼ 1=2þ and 5=2þ waves agreeing
best. For both Hamiltonians, the largest discrepancies are
for the jπ ¼ 3=2þ and 7=2− resonances, which are more
affected by correlations in the continuum and the different
many-body truncations of the two approaches. NNLOsat
was explicitly constructed to reproduce correct nuclear
saturation properties of medium mass nuclei, including
binding energies and radii. The constraint on radii is crucial
to predicting elastic scattering observables that can be
reasonably compared to the experiment; hence, we will
focus on this Hamiltonian in the following.

FIG. 1. Real part of nuclear phase shifts, δðEc:m:Þ, for neutrons
scattering off 16O as a function of energy obtained from the (upper
panel) EM500-SRG and (lower panel) NNLOsat interactions. The
solid lines are SCGF calculations using only the static part of the
self-energy Σð∞Þ in a Nmax ¼ 13 space. The dashed lines are for
NCSM-RGM, which included only the ground state of 16O
and used a no-core model space up to (top, from Ref. [19])
NNCSM ¼ 18ℏΩ and (bottom) 8ℏΩ.

FIG. 2. Real phase shifts, δðEc:m:Þ, for neutrons scattering off
16O using the complete self-energy, Eq. (2), and NNLOsat in an
oscillator space of frequency ℏΩ ¼ 20 MeV and size Nmax ¼ 13.
(Upper panel) Positive parity, (central panel) l ¼ 1, and (lower
panel) l ¼ 3 partial waves are shown.
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Elastic neutron scattering [Phys Rev. Lett. 123, 092501 (2013)]

Virtual excitations of the target have the double effect of
increasing the attraction of the real part of the optical
potential (and hence lowering the single particle spectrum)
and of generating a large number of narrow resonances.
This is clearly seen in Fig. 2, which displays the phase
shifts for neutron elastic scattering predicted by the whole
self-energy of Eq. (2). Most of the virtual excitations
responsible for this, especially at low energy, are accessed
by coupling to hundreds of 2p1h configurations for 17O and
appear as clear spikes or “smoothed” oscillations in the
figure. The SCGF-ADC(3) approach has the advantage of
including these states naturally, even at large energies, so it
describes efficiently the relevant physics. Table I compares
the energies of some representative bound and scattering
states to the experiment. The 3=2þ single particle resonance
is computed at 0.91 MeV in the c.m. frame, very close to
the experimental value. The first 1=2− and 3=2− are both
predicted as bound states, although experimentally they are
found inverted with the 3=2− in the continuum. We
calculate a narrow width for the 5=2− and 7=2− resonances,
corresponding to excited states, close to the ones observed
at 3.02 and 3.54 MeV [44]. However, there are other very
narrow f-wave resonances, measured between 1.55 and
2.82 MeV, that our SCGF calculations do not resolve. In
general, we find that NNLOsat predicts the location of
dominant quasiparticle and hole states with an accuracy of
≲1 MeV for this nucleus.

Figure 3 compares the low-energy differential cross
sections originating from Eq. (5) to neutron scattering data
for 16O at 3.286 MeVand 40Ca at 3.2 MeV. The minima are
reproduced well for 16O (and close to the experiment for
40Ca), confirming the correct prediction of density distri-
butions for NNLOsat [32,34,46]. However, the results are
somewhat overestimated and hint at a general lack of
absorption that is usually faced by attempts at computing
the optical potentials ab initio. This is likely related to
missing doorway configurations (3p2h and beyond) that
should be propagated in the denominators of Eq. (2) but are
neglected by state-of-the-art approaches. Note that there are
more than 200 experimentally observed excitations already
between the ground state and the neutron separation
threshold in 41Ca [47], while the SCGF ADC(3) predicts
only about 40 of them. This issue is likely to worsen at
higher energies, where configurations more complex than
2p1h become relevant. We investigated this problem by
computing total nþ 16O elastic cross sections, σðEc:m:Þ,
with only Σð∞Þ, suppressing 50% of the 2p1h and 2h1p
states (evenly across all energies), and by using the
complete ADC(3) self-energy. Figure 4 shows that
σðEc:m:Þ presents oscillations up to about 5 MeV. These
are in part reproduced by theory and are sensible to

TABLE I. Excitation spectrum of 17O with respect to the nþ 16O threshold, as obtained from Eq. (5) and the
NNLOsat interaction and compared to the experiment [45]. Broad resonances in the continuum (most notably, the
5=2þ) are computed at midpoint. The asterisk subscripts indicate higher excited states, above the lowest one, for
each partial wave.

ε (MeV) 5=2þ 1=2þ 1=2− 5=2− 3=2− 3=2þ 5=2þ$ 5=2−$ 7=2−$

Exp −4.14 −3.27 −1.09 −0.30 0.41 0.94 3.23 3.02 3.54
NNLOsat −5.06 −3.58 −0.15 −1.23 −2.24 0.91 4.57 3.36 3.37

FIG. 3. Differential cross section for neutron elastic scattering
off 16O (40Ca) at 3.286 (3.2) MeV of neutron energy, with
NNLOsat and compared to the empirical data from Refs. [44,50].

FIG. 4. Total elastic cross section for neutron elastic scattering
on 16O form SCGFADC(3) at different incident neutron energies
compared to the experiment in Ref. [51]. The dashed, dotted-
dashed, and solid lines correspond to the sole static self-energy
Σð∞Þ, to retaining 50% of the 2p1h and 2h1p doorway configu-
rations and to the complete Eq. (2), respectively.
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FIG. 7. Isovector E1 photoabsorption cross sections of 14,16,22,24O computed with the NNLOsat interaction and the SCGF many-body
method. The reference gOpRS

MF (ω) propagator is computed using an ADC(3) self-energy. The curves are obtained by folding the discrete spectra
with Lorentzian widths " = 3.0 MeV. Experimental data for 16O in (b) are from Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49]
(green circles); experimental data for 22O in (c) are from Leistenschneider et al. [48].

D. 68Ni

The isovector dipole response in the neutron-rich 68Ni was
recently measured and the corresponding dipole polarizability
extracted by Rossi et al. [52]. The experimental data are
shown in Fig. 9 and compared with the computed SCGF
curve. The few experimental points at ∼9.5 MeV and around
∼17 MeV excitation energies are interpreted as pygmy and
giant dipole resonances, respectively. We refer to Table IV

TABLE III. 40Ca and 48Ca isovector dipole polarizabilities αD of
Eq. (22) compared with those calculated with the CC-LIT method in
Refs. [28,29,50] and those extracted from the experimental spectra
of Refs. [47,51] for 40Ca and of Ref. [50] for 48Ca.

Nucleus SCGF CC-LIT Expt.

40Ca 1.79 fm3 2.23(3) fm3 1.87(3) fm3

48Ca 2.06 fm3 2.25(8) fm3 2.07(22) fm3

for a comparison with the closest peaks in the computed
discrete RPA spectrum, which is also displayed in Fig. 9. In
particular, the computed strength at low energy is fragmented
in two principal peaks at 10.68 MeV and 10.92 MeV, located
at higher energy than the experimental PDR. For the GDR,
Table IV reports the centroid calculated from the DRPA
response around the main peak after the Lorentzian folding.

The αD computed by integrating the DRPA spectrum is
in agreement with the experiment, also reported in Table IV.
The 3.88(31) fm3 value is obtained by including corrections
from a theoretical extrapolation of the low-energy and high-
energy parts of the spectrum [6], which were not accessible
in the experiment of Rossi et al. [52]. Both the discrete peaks
and the convoluted response in Fig. 9 confirm that the com-
puted spectrum is somehow shifted towards higher energy as
compared to the experimental excitation energies. The
strength of the PDR is also underestimated.

The lack of strength in the low-energy part of the spectrum
could point to insufficient constraints on the isospin-violating
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FIG. 9. Isovector dipole response for 68Ni computed using a
gOpRS

MF (ω) reference from Dyson-ADC(3). The lower (upper) panel
shows the discrete (convoluted) spectrum obtained from DRPA. The
convolution uses a Lorentzian width " = 3.0 MeV. Experimental
data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).

SCGF Exp

EPDR (MeV) 10.68 9.55(17)
10.92

EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)
3.88(31)
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FIG. 10. Photoabsorption cross sections of 16O computed with
g̃OpRS

p!1 (ω). The computed DRPA spectrum is convoluted with a
Lorentzian width of " = 3.0 MeV. Experimental data are from
Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
circles).

the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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FIG. 9. Isovector dipole response for 68Ni computed using a
gOpRS

MF (ω) reference from Dyson-ADC(3). The lower (upper) panel
shows the discrete (convoluted) spectrum obtained from DRPA. The
convolution uses a Lorentzian width " = 3.0 MeV. Experimental
data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).

SCGF Exp

EPDR (MeV) 10.68 9.55(17)
10.92

EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)
3.88(31)
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FIG. 10. Photoabsorption cross sections of 16O computed with
g̃OpRS

p!1 (ω). The computed DRPA spectrum is convoluted with a
Lorentzian width of " = 3.0 MeV. Experimental data are from
Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
circles).

the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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gOpRS
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shows the discrete (convoluted) spectrum obtained from DRPA. The
convolution uses a Lorentzian width " = 3.0 MeV. Experimental
data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).

SCGF Exp

EPDR (MeV) 10.68 9.55(17)
10.92

EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)
3.88(31)
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g̃OpRS

p!1 (ω). The computed DRPA spectrum is convoluted with a
Lorentzian width of " = 3.0 MeV. Experimental data are from
Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
circles).
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ing configurations beyond ph. While the above information is
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propagators when the moments (20) are constrained.
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68Ni:

considered. Among the nuclei studied in this Letter, only
100Sn and 132Sn are doubly magic and can be computed at
the ADC(3) truncation level. Our investigations show that,
as observed previously on lighter nuclei [8,36,56], the
difference between the ADC(2) and ADC(3) values for the
charge radius (and similarly for the charge density dis-
tribution) is very small, such that it is basically converged at
the ADC(2) level. As such, we do not discuss differences
between ADC(2) and ADC(3) results any further in this
Letter. In the following, we will hence represent our results
as a band obtained for frequencies from 10 to 14 MeV at
Nmax ¼ 13 and from 12 to 14 MeV at Nmax ¼ 11 for
E3max ¼ 16.
From this procedure, the charge radius of 132Xe is

estimated to be 4.824" 0.124 fm, which agrees with the
value recently extracted from the SCRIT experiment of
hr2i1=2 ¼ 4.79þ0.11

−0.08 fm [10]. For comparison, the calcula-
tions have been reproduced using the newly
proposed NN þ 3NðlnlÞ interaction [36], which is known
to have good convergence properties with respect to the
model space size and to give results similar to the very
successful 1.8=2.0ðEMÞ interaction [33]. In contrast to
NNLOsat, the charge radius obtained for 132Xe is
4.070" 0.045 fm, largely underestimating the experi-
mental value consistently with studies on lighter nuclei
[36]. Despite this failure at reproducing the experimental
value of the charge radius, one notices that values obtained
from NN þ 3NðlnlÞ converge better than for NNLOsat, as
expected from the softness of NN þ 3NðlnlÞ. This relative
hardness of NNLOsat, tied to the nonlocal cutoff on the
three-body terms, has been shown to play an important role
for saturation properties of nuclear matter [57] and thus
helps for a good reproduction of both energies and radii, in
contrast to NN þ 3NðlnlÞ.
In addition to the sole charge radius, another quantity

that can be computed from SCGF calculations is the charge
density distribution. In the case of 132Xe, the SCRIT group
extracted the constants c and t for a two-parameter Fermi
charge distribution ρðrÞ ¼ ρ0=f1þ exp½4 ln 3ðr − cÞ=t'g.
Figure 2 displays this two-point Fermi distribution as a
dotted line with a gray band representing the error bars,
while the green band represents our SCGF calculations. It
can be observed that while the SCGF calculations agree
with the two-point Fermi distribution at the surface of the
nucleus, though slightly overpredicting the charge radius,
we obtain an oscillating behavior for the density inside the
nucleus that cannot be reproduced with only a two-
point Fermi distribution. Extracting a three-point Fermi
distribution from the experiment would require an increase
in its luminosity such that possible discrepancies
between theory and experiment cannot be discussed any
further here.
To better gauge the discrepancies between the theoretical

and experimental bands in Fig. 2, we compare the
computed electron scattering cross sections directly to

SCRIT data. Figure 3 displays the differential cross
sections multiplied by the luminosity as a function of
the effective momentum transfer for the three experimental
electron beam energies of Ee ¼ 151 MeV, 201 MeV, and

FIG. 2. Charge density distribution for 132Xe obtained from
Gorkov SCGF calculations at ADC(2). The dotted line with gray
band corresponds to the two-point Fermi distribution with
parameter and error bars extracted from Ref. [10].

FIG. 3. Luminosity multiplied by the differential cross section
for 132Xe obtained from Gorkov SCGF calculations at ADC(2).
The values for the NN þ 3NðlnlÞ interaction have been scaled by
102 for clarity. The gray bands correspond to the two-point Fermi
distribution with parameter and error bars extracted from
Ref. [10]. Experimental values are taken from [10] and duplicated
with a scaling of 102 for comparison with NN þ 3NðlnlÞ values,
where error bars have been removed for clarity.

PHYSICAL REVIEW LETTERS 125, 182501 (2020)

182501-3

132Xe

Charge & matter distribution
Neutron skins [Phys Rev. Lett. 125, 182501 (2020)]

Binding energies
Oxygen drip line 
[Phys Rev. Lett. 111, 062501 (2013)]

A. CIPOLLONE, C. BARBIERI, AND P. NAVRÁTIL PHYSICAL REVIEW C 92, 014306 (2015)

the number of neutrons increases. This is attributable to the
strong components of the proton-neutron forces, which also
enhances their correlations. However, the overall dependence
on proton-neutron asymmetry is rather mild. We note that the
vicinity to the neutron dripline would require to explicitly
account for the continuum. Reference [71] found that this
effect is sizable for 24,28O and leads to further quenching
of the proton SFs. Again, this could be interpreted as a
reduced gap between the highest neutron quasihole state and
the nearby particle continuum. In this sense, the reduction of
SFs is an indirect consequence of the change in proton-neutron
asymmetry, which first affects energy gaps.

For the case of the NN + 3N -induced Hamiltonian we
find a completely similar picture, with SFs of dominant peaks
being on average slightly larger than those obtained with the
full interaction. Also in this case, stronger quenchings are
associated with increased fragmentation of nearby strength
and the narrowing of (sub-)shell gaps. Thus, we conclude that
the general effects of the original 3NFs on the quenching of
absolute SFs mainly results from the rearrangement of shell
orbits and excitation gaps.

C. Results for open shells

The present implementation of the Gorkov-GF approach
allows calculations up to the second order in the self-energy
[i.e., at the ADC(2) level]. Although this does not guarantee
the best precision for quasiparticle energies [49], it still yields
proper predictions for the trend of binding energies [22].

We plot the Gorkov-predicted binding energies for all
oxygen isotopes in Fig. 6 and compare them to the Dyson-
ADC(3) results where available. For the Dyson case, the
NN + 3N -induced Hamiltonian systematically underbinds
the full isotopic chain and predicts 28O to be bound with
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FIG. 6. (Color online) Binding energies of oxygen isotopes.
Dashed and solid lines join the results from Dyson-ADC(3) cal-
culations with the NN + 3N -induced (squares) and full (circles)
Hamiltonians. The shaded area highlights the changes owing to the
original 3NF at NNLO. The open diamonds, joined by dot-dashed
lines, are from Gorkov calculations at second order and include
open-shell isotopes. Odd-even isotopes are obtained by summing
total binging energies of the even-even systems [Eq. (10)] and the
energies for addition or removal of a neutron [Eq. (12)]. Experiment
are from Refs. [56,57,60,63,72].

respect to 24O. This is fully corrected by including the
original 3NF at leading order, which brings all results to about
3% form the experiment or closer. This is well within the
estimated theoretical errors discussed above [19]. The dot-
dashed line shows the trend of ground-state energies for the full
Hamiltonian obtained form Gorkov, which include the 18,20,26O
isotopes. This demonstrates that the fraction of binding missed
by the second-order truncation is rather constant across the
whole isotopic chain and, in the present case, of about
2–4 MeV. The result is a constant shift with respect to the
complete ADC(3) prediction and the overall trend of binding
energy is reproduced very close to the experiment. Note that
binding energies for odd-even oxygens can be calculated either
as neutron addition or neutron removal from two different
nearby isotopes. Figure 6 shows that this procedure can lead
to somewhat different results, which should be taken as an
indication of the errors owing to the second-order many-body
truncation. For the more complete Dyson-ADC(3) method and
the full Hamiltonian, these differences are never larger than
200 keV and are not visible in the plot. Our calculations with
the more accurate Dyson-ADC(3) scheme predict 28O to be
unbound with respect to 24O by 5.2 MeV. However, this value
should be slightly affected by the vicinity to the continuum
[17], which was neglected in the present work.

Figure 7 shows the analogous information for the binding
energies of the nitrogen and fluorine isotopic chains, obtained
through removal and addition of one proton. This confirms that
all considerations made regarding the effects of leading-order
3NFs on the oxygens also apply to their neighboring chains. In
particular, the repulsive effect on the d3/2 neutron orbit is key
in determining the neutron driplines at 23N and 24O. Fluorine
isotopes have been observed experimentally up to 31F but with
a 29F that is very weakly bound. Figure 7 clearly demonstrates
that this is attributable to an very subtle cancellation between
the repulsion form 3NFs and the attraction generated by one
extra proton [19].

The general qualitative features of the spectral functions
discussed in the previous sections are also found in our Gorkov
propagators but with an even more spread single-particle
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FIG. 7. (Color online) Same as Fig. 6 but for the binding energies
of nitrogen and fluorine isotopes. These are calculated as addition
or removal of a proton to and from even-even oxygen isotopes.
Experiment are from Refs. [56–58,63,72].
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value
(See Table I). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values
between parentheses are calculated without the 1σu level of N2. The column labeled ADC(3) represents the ADC(3) results from Ref. [28].
Experimental values are from Refs. [28,29].

HF Level HF FTDA FTDA(c) ADC(3) FRPA FRPA(c) Expt.

HF
1π 17.17 16.22 16.46 16.48 16.05 16.35 16.05
3σ 20.98 20.14 20.33 20.36 20.03 20.24 20.0

CO
5σ 15.10 14.48 13.88 13.94 14.37 13.69 14.01
1π 17.44 17.02 16.93 16.98 16.95 16.84 16.91
4σ 21.99 20.05 20.11 20.19 19.46 19.59 19.72

N2

3σg 17.25 16.14 15.65 15.72 15.76 15.18 15.60
1πu 16.73 17.20 16.82 16.85 17.71 17.14 16.98
2σu 21.25 19.35 18.99 19.06 18.29 17.90 18.78

H2O
1b1 13.86 12.80 12.83 12.86 12.62 12.67 12.62
3a1 15.93 15.06 15.11 15.15 14.91 14.98 14.74
1b2 19.56 19.15 19.19 19.21 19.06 19.13 18.51

#̄ (eV) 1.26(1.14) 0.34(0.31) 0.27(0.28) 0.30(0.30) 0.25(0.23) 0.31(0.26)
#max (eV) 2.47(2.27) 0.64(0.64) 0.68(0.68) 0.70(0.70) 0.73(0.73) 0.88(0.62)

A. Ground-state and ionization energies at
equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
sets. The differences in ionization energies between the basis
sets with double zeta functions and these with triple zeta
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value
(See Table I). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values
between parentheses are calculated without the 1σu level of N2. The column labeled ADC(3) represents the ADC(3) results from Ref. [28].
Experimental values are from Refs. [28,29].

HF Level HF FTDA FTDA(c) ADC(3) FRPA FRPA(c) Expt.

HF
1π 17.17 16.22 16.46 16.48 16.05 16.35 16.05
3σ 20.98 20.14 20.33 20.36 20.03 20.24 20.0

CO
5σ 15.10 14.48 13.88 13.94 14.37 13.69 14.01
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#̄ (eV) 1.26(1.14) 0.34(0.31) 0.27(0.28) 0.30(0.30) 0.25(0.23) 0.31(0.26)
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A. Ground-state and ionization energies at
equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
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solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
sets. The differences in ionization energies between the basis
sets with double zeta functions and these with triple zeta
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value
(See Table I). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values
between parentheses are calculated without the 1σu level of N2. The column labeled ADC(3) represents the ADC(3) results from Ref. [28].
Experimental values are from Refs. [28,29].

HF Level HF FTDA FTDA(c) ADC(3) FRPA FRPA(c) Expt.

HF
1π 17.17 16.22 16.46 16.48 16.05 16.35 16.05
3σ 20.98 20.14 20.33 20.36 20.03 20.24 20.0

CO
5σ 15.10 14.48 13.88 13.94 14.37 13.69 14.01
1π 17.44 17.02 16.93 16.98 16.95 16.84 16.91
4σ 21.99 20.05 20.11 20.19 19.46 19.59 19.72

N2

3σg 17.25 16.14 15.65 15.72 15.76 15.18 15.60
1πu 16.73 17.20 16.82 16.85 17.71 17.14 16.98
2σu 21.25 19.35 18.99 19.06 18.29 17.90 18.78

H2O
1b1 13.86 12.80 12.83 12.86 12.62 12.67 12.62
3a1 15.93 15.06 15.11 15.15 14.91 14.98 14.74
1b2 19.56 19.15 19.19 19.21 19.06 19.13 18.51

#̄ (eV) 1.26(1.14) 0.34(0.31) 0.27(0.28) 0.30(0.30) 0.25(0.23) 0.31(0.26)
#max (eV) 2.47(2.27) 0.64(0.64) 0.68(0.68) 0.70(0.70) 0.73(0.73) 0.88(0.62)

A. Ground-state and ionization energies at
equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
sets. The differences in ionization energies between the basis
sets with double zeta functions and these with triple zeta
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the number of neutrons increases. This is attributable to the
strong components of the proton-neutron forces, which also
enhances their correlations. However, the overall dependence
on proton-neutron asymmetry is rather mild. We note that the
vicinity to the neutron dripline would require to explicitly
account for the continuum. Reference [71] found that this
effect is sizable for 24,28O and leads to further quenching
of the proton SFs. Again, this could be interpreted as a
reduced gap between the highest neutron quasihole state and
the nearby particle continuum. In this sense, the reduction of
SFs is an indirect consequence of the change in proton-neutron
asymmetry, which first affects energy gaps.

For the case of the NN + 3N -induced Hamiltonian we
find a completely similar picture, with SFs of dominant peaks
being on average slightly larger than those obtained with the
full interaction. Also in this case, stronger quenchings are
associated with increased fragmentation of nearby strength
and the narrowing of (sub-)shell gaps. Thus, we conclude that
the general effects of the original 3NFs on the quenching of
absolute SFs mainly results from the rearrangement of shell
orbits and excitation gaps.

C. Results for open shells

The present implementation of the Gorkov-GF approach
allows calculations up to the second order in the self-energy
[i.e., at the ADC(2) level]. Although this does not guarantee
the best precision for quasiparticle energies [49], it still yields
proper predictions for the trend of binding energies [22].

We plot the Gorkov-predicted binding energies for all
oxygen isotopes in Fig. 6 and compare them to the Dyson-
ADC(3) results where available. For the Dyson case, the
NN + 3N -induced Hamiltonian systematically underbinds
the full isotopic chain and predicts 28O to be bound with

 O  O  O  O  O  O  O  O
-180

-160

-140

-120

-100

-80

-60

Dys-ADC(3), NN+3N(ind)

Dys-ADC(3), NN+3N(full)

Gkv-2nd, NN+3N(full)

Exp

14 16 18 20 22 24 26 28

E
g.

s.
 [

M
eV

]

ω=24 MeV

SRG=2.0 fm-1

Dys-ADC(3),  NN+3N(full)

Dys-ADC(3),  NN+3N(ind)

Gorkov-2nd,   NN+3N(full)
Exp

FIG. 6. (Color online) Binding energies of oxygen isotopes.
Dashed and solid lines join the results from Dyson-ADC(3) cal-
culations with the NN + 3N -induced (squares) and full (circles)
Hamiltonians. The shaded area highlights the changes owing to the
original 3NF at NNLO. The open diamonds, joined by dot-dashed
lines, are from Gorkov calculations at second order and include
open-shell isotopes. Odd-even isotopes are obtained by summing
total binging energies of the even-even systems [Eq. (10)] and the
energies for addition or removal of a neutron [Eq. (12)]. Experiment
are from Refs. [56,57,60,63,72].

respect to 24O. This is fully corrected by including the
original 3NF at leading order, which brings all results to about
3% form the experiment or closer. This is well within the
estimated theoretical errors discussed above [19]. The dot-
dashed line shows the trend of ground-state energies for the full
Hamiltonian obtained form Gorkov, which include the 18,20,26O
isotopes. This demonstrates that the fraction of binding missed
by the second-order truncation is rather constant across the
whole isotopic chain and, in the present case, of about
2–4 MeV. The result is a constant shift with respect to the
complete ADC(3) prediction and the overall trend of binding
energy is reproduced very close to the experiment. Note that
binding energies for odd-even oxygens can be calculated either
as neutron addition or neutron removal from two different
nearby isotopes. Figure 6 shows that this procedure can lead
to somewhat different results, which should be taken as an
indication of the errors owing to the second-order many-body
truncation. For the more complete Dyson-ADC(3) method and
the full Hamiltonian, these differences are never larger than
200 keV and are not visible in the plot. Our calculations with
the more accurate Dyson-ADC(3) scheme predict 28O to be
unbound with respect to 24O by 5.2 MeV. However, this value
should be slightly affected by the vicinity to the continuum
[17], which was neglected in the present work.

Figure 7 shows the analogous information for the binding
energies of the nitrogen and fluorine isotopic chains, obtained
through removal and addition of one proton. This confirms that
all considerations made regarding the effects of leading-order
3NFs on the oxygens also apply to their neighboring chains. In
particular, the repulsive effect on the d3/2 neutron orbit is key
in determining the neutron driplines at 23N and 24O. Fluorine
isotopes have been observed experimentally up to 31F but with
a 29F that is very weakly bound. Figure 7 clearly demonstrates
that this is attributable to an very subtle cancellation between
the repulsion form 3NFs and the attraction generated by one
extra proton [19].

The general qualitative features of the spectral functions
discussed in the previous sections are also found in our Gorkov
propagators but with an even more spread single-particle
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FIG. 7. (Color online) Same as Fig. 6 but for the binding energies
of nitrogen and fluorine isotopes. These are calculated as addition
or removal of a proton to and from even-even oxygen isotopes.
Experiment are from Refs. [56–58,63,72].
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the number of neutrons increases. This is attributable to the
strong components of the proton-neutron forces, which also
enhances their correlations. However, the overall dependence
on proton-neutron asymmetry is rather mild. We note that the
vicinity to the neutron dripline would require to explicitly
account for the continuum. Reference [71] found that this
effect is sizable for 24,28O and leads to further quenching
of the proton SFs. Again, this could be interpreted as a
reduced gap between the highest neutron quasihole state and
the nearby particle continuum. In this sense, the reduction of
SFs is an indirect consequence of the change in proton-neutron
asymmetry, which first affects energy gaps.

For the case of the NN + 3N -induced Hamiltonian we
find a completely similar picture, with SFs of dominant peaks
being on average slightly larger than those obtained with the
full interaction. Also in this case, stronger quenchings are
associated with increased fragmentation of nearby strength
and the narrowing of (sub-)shell gaps. Thus, we conclude that
the general effects of the original 3NFs on the quenching of
absolute SFs mainly results from the rearrangement of shell
orbits and excitation gaps.

C. Results for open shells

The present implementation of the Gorkov-GF approach
allows calculations up to the second order in the self-energy
[i.e., at the ADC(2) level]. Although this does not guarantee
the best precision for quasiparticle energies [49], it still yields
proper predictions for the trend of binding energies [22].

We plot the Gorkov-predicted binding energies for all
oxygen isotopes in Fig. 6 and compare them to the Dyson-
ADC(3) results where available. For the Dyson case, the
NN + 3N -induced Hamiltonian systematically underbinds
the full isotopic chain and predicts 28O to be bound with
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FIG. 6. (Color online) Binding energies of oxygen isotopes.
Dashed and solid lines join the results from Dyson-ADC(3) cal-
culations with the NN + 3N -induced (squares) and full (circles)
Hamiltonians. The shaded area highlights the changes owing to the
original 3NF at NNLO. The open diamonds, joined by dot-dashed
lines, are from Gorkov calculations at second order and include
open-shell isotopes. Odd-even isotopes are obtained by summing
total binging energies of the even-even systems [Eq. (10)] and the
energies for addition or removal of a neutron [Eq. (12)]. Experiment
are from Refs. [56,57,60,63,72].

respect to 24O. This is fully corrected by including the
original 3NF at leading order, which brings all results to about
3% form the experiment or closer. This is well within the
estimated theoretical errors discussed above [19]. The dot-
dashed line shows the trend of ground-state energies for the full
Hamiltonian obtained form Gorkov, which include the 18,20,26O
isotopes. This demonstrates that the fraction of binding missed
by the second-order truncation is rather constant across the
whole isotopic chain and, in the present case, of about
2–4 MeV. The result is a constant shift with respect to the
complete ADC(3) prediction and the overall trend of binding
energy is reproduced very close to the experiment. Note that
binding energies for odd-even oxygens can be calculated either
as neutron addition or neutron removal from two different
nearby isotopes. Figure 6 shows that this procedure can lead
to somewhat different results, which should be taken as an
indication of the errors owing to the second-order many-body
truncation. For the more complete Dyson-ADC(3) method and
the full Hamiltonian, these differences are never larger than
200 keV and are not visible in the plot. Our calculations with
the more accurate Dyson-ADC(3) scheme predict 28O to be
unbound with respect to 24O by 5.2 MeV. However, this value
should be slightly affected by the vicinity to the continuum
[17], which was neglected in the present work.

Figure 7 shows the analogous information for the binding
energies of the nitrogen and fluorine isotopic chains, obtained
through removal and addition of one proton. This confirms that
all considerations made regarding the effects of leading-order
3NFs on the oxygens also apply to their neighboring chains. In
particular, the repulsive effect on the d3/2 neutron orbit is key
in determining the neutron driplines at 23N and 24O. Fluorine
isotopes have been observed experimentally up to 31F but with
a 29F that is very weakly bound. Figure 7 clearly demonstrates
that this is attributable to an very subtle cancellation between
the repulsion form 3NFs and the attraction generated by one
extra proton [19].

The general qualitative features of the spectral functions
discussed in the previous sections are also found in our Gorkov
propagators but with an even more spread single-particle
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FIG. 7. (Color online) Same as Fig. 6 but for the binding energies
of nitrogen and fluorine isotopes. These are calculated as addition
or removal of a proton to and from even-even oxygen isotopes.
Experiment are from Refs. [56–58,63,72].
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 3NF crucial for reproducing binding energies and driplines around oxygen 

  cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm-1) 
N2LO (Λ = 400Mev/c) chiral 3N interaction  evolved (2.0fm-1)

 A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) 
and  Phys. Rev. C 92, 014306 (2015)

Results for the N-O-F chains
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A. Ground-state energies

Computed ground-state energies for Ar, K, Ca, Sc, Ti,
V and Cr isotopic chains are displayed in Fig. 11 and
compared to experimental (measured and extrapolated)
data. The global behaviour is well captured by the calcu-
lated energies across all values of Z and N . Underbind-
ing with respect to experiment is observed for all chains,
with the absolute di↵erence between computed and mea-
sured data increasing with mass number along a given
chain. As demonstrated for Ca and Ni isotopes in Figs. 3
and 4, ADC(3) correlations are expected to correct to a
large extent for this underbinding. Thus, one can con-
clude that bulk properties are reasonably well described
by the NN+3N(lnl) interaction consistently across the
medium-mass region of the nuclear chart.

Systematically accessing successive nuclides along an
isotopic chain allows investigating some of the most fun-
damental properties of atomic nuclei such as the limits
of their existence as bound states or the emergence (and
evolution) of magic numbers. Such properties are best
studied by looking at total ground-state energy di↵er-
ences, e.g. at two-neutron separation energies

S2n(N,Z) ⌘ |E(N,Z)|� |E(N � 2, Z)| (2)

or their di↵erences, usually referred to as neutron gaps

�2n(N,Z) ⌘ S2n(N,Z)� S2n(N + 2, Z) . (3)
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FIG. 12. Two-neutron separation energies along Z = 18� 24
isotopic chains computed within the ADC(2) approximation
with the NN + 3N(lnl) interaction, compared to experimen-
tal (measured and extrapolated) data. Both calculated and
experimental values are shifted by (Z � 20) ⇥ 5 MeV for a
better readability.
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FIG. 13. Relative errors on total binding energies along Z =
18, 20, 22 and 24 isotopic chains computed within the ADC(2)
approximation with the NN + 3N(lnl) interaction.

S2n computed from total energies of Fig. 11 are shown
in Fig. 12 together with available and extrapolated ex-
perimental data. The overall agreement with experiment
is good, with computed values following the main trends
of measured data. The two main gaps, relative to neu-
tron magic numbers N = 20, 28 and associated with sud-
den drops of S2n, are visible in all theoretical curves.
The N = 28 gap is very well reproduced across all iso-
topic chains, with the good description carrying over to
larger neutron numbers for most chains. On the contrary,
the N = 20 turns out to be overestimated in all cases,
with the comparison to experiment worsening when de-
parting from proton magic number Z = 20. The de-
scription worsens also in other regions, e.g. for argon
isotopes between N = 20 and N = 28 or more gener-
ally for chromium isotopes. In such systems both pro-
tons and neutrons have an open-shell character. The
absence of a closed-shell, which normally maintains the
nucleus at or near sphericity, is likely to lead to a de-
formed ground-state. Present calculations are however
restricted to spherical solutions, and the employed many-
body truncation is not expected to be high enough to
capture su�cient correlations related to deformation (e.g.
quadrupole correlations).

To substantiate the above observations let us plot, in
Fig. 13, di↵erences between computed and experimen-
tal ground-state energies per nucleon for the four even-
Z isotopic chains considered here. One notices that for
calcium isotopes (Z = 20), characterised by good closed-
shell protons, calculations are the closest to experiment.
Argon and titanium isotopes, with two protons less and

[Somà et al. 2021]

➪ Magic numbers emerge “ab initio”

➪ Their evolution qualitatively captured
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Fig. 5 Two-neutron shell gaps, Eq. (5), along Z = 18−24 isotopic
chains computed with the NN+3N (lnl) interaction (symbols joined by
solid lines), compared to experimental (measured, full symbols and
extrapolated, empty symbols) data. Both theoretical and experimental
values are shifted by (Z − 20) × 10 MeV for a better readability

mated by at least 5 MeV in all considered isotones. The dis-
agreement becomes more severe for low neutron numbers,
which impacts the determination of the proton dripline in
lighter isotopes. In spite of these shortcomings, this detailed
analysis confirms the overall quality of present ab initio cal-
culations, not dissimilar from what emerges from the sys-
tematic study reported in Ref. [56].

3.3 Neutron gaps

A finer insight regarding the magic character of specific neu-
tron numbers can be gained by looking at so-called two-
neutron shell gaps, defined as

∆2n(N , Z) ≡ S2n(N , Z) − S2n(N + 2, Z) (5)

and displayed in Fig. 5. As for the S2n, one first notices an
overall very good agreement with experiment, with the clear
exception of the N = 20 peak and its vicinity. R.m.s. devia-
tions for this quantity are slightly larger to the ones character-
ising two-neutron separation energies, specifically 3.8, 1.9,
2.9 and 2.4 MeV for argon, calcium, titanium and chromium
respectively. While in semi-magic calcium isotopes calcu-
lations only fail to reproduce the height of the peak, exper-
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Fig. 6 Two-neutron shell gaps, Eq. (5), along four isotonic chains com-
puted with the NN+3N (lnl) interaction (circles), compared to experi-
mental (measured, full squares, and extrapolated, empty squares) data.
Results for N = 28, 30, 32 and 34 are shown in panels a–d respectively

imental data for other isotopes show a displacement of the
peak, linked to a possible disappearance of the N = 20 magic
number, which is not reproduced by the present calculations.
In contrast, the N = 28 peak is very well reproduced up
to Z = 22, with the description only slightly deteriorating
for Z = 23 and Z = 24. The emergence of the N = 32
subclosure is nicely visible in lighter elements, as well as
the one at N = 34 in argon, potassium and calcium. When
going towards higher proton number their evolution is poorly
described starting with N = 34 in scandium and N = 32
in vanadium. The behaviour becomes even more inconsis-
tent for chromium. Again, this might signal the importance
of certain ingredients (e.g. quadrupole correlations) that are
missing in the present theoretical framework.

In spite of these deficiencies, remarkably, all magic num-
bers as well as their qualitative evolution emerge “from first
principles”, i.e. starting solely from inter-nucleon interac-
tions whose coupling constants have been adjusted only in
few-body systems. Let us stress that, indeed, no ad hoc infor-
mation about the magic character of these isotopes is inserted
at any stage of the calculation. The emergence of this feature
can be better appreciated in Fig. 6 where two-neutron gaps
are compared to experimental (measured and extrapolated)
data along N = 28, 30, 32 and 34 isotonic chains. While
there is room for improvement in Z = 22, 23, 24 isotones
for reasons discussed above, the overall description is very
reasonable. In addition, calculations of the N = 28 gaps were
recently extended down to chlorine and sulfur [39] where an
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excellent agreement with novel precision mass measurement
was also found.

3.4 Three-point mass differences

One of the longstanding challenges in low-energy nuclear
physics relates to the microscopic description of nuclear
superfluidity [57]. The microscopic origin of nucleonic pair-
ing, i.e. how it originates in the context of a first-principle cal-
culation and the role played by different types of many-body
correlations, remains to be elucidated [58]. A fundamental,
yet unresolved, question relates to how much of the pairing
gap in finite nuclei is accounted for at lowest order [59,60]
and how much is due to higher-order processes, i.e. to the
induced interaction associated with the exchange of collec-
tive medium fluctuations between paired particles [61–64].
By treating normal and anomalous propagators consistently
and at the same level of approximation, GSCGF many-body
scheme is in an excellent position to contribute to this quest.
In finite nuclei, the odd-even mass staggering is a good mea-
sure of nucleonic, e.g. neutron, pairing. In particular, the
three-point mass difference formula

∆(3)(N , Z) ≡ (−1)N

2
[E(N − 1, Z) − 2E(N , Z)

+E(N + 1, Z)] (6)

successively evaluated for even and odd N closely encom-
passes the pairing gap [55,65] as long as N does not corre-
spond to a shell closure6. Calculated three-point mass differ-
ences for argon, calcium, titanium and chromium are com-
pared to available experimental data in Fig. 7. In spite of a
reasonable general trend, the pairing strength generated in the
present ab initio calculations is too low compared to experi-
ment. This feature is particularly visible for N ∈ [21, 27] iso-
topes in all considered chains, as well as beyond N = 34 for
calcium and chromium. Keeping in mind the possible defi-
ciency of the currently used Hamiltonian, this result likely
points to missing higher-order correlations. The ADC(2)
truncation scheme employed here already includes both the
lowest-order pairing term and the induced interaction result-
ing from the exchange of unperturbed particle-hole excita-
tions. However, it does not account for the collective vibra-
tions that are thought to be responsible for the remaining pair-
ing strength [61–64]. Consequently, it does improve on HFB
results, e.g., by correcting the odd-even staggering present at
the mean-field level (not shown here), but it does not signifi-
cantly change the amplitude of the pairing gap. The extension

6 Note that ∆(3) corresponds to half of the energy difference between
the lowest unoccupied quasiparticle and the highest occupied quasihole
states, that is the particle-hole neutron gap at the Fermi surface. At
subshell closures, this is dominated by the gap among different nuclear
orbits. However, for open neutron shells only the pairing contribution
remains.
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24 isotopic chains computed with the NN+3N (lnl) interaction (sym-
bols joined by solid lines), compared to experimental (measured, full
symbols and extrapolated, empty symbols) data. Both calculated and
experimental values are shifted by (Z−20) × 2 MeV for a better read-
ability

of GSCGF to the ADC(3) level is envisaged in the near future,
knowing that such a truncation does indeed seize important
features of collective fluctuations and of their effect on super-
fluidity.

In titanium and chromium, theoretical and experimental
three-point mass differences show further qualitative differ-
ences. In addition to the average value of ∆(3) being too
low, the increase of its oscillation between N = 20 and
N = 28 compared to calcium isotopes along with the shell-
closure disappearances at N = 28, 32, 34 are not captured.
The oscillation of ∆(3) around its average is not related to the
anomalous part of the self-energy (i.e. the pairing gap) but
rather to its normal part (i.e. the effective mean-field) [55,65].
The qualitative evolution of this staggering from calcium
to titanium and chromium pointed out above is thus a fin-
gerprint of increased quadrupole correlations on the normal
self-energy. The absence of this evolution in our theoretical
calculation confirms the need to include these correlations
consistently in both normal and anomalous channels. While
extending GSCGF to the ADC(3) level should help better
describing the staggering of ∆(3), an explicit treatment of
deformation will probably be the most efficient way to reach
a quantitative agreement whenever quadrupole fluctuations
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pared to available experimental data in Fig. 7. In spite of a
reasonable general trend, the pairing strength generated in the
present ab initio calculations is too low compared to experi-
ment. This feature is particularly visible for N ∈ [21, 27] iso-
topes in all considered chains, as well as beyond N = 34 for
calcium and chromium. Keeping in mind the possible defi-
ciency of the currently used Hamiltonian, this result likely
points to missing higher-order correlations. The ADC(2)
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ing from the exchange of unperturbed particle-hole excita-
tions. However, it does not account for the collective vibra-
tions that are thought to be responsible for the remaining pair-
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of GSCGF to the ADC(3) level is envisaged in the near future,
knowing that such a truncation does indeed seize important
features of collective fluctuations and of their effect on super-
fluidity.

In titanium and chromium, theoretical and experimental
three-point mass differences show further qualitative differ-
ences. In addition to the average value of ∆(3) being too
low, the increase of its oscillation between N = 20 and
N = 28 compared to calcium isotopes along with the shell-
closure disappearances at N = 28, 32, 34 are not captured.
The oscillation of ∆(3) around its average is not related to the
anomalous part of the self-energy (i.e. the pairing gap) but
rather to its normal part (i.e. the effective mean-field) [55,65].
The qualitative evolution of this staggering from calcium
to titanium and chromium pointed out above is thus a fin-
gerprint of increased quadrupole correlations on the normal
self-energy. The absence of this evolution in our theoretical
calculation confirms the need to include these correlations
consistently in both normal and anomalous channels. While
extending GSCGF to the ADC(3) level should help better
describing the staggering of ∆(3), an explicit treatment of
deformation will probably be the most efficient way to reach
a quantitative agreement whenever quadrupole fluctuations
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mated by at least 5 MeV in all considered isotones. The dis-
agreement becomes more severe for low neutron numbers,
which impacts the determination of the proton dripline in
lighter isotopes. In spite of these shortcomings, this detailed
analysis confirms the overall quality of present ab initio cal-
culations, not dissimilar from what emerges from the sys-
tematic study reported in Ref. [56].

3.3 Neutron gaps

A finer insight regarding the magic character of specific neu-
tron numbers can be gained by looking at so-called two-
neutron shell gaps, defined as

∆2n(N , Z) ≡ S2n(N , Z) − S2n(N + 2, Z) (5)

and displayed in Fig. 5. As for the S2n, one first notices an
overall very good agreement with experiment, with the clear
exception of the N = 20 peak and its vicinity. R.m.s. devia-
tions for this quantity are slightly larger to the ones character-
ising two-neutron separation energies, specifically 3.8, 1.9,
2.9 and 2.4 MeV for argon, calcium, titanium and chromium
respectively. While in semi-magic calcium isotopes calcu-
lations only fail to reproduce the height of the peak, exper-
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Fig. 6 Two-neutron shell gaps, Eq. (5), along four isotonic chains com-
puted with the NN+3N (lnl) interaction (circles), compared to experi-
mental (measured, full squares, and extrapolated, empty squares) data.
Results for N = 28, 30, 32 and 34 are shown in panels a–d respectively

imental data for other isotopes show a displacement of the
peak, linked to a possible disappearance of the N = 20 magic
number, which is not reproduced by the present calculations.
In contrast, the N = 28 peak is very well reproduced up
to Z = 22, with the description only slightly deteriorating
for Z = 23 and Z = 24. The emergence of the N = 32
subclosure is nicely visible in lighter elements, as well as
the one at N = 34 in argon, potassium and calcium. When
going towards higher proton number their evolution is poorly
described starting with N = 34 in scandium and N = 32
in vanadium. The behaviour becomes even more inconsis-
tent for chromium. Again, this might signal the importance
of certain ingredients (e.g. quadrupole correlations) that are
missing in the present theoretical framework.

In spite of these deficiencies, remarkably, all magic num-
bers as well as their qualitative evolution emerge “from first
principles”, i.e. starting solely from inter-nucleon interac-
tions whose coupling constants have been adjusted only in
few-body systems. Let us stress that, indeed, no ad hoc infor-
mation about the magic character of these isotopes is inserted
at any stage of the calculation. The emergence of this feature
can be better appreciated in Fig. 6 where two-neutron gaps
are compared to experimental (measured and extrapolated)
data along N = 28, 30, 32 and 34 isotonic chains. While
there is room for improvement in Z = 22, 23, 24 isotones
for reasons discussed above, the overall description is very
reasonable. In addition, calculations of the N = 28 gaps were
recently extended down to chlorine and sulfur [39] where an
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A. Ground-state energies

Computed ground-state energies for Ar, K, Ca, Sc, Ti,
V and Cr isotopic chains are displayed in Fig. 11 and
compared to experimental (measured and extrapolated)
data. The global behaviour is well captured by the calcu-
lated energies across all values of Z and N . Underbind-
ing with respect to experiment is observed for all chains,
with the absolute di↵erence between computed and mea-
sured data increasing with mass number along a given
chain. As demonstrated for Ca and Ni isotopes in Figs. 3
and 4, ADC(3) correlations are expected to correct to a
large extent for this underbinding. Thus, one can con-
clude that bulk properties are reasonably well described
by the NN+3N(lnl) interaction consistently across the
medium-mass region of the nuclear chart.

Systematically accessing successive nuclides along an
isotopic chain allows investigating some of the most fun-
damental properties of atomic nuclei such as the limits
of their existence as bound states or the emergence (and
evolution) of magic numbers. Such properties are best
studied by looking at total ground-state energy di↵er-
ences, e.g. at two-neutron separation energies

S2n(N,Z) ⌘ |E(N,Z)|� |E(N � 2, Z)| (2)

or their di↵erences, usually referred to as neutron gaps

�2n(N,Z) ⌘ S2n(N,Z)� S2n(N + 2, Z) . (3)
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S2n computed from total energies of Fig. 11 are shown
in Fig. 12 together with available and extrapolated ex-
perimental data. The overall agreement with experiment
is good, with computed values following the main trends
of measured data. The two main gaps, relative to neu-
tron magic numbers N = 20, 28 and associated with sud-
den drops of S2n, are visible in all theoretical curves.
The N = 28 gap is very well reproduced across all iso-
topic chains, with the good description carrying over to
larger neutron numbers for most chains. On the contrary,
the N = 20 turns out to be overestimated in all cases,
with the comparison to experiment worsening when de-
parting from proton magic number Z = 20. The de-
scription worsens also in other regions, e.g. for argon
isotopes between N = 20 and N = 28 or more gener-
ally for chromium isotopes. In such systems both pro-
tons and neutrons have an open-shell character. The
absence of a closed-shell, which normally maintains the
nucleus at or near sphericity, is likely to lead to a de-
formed ground-state. Present calculations are however
restricted to spherical solutions, and the employed many-
body truncation is not expected to be high enough to
capture su�cient correlations related to deformation (e.g.
quadrupole correlations).

To substantiate the above observations let us plot, in
Fig. 13, di↵erences between computed and experimen-
tal ground-state energies per nucleon for the four even-
Z isotopic chains considered here. One notices that for
calcium isotopes (Z = 20), characterised by good closed-
shell protons, calculations are the closest to experiment.
Argon and titanium isotopes, with two protons less and

[Somà et al. 2021]
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mated by at least 5 MeV in all considered isotones. The dis-
agreement becomes more severe for low neutron numbers,
which impacts the determination of the proton dripline in
lighter isotopes. In spite of these shortcomings, this detailed
analysis confirms the overall quality of present ab initio cal-
culations, not dissimilar from what emerges from the sys-
tematic study reported in Ref. [56].

3.3 Neutron gaps

A finer insight regarding the magic character of specific neu-
tron numbers can be gained by looking at so-called two-
neutron shell gaps, defined as

∆2n(N , Z) ≡ S2n(N , Z) − S2n(N + 2, Z) (5)

and displayed in Fig. 5. As for the S2n, one first notices an
overall very good agreement with experiment, with the clear
exception of the N = 20 peak and its vicinity. R.m.s. devia-
tions for this quantity are slightly larger to the ones character-
ising two-neutron separation energies, specifically 3.8, 1.9,
2.9 and 2.4 MeV for argon, calcium, titanium and chromium
respectively. While in semi-magic calcium isotopes calcu-
lations only fail to reproduce the height of the peak, exper-
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imental data for other isotopes show a displacement of the
peak, linked to a possible disappearance of the N = 20 magic
number, which is not reproduced by the present calculations.
In contrast, the N = 28 peak is very well reproduced up
to Z = 22, with the description only slightly deteriorating
for Z = 23 and Z = 24. The emergence of the N = 32
subclosure is nicely visible in lighter elements, as well as
the one at N = 34 in argon, potassium and calcium. When
going towards higher proton number their evolution is poorly
described starting with N = 34 in scandium and N = 32
in vanadium. The behaviour becomes even more inconsis-
tent for chromium. Again, this might signal the importance
of certain ingredients (e.g. quadrupole correlations) that are
missing in the present theoretical framework.

In spite of these deficiencies, remarkably, all magic num-
bers as well as their qualitative evolution emerge “from first
principles”, i.e. starting solely from inter-nucleon interac-
tions whose coupling constants have been adjusted only in
few-body systems. Let us stress that, indeed, no ad hoc infor-
mation about the magic character of these isotopes is inserted
at any stage of the calculation. The emergence of this feature
can be better appreciated in Fig. 6 where two-neutron gaps
are compared to experimental (measured and extrapolated)
data along N = 28, 30, 32 and 34 isotonic chains. While
there is room for improvement in Z = 22, 23, 24 isotones
for reasons discussed above, the overall description is very
reasonable. In addition, calculations of the N = 28 gaps were
recently extended down to chlorine and sulfur [39] where an
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excellent agreement with novel precision mass measurement
was also found.

3.4 Three-point mass differences

One of the longstanding challenges in low-energy nuclear
physics relates to the microscopic description of nuclear
superfluidity [57]. The microscopic origin of nucleonic pair-
ing, i.e. how it originates in the context of a first-principle cal-
culation and the role played by different types of many-body
correlations, remains to be elucidated [58]. A fundamental,
yet unresolved, question relates to how much of the pairing
gap in finite nuclei is accounted for at lowest order [59,60]
and how much is due to higher-order processes, i.e. to the
induced interaction associated with the exchange of collec-
tive medium fluctuations between paired particles [61–64].
By treating normal and anomalous propagators consistently
and at the same level of approximation, GSCGF many-body
scheme is in an excellent position to contribute to this quest.
In finite nuclei, the odd-even mass staggering is a good mea-
sure of nucleonic, e.g. neutron, pairing. In particular, the
three-point mass difference formula

∆(3)(N , Z) ≡ (−1)N

2
[E(N − 1, Z) − 2E(N , Z)

+E(N + 1, Z)] (6)

successively evaluated for even and odd N closely encom-
passes the pairing gap [55,65] as long as N does not corre-
spond to a shell closure6. Calculated three-point mass differ-
ences for argon, calcium, titanium and chromium are com-
pared to available experimental data in Fig. 7. In spite of a
reasonable general trend, the pairing strength generated in the
present ab initio calculations is too low compared to experi-
ment. This feature is particularly visible for N ∈ [21, 27] iso-
topes in all considered chains, as well as beyond N = 34 for
calcium and chromium. Keeping in mind the possible defi-
ciency of the currently used Hamiltonian, this result likely
points to missing higher-order correlations. The ADC(2)
truncation scheme employed here already includes both the
lowest-order pairing term and the induced interaction result-
ing from the exchange of unperturbed particle-hole excita-
tions. However, it does not account for the collective vibra-
tions that are thought to be responsible for the remaining pair-
ing strength [61–64]. Consequently, it does improve on HFB
results, e.g., by correcting the odd-even staggering present at
the mean-field level (not shown here), but it does not signifi-
cantly change the amplitude of the pairing gap. The extension

6 Note that ∆(3) corresponds to half of the energy difference between
the lowest unoccupied quasiparticle and the highest occupied quasihole
states, that is the particle-hole neutron gap at the Fermi surface. At
subshell closures, this is dominated by the gap among different nuclear
orbits. However, for open neutron shells only the pairing contribution
remains.
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experimental values are shifted by (Z−20) × 2 MeV for a better read-
ability

of GSCGF to the ADC(3) level is envisaged in the near future,
knowing that such a truncation does indeed seize important
features of collective fluctuations and of their effect on super-
fluidity.

In titanium and chromium, theoretical and experimental
three-point mass differences show further qualitative differ-
ences. In addition to the average value of ∆(3) being too
low, the increase of its oscillation between N = 20 and
N = 28 compared to calcium isotopes along with the shell-
closure disappearances at N = 28, 32, 34 are not captured.
The oscillation of ∆(3) around its average is not related to the
anomalous part of the self-energy (i.e. the pairing gap) but
rather to its normal part (i.e. the effective mean-field) [55,65].
The qualitative evolution of this staggering from calcium
to titanium and chromium pointed out above is thus a fin-
gerprint of increased quadrupole correlations on the normal
self-energy. The absence of this evolution in our theoretical
calculation confirms the need to include these correlations
consistently in both normal and anomalous channels. While
extending GSCGF to the ADC(3) level should help better
describing the staggering of ∆(3), an explicit treatment of
deformation will probably be the most efficient way to reach
a quantitative agreement whenever quadrupole fluctuations
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excellent agreement with novel precision mass measurement
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+E(N + 1, Z)] (6)
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passes the pairing gap [55,65] as long as N does not corre-
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6 Note that ∆(3) corresponds to half of the energy difference between
the lowest unoccupied quasiparticle and the highest occupied quasihole
states, that is the particle-hole neutron gap at the Fermi surface. At
subshell closures, this is dominated by the gap among different nuclear
orbits. However, for open neutron shells only the pairing contribution
remains.
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The oscillation of ∆(3) around its average is not related to the
anomalous part of the self-energy (i.e. the pairing gap) but
rather to its normal part (i.e. the effective mean-field) [55,65].
The qualitative evolution of this staggering from calcium
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gerprint of increased quadrupole correlations on the normal
self-energy. The absence of this evolution in our theoretical
calculation confirms the need to include these correlations
consistently in both normal and anomalous channels. While
extending GSCGF to the ADC(3) level should help better
describing the staggering of ∆(3), an explicit treatment of
deformation will probably be the most efficient way to reach
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mated by at least 5 MeV in all considered isotones. The dis-
agreement becomes more severe for low neutron numbers,
which impacts the determination of the proton dripline in
lighter isotopes. In spite of these shortcomings, this detailed
analysis confirms the overall quality of present ab initio cal-
culations, not dissimilar from what emerges from the sys-
tematic study reported in Ref. [56].

3.3 Neutron gaps

A finer insight regarding the magic character of specific neu-
tron numbers can be gained by looking at so-called two-
neutron shell gaps, defined as

∆2n(N , Z) ≡ S2n(N , Z) − S2n(N + 2, Z) (5)

and displayed in Fig. 5. As for the S2n, one first notices an
overall very good agreement with experiment, with the clear
exception of the N = 20 peak and its vicinity. R.m.s. devia-
tions for this quantity are slightly larger to the ones character-
ising two-neutron separation energies, specifically 3.8, 1.9,
2.9 and 2.4 MeV for argon, calcium, titanium and chromium
respectively. While in semi-magic calcium isotopes calcu-
lations only fail to reproduce the height of the peak, exper-
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Fig. 6 Two-neutron shell gaps, Eq. (5), along four isotonic chains com-
puted with the NN+3N (lnl) interaction (circles), compared to experi-
mental (measured, full squares, and extrapolated, empty squares) data.
Results for N = 28, 30, 32 and 34 are shown in panels a–d respectively

imental data for other isotopes show a displacement of the
peak, linked to a possible disappearance of the N = 20 magic
number, which is not reproduced by the present calculations.
In contrast, the N = 28 peak is very well reproduced up
to Z = 22, with the description only slightly deteriorating
for Z = 23 and Z = 24. The emergence of the N = 32
subclosure is nicely visible in lighter elements, as well as
the one at N = 34 in argon, potassium and calcium. When
going towards higher proton number their evolution is poorly
described starting with N = 34 in scandium and N = 32
in vanadium. The behaviour becomes even more inconsis-
tent for chromium. Again, this might signal the importance
of certain ingredients (e.g. quadrupole correlations) that are
missing in the present theoretical framework.

In spite of these deficiencies, remarkably, all magic num-
bers as well as their qualitative evolution emerge “from first
principles”, i.e. starting solely from inter-nucleon interac-
tions whose coupling constants have been adjusted only in
few-body systems. Let us stress that, indeed, no ad hoc infor-
mation about the magic character of these isotopes is inserted
at any stage of the calculation. The emergence of this feature
can be better appreciated in Fig. 6 where two-neutron gaps
are compared to experimental (measured and extrapolated)
data along N = 28, 30, 32 and 34 isotonic chains. While
there is room for improvement in Z = 22, 23, 24 isotones
for reasons discussed above, the overall description is very
reasonable. In addition, calculations of the N = 28 gaps were
recently extended down to chlorine and sulfur [39] where an
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Known magic and semimagic nuclei:
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The physics contained in the one-boby Green’s function 

56Ni

[Phys Rev. Lett. 103, 202502 (2009)]

One-body propagator:

Dyson Equation:

(One-body) spectral function:
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Elastic nucleon nucleus scattering
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MICROSCOPIC OPTICAL POTENTIALS FOR … PHYSICAL REVIEW C 109, 034613 (2024)

at devising a framework for nucleon-nucleus elastic scatter-
ing that is free from phenomenology and sufficiently reliable
to guide future experimental researches. Our OP is derived
within the Watson multiple scattering theory, using NN and
3N chiral interactions as the only input. The final expression
for the OP is obtained at the first order of the spectator expan-
sion as the folding integral between the density of the target
nucleus and the NN t matrix, representing respectively the
structure and the dynamic part of the OP.

Earlier applications of this approach were affected by a
lack of consistency between the calculation of the t matrix
and the one-nucleon density profile of the target, which were
obtained with different techniques. This problem was recently
overcome for light isotopes using the ab initio NCSM, which
can provide accurate descriptions of the target density adopt-
ing the same chiral interaction used in the computation of
the NN t matrix. Within this framework, the model was then
extended to describe antiproton scattering, to investigate the
impact of 3N interactions on the dynamic part of the OP,
and to be applied to nonzero spin targets [49–51]. In gen-
eral, however, the study of systems far from stability requires
knowing microscopic OPs for a wide range of target isotopes,
with medium and heavy mass, that are beyond the reach of
foreseeable NCSM applications.

In this work, we have begun to exploit SCGF theory in
aid to the current spectator model framework. The SCGF ap-
proach presents better scaling of computational requirements
with respect to the mass number that allows us to reach heavier
systems, currently up to masses A ≈ 140, and provides fully
nonlocal density matrices for the target. We presented and
discussed results for differential cross sections and analyzing
powers of elastic proton scattering up to 201 MeV in labora-
tory energy, where chiral interactions are still usable and one
can rely on the impulse approximation. Detailed computations
for 40Ca and 66Ni targets demonstrate that the SCGF input
is completely stable and scattering observables are well con-
verged with respect to the model space, three-nucleon forces,
and many-body truncation already at the ADC(2) level. We
further compared to the available experimental data for elastic
proton scattering off 40,48Ca and 58,60,62Ni targets. In all cases
we obtained a very good reproduction of the experimental
differential cross section and a remarkable description of the
analyzing power, where the minima are correctly reproduced.
Agreement with the experiment remained satisfactory down
to Elab = 65 MeV energies for 40Ca even if this is some-
what below the limits of validity expected for the impulse
approximation.

The good agreement between our results and experimental
data gives us confidence in the reliability of the theoretical
OPs. Therefore, we computed predictions for elastic scatter-
ing off the whole Ca and Ni isotopic chains to investigate
the evolution of the differential cross section and analyzing
power with the increasing asymmetry between the number of
neutrons and protons. For both isotopic chains we observed a
compression of minima in the differential cross section toward
smaller scattering angles when increasing neutron-to-proton
asymmetry, as due to the bigger root-mean-square radii. This

FIG. 13. Differential cross section (top panel) and analyzing
power (bottom panel) as a function of the center-of-mass scattering
angle θc.m. for elastic proton scattering off 40Ca at a laboratory energy
of 201 MeV. The experimental data [100] are compared with the
results of microscopic OPs obtained using NNLOsat (red curves)
and N4LO (blue curves) chiral interactions in the NN t matrix.
In both cases, the nuclear density is obtained from GkvADC(2)
SCGF calculations computed with NNLOsat with Nmax = 13 and
h̄" = 14 MeV.

shift is in general accompanied by a simultaneous increase
in the height of the maxima. The same shift towards smaller
angles is also observed in the analyzing power.

In our opinion, the combination of the spectator model
and SCGF theories offers remarkable opportunities for
the physics of radioactive beams and in particular toward

FIG. 14. Same as in Fig. 13 but for elastic proton scattering off
60Ni at a laboratory energy of 178 MeV. Experimental data from
Ref. [101].
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It requires knowing the self-energy which is the sum of an infinite series 
of Feynman diagrams: 

SAMPLING THE DIAGRAMMATIC SPACE

Diagrammajc Monte Carlo (DiagMC) samples diagrams in 
their topological space using a Markov chain. [Brolli, CB, Vigezzi, Phys. Rev. Lett. 134, 182502 (2025)]

S. Brolli 
(PhD candidate,  

                  Milan)

The number of required diagrams 
explodes (factorially!) with the 
order of the approximation…



Diagrammatic MC in solid state physics…
NATURE PHYSICS DOI: 10.1038/NPHYS2273 LETTERS
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Figure 1 | Bold diagrammatic Monte Carlo The skeleton diagrammatic
series for the self-energy Σ and the pair self-energy Π is evaluated
stochastically (lower box). The diagrams are built on dressed one-body
propagators G and pair propagators Γ , which themselves are the solution
of the Dyson and Bethe-Salpeter equations (upper box). This cycle is
repeated until convergence is reached. G0 is the non-interacting propagator
and Γ0 is the partially dressed pair propagator obtained by summing the
bare ladder diagrams.

for the zero-range continuous-space interaction, the zero-range
limit can also be taken analytically. This is in sharp contrast with
other numerical methods11–13, where taking the thermodynamic
and zero-range limits is computationally very expensive. BDMC
performs a random walk in the space of irreducible diagrams using
local updates. The simulation is run in a self-consistent cycle (along
the lines of ref. 2) until convergence is reached. Full details will
be presented elsewhere. In essence, our approach upgrades the
standard many-body theories based on one lowest-order diagram
(for example, refs 14,15) to millions of graphs.

In the quantum degenerate regime, we do not observe
convergence of the diagrammatic series for Σ and Π evaluated
up to order 9. Here, order N means Σ -diagrams with N vertices
(that is, N Γ -lines) and Π -diagrams with N − 1 vertices. To
extract the infinite-order result, we apply the following Abelian
resummation methods16. The contribution of all diagrams of order
N is multiplied by e−ϵλN−1 , where λn depends on the resummation
method: (1) λn=n logn (with λ0=0) for Lindelöf16, (2) λn= (n−1)
log(n−1) (with λ0= λ1= 0) for ‘shifted Lindelöf’, or (3) λn=n2 for
Gaussian17. A full simulation is performed for each ϵ, and the final
result is obtained by extrapolating to ϵ=0 (Fig. 2).

This protocol relies on the following crucial mathematical
assumptions: (1) the N th order contribution of the diagrammatic
expansion for Σ (for fixed external variables) is the N th coefficient
of the Taylor series at z = 0 of a function g (z) which has a non-zero
convergence radius, (2) the analytic continuation g (1), performed
by the above resummation methods16,17, is the physically correct
value ofΣ . The same assumptions should hold forΠ .

Proving these assumptions is an open mathematical challenge.
Note that Dyson’s collapse argument18 is not applicable to immedi-
ately disprove the assumption (1) of a non-zero convergence radius:
indeed, unlike QED, our skeleton series is not an expansion in
powers of a coupling constant whose sign change would lead to
an instability. The first important evidence for the validity of our
mathematical assumptions is that the three different resummation
methods yield consistent results. For an independent test, we
turn to experiments.

The present experiment furnishes high-precision data for the
density n as a function of the local value V of the trapping potential
(Fig. 3 and Methods). We start the process by obtaining the EOS at
high temperatures in the non-degenerate wings of the atom cloud,
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Figure 2 | Cross-validation between resummation procedure and
experiment at βµ=+1. Bold diagrammatic Monte Carlo data for the
dimensionless density nλ3, as a function of the parameter ϵ controlling the
resummation procedure, for three different resummation methods: Lindelöf
(blue circles), shifted Lindelöf (black diamonds), and Gauss (open green
squares). The solid lines are linear fits to the Monte Carlo data, their ϵ →0
extrapolation agrees within error bars with the experimental data point
(filled red square). (In the opposite limit ϵ → ∞, the Lindelöf (resp. shifted
Lindelöf) curves will asymptote to the first15,21 (resp. third) order results,
shown by the dashed (resp. dash–dotted) line.) Error bars for each ϵ

represent the statistical error, together with the estimated systematic error
coming from not sampling diagrams of order>9.

where the virial expansion is applicable. Once the temperature
and the chemical potential have been determined from fits to the
wings of the cloud, the data closer to the cloud centre provides
a new prediction of the EOS. The process is iterated to access
lower temperatures.

Scale invariance allows one to write the density EOS as
n(µ,T )λ3= f (βµ), with λ=

√
2π h̄2/(mkBT ) the thermal de Broglie

wavelength, β = 1/(kBT ) the inverse temperature and f a universal
function. A convenient normalization of the data is provided
by the EOS of a non-interacting Fermi gas, n0λ3 = f0(βµ). In
Fig. 4a, we thus report the ratio n(µ,T )/n0(µ,T )= f (βµ)/f0(βµ),
bringing out the difference between the ideal and the strongly
interacting Fermi gas. The Gibbs–Duhem relation allows us to also
calculate the pressure at a given chemical potential, P(µ0,T ) =∫ µ0

−∞dµ n(µ,T )= 1/(βλ3)F(βµ0), where F(x)=
∫ x

−∞dx ′f (x ′). We
normalize it by the pressure of the ideal Fermi gas and show
F(βµ)/F0(βµ) (Fig. 4b). The agreement between BDMC and
experiment is excellent. The comparison is sufficiently sensitive to
validate the procedure of resumming and extrapolating (Fig. 2).
The result was checked to be independent of the maximal sampled
diagram order Nmax ∈ {7;8;9} within the error bars shown in
Fig. 2 for each ϵ. The BDMC final error bar in Fig. 4 is the
sum of the conservatively estimated systematic errors from the
uncertainty of the ϵ → 0 extrapolation and from the dependence
on numerical grids and cutoffs, the latter being reduced by
analytically treating high-momentum short-time singular parts.
The systematic error in the experiment is determined to be
about 1% by the independent determination of the EOS of
the non-interacting Fermi gas. The experimental error bars of
Fig. 4 also include the statistical error, which is <0.5%, thanks
to the scale invariance of the balanced unitary gas: irrespective
of shot-to-shot fluctuations of atom number and temperature,
all experimental profiles contribute to the same scaled EOS-
function f . The dominant uncertainty on the experimental EOS
stems from the uncertainty in the position of the 6Li Feshbach
resonance, known to be at 834.15 ± 1.5G from spectroscopic
measurements19. The change in energy, pressure and density with
respect to the interaction strength is controlled by the so-called
contact20 that is obtained from Γ in the BDMC calculation.
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Origin and fate of the pseudogap in the doped
Hubbard model
Fedor Šimkovic IV*, Riccardo Rossi, Antoine Georges, Michel Ferrero

INTRODUCTION: Large systems of interacting
quantum particles host a wealth of collective
phenomena, such as superconductivity, magnet-
ism, and metal-insulator transitions. Prominent
examples are materials with strong correla-
tions between electrons, such as transition met-
al oxides and twisted bilayer graphene, and
ultracold atomic gases trapped inoptical lattices.
Understanding these systems is a formidable
theoretical and computational challenge, with
implications both for fundamental physics and
for the design of new functional materials.
One of the unusual states of matter observed
in these systems is the so-called “pseudogap”
regime in which the electronic excitations of
a metal are suppressed in a selective manner
depending on their momentum. A central open
question is whether such a peculiar state can
exist down to low temperature without inter-
vening long-range orders being formed.

RATIONALE: The Fermi-Hubbard model, in-
troduced in 1963, established itself as a fun-

damental theoretical platform to investigate
interacting quantum systems. Despite its for-
mal simplicity, it may be capable of capturing
the essence of strongly correlated materials.
In the absence of an analytical solution, it has
been the subject of numerous computational
studies, but it still eludes a controlled solution
in its most notable regimes at finite temper-
ature. The main obstacles come from the ex-
ponentially large size of the configuration space
and the so-called fermionic sign problem that
most algorithms suffer from, hence impeding
the simulation of large systems. In this work,
we used a state-of-the-art unbiased computa-
tional algorithm, diagrammatic Monte Carlo,
to obtain controlled results in nontrivial re-
gimes of the Fermi-Hubbard model on an
infinite two-dimensional square lattice. We pro-
vide answers to some outstanding questions
regarding the origin and fate of the pseudo-
gap state as temperature is lowered for a broad
range of values of the model parameters. We
benchmark our results against several other

numerical methods, including dynamical mean-
field theory and its cluster extensions.

RESULTS: Our calculations identified three dis-
tinct physical regimes as a function of temper-
ature and electronic density: a weakly correlated
metal, a strongly correlated metal, and a pseudo-
gap regime. The formation of the pseudogap
is associated with the onset of antiferromag-
netic spin correlations. At weak coupling, they
are long ranged, whereas their spatial extent
becomes shorter at strong coupling. As these
correlations develop, a deformation of the
Fermi surface is first observed at interme-
diate densities in the strongly correlated metal.
At densities closer to one electron per site, the
coherence of electronic excitations for “anti-
nodal” momenta close to the Brillouin zone
boundary is suppressed, and a pseudogap ap-
pears. In this regime, the self-energy that quan-
tifies the modification of the dispersion and
lifetime of electronic excitations by interac-
tions develops a quasi-pole. We show how spin
fluctuation theory can be modified to provide
a good description of the nonlocal part of the
self-energy both in the weak and strong cou-
pling regimes. In contrast to spin correlations,
we did not observe the development of sizable
charge correlations associated with the pseudo-
gap in the temperature regimes accessible to our
method. We addressed the fate of the pseudo-
gap at low temperature by performing an ex-
trapolation of the pseudogap region to zero
temperature. We show that the range of density
and coupling strength where a pseudogap is
found in this limit precisely coincides with that
in which ground-state studies find a stripe
phase with long-range spin and charge order.

CONCLUSION: We have obtained controlled
results that highlight the crucial role of spin
correlations in driving the formation of the
pseudogap. Eventually, this state becomes un-
stable and, in the absence of a next-nearest-
neighbor hopping, turns into a stripe phase.
This result and the corresponding handshake
between finite and zero-temperature methods
is a major achievement of our work. We have
further demonstrated the robustness of our
findings by investigating the pseudogap for a
nonzero next-nearest-neighbor hopping and
have observed a similar finite-temperature be-
havior. In this case, further work involving con-
trolled ground-state studies will be necessary to
clarify the fate of the pseudogap at low temper-
ature,which remains anoutstandingquestion.▪
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The low-doping regime of the Hubbard model with nearest-neighbor hopping. At low temperature
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homogeneous background of disordered holes and doubly occupied sites.
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antiferromagnetic BZ. As shown in more de-
tail in (24), this quantity is a good indicator of
the onset of the pseudogap region, which com-
mences when the slope changes sign close to
the antinode (full red circles, Fig. 2). As the
doping is decreased, the area of the Brillouin
zonewhere the slope changes sign extends out
of the antinodal region into the nodal region
(open red circles, Fig. 1) (24).
It is notable that, as temperature is decreased

in the pseudogap region, the imaginary part
of the self-energy increases, although themo-
mentum space region where it is large remains
outside the antiferromagnetic BZ (24). As a
result, the lifetime effects get stronger with
decreasing temperature at the antinode, where-
as they have a much weaker effect at the node,
where quasiparticles remain quite coherent.
This dichotomy between antinodal and nodal
quasiparticles is also observed in cluster exten-
sions of dynamical mean-field theory (DMFT)
(17, 20, 40–42).
We have also performed computations with

a nonzero value of the next-nearest-neighbor
hopping t′, as detailed in figs. S19 and S20. Our
results suggest that the mechanism for the
opening of the PG as well as the crossovers re-
ported above are generic.

Relating numerical results to a modified spin
fluctuation theory

In this section,weaskwhether thePGregimecan
be described by some form of spin-fluctuation
theory. It is known from past work (35, 36, 43)
that this is indeed the case at weak coupling.
The question is whether such a description is
also possible at strong coupling despite the
rather short correlation length that invalidates
the conditions for a conventional application
of spin fluctuation theory. We note that pre-
vious work based on a “fluctuation diagnostics”
(44) in the framework of both cluster extensions
of DMFT (21) and diagrammatic MC (22) has
shown that the formation of the PGhas indeed
originated from sizeable short-ranged spin
correlations. This point was further reinforced
by a direct evaluation of the spin and charge
susceptibilities in both the weak- and the
strong-coupling PG region. These quantities
are displayed in Fig. 3 [see also (37)] and in-
dicate that the physics is dominated by spin
fluctuations in the temperature regime that
we investigated, whereas the charge response
is, by contrast, very weak. This points at the
pseudogap being of magnetic origin rather
than being caused by the fluctuations of a
low-temperature charge order, which is also
consistent with the conclusions from cluster
extensions of DMFT. These considerations
provide a strong incentive for attempting a
spin fluctuation–inspired description of the PG.
To this end, we divided the self-energy into

a local (uniform in momentum space) and non-
local part: S ¼ Sloc þ Snl. The local part is quite

Fig. 2. Fingerprints of the different regimes. The momentum-resolved spectral function, A(k) (left); the
imaginary part of the self-energy, Im S(k, iw0) (middle); and the difference between the imaginary part of the self-
energy at the two lowest Matsubara frequencies, D Im S(k) = Im S(k, iw0) − Im S(k, iw1) (right) are shown for
selected points W, S, P1, and P2 in the phase diagram of Fig. 1 at temperature T = 0.2. Results obtained using
Diagrammatic Monte Carlo data are displayed for k = (kx, ky) in the upper right quarter of the BZ. The white
lines indicate the noninteracting Fermi surface. The green lines show the maximum of the spectral function.
The zero-energy quasiparticle lines are shown in black.

A B

Fig. 3. Spin and charge correlations. The zero-frequency spin and charge susceptibilities at their maximum
value in momentum space (obtained by Diagrammatic Monte Carlo) are displayed as a function of
temperature for representative examples of the (A) weak- and (B) strong-coupling pseudogap regimes.

RESEARCH | RESEARCH ARTICLE

Šimkovic IV et al., Science 385, eade9194 (2024) 20 September 2024 3 of 7

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversita Studi M

ilano on February 27, 2025

antiferromagnetic BZ. As shown in more de-
tail in (24), this quantity is a good indicator of
the onset of the pseudogap region, which com-
mences when the slope changes sign close to
the antinode (full red circles, Fig. 2). As the
doping is decreased, the area of the Brillouin
zonewhere the slope changes sign extends out
of the antinodal region into the nodal region
(open red circles, Fig. 1) (24).
It is notable that, as temperature is decreased

in the pseudogap region, the imaginary part
of the self-energy increases, although themo-
mentum space region where it is large remains
outside the antiferromagnetic BZ (24). As a
result, the lifetime effects get stronger with
decreasing temperature at the antinode, where-
as they have a much weaker effect at the node,
where quasiparticles remain quite coherent.
This dichotomy between antinodal and nodal
quasiparticles is also observed in cluster exten-
sions of dynamical mean-field theory (DMFT)
(17, 20, 40–42).
We have also performed computations with

a nonzero value of the next-nearest-neighbor
hopping t′, as detailed in figs. S19 and S20. Our
results suggest that the mechanism for the
opening of the PG as well as the crossovers re-
ported above are generic.

Relating numerical results to a modified spin
fluctuation theory

In this section,weaskwhether thePGregimecan
be described by some form of spin-fluctuation
theory. It is known from past work (35, 36, 43)
that this is indeed the case at weak coupling.
The question is whether such a description is
also possible at strong coupling despite the
rather short correlation length that invalidates
the conditions for a conventional application
of spin fluctuation theory. We note that pre-
vious work based on a “fluctuation diagnostics”
(44) in the framework of both cluster extensions
of DMFT (21) and diagrammatic MC (22) has
shown that the formation of the PGhas indeed
originated from sizeable short-ranged spin
correlations. This point was further reinforced
by a direct evaluation of the spin and charge
susceptibilities in both the weak- and the
strong-coupling PG region. These quantities
are displayed in Fig. 3 [see also (37)] and in-
dicate that the physics is dominated by spin
fluctuations in the temperature regime that
we investigated, whereas the charge response
is, by contrast, very weak. This points at the
pseudogap being of magnetic origin rather
than being caused by the fluctuations of a
low-temperature charge order, which is also
consistent with the conclusions from cluster
extensions of DMFT. These considerations
provide a strong incentive for attempting a
spin fluctuation–inspired description of the PG.
To this end, we divided the self-energy into

a local (uniform in momentum space) and non-
local part: S ¼ Sloc þ Snl. The local part is quite

Fig. 2. Fingerprints of the different regimes. The momentum-resolved spectral function, A(k) (left); the
imaginary part of the self-energy, Im S(k, iw0) (middle); and the difference between the imaginary part of the self-
energy at the two lowest Matsubara frequencies, D Im S(k) = Im S(k, iw0) − Im S(k, iw1) (right) are shown for
selected points W, S, P1, and P2 in the phase diagram of Fig. 1 at temperature T = 0.2. Results obtained using
Diagrammatic Monte Carlo data are displayed for k = (kx, ky) in the upper right quarter of the BZ. The white
lines indicate the noninteracting Fermi surface. The green lines show the maximum of the spectral function.
The zero-energy quasiparticle lines are shown in black.
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Fig. 3. Spin and charge correlations. The zero-frequency spin and charge susceptibilities at their maximum
value in momentum space (obtained by Diagrammatic Monte Carlo) are displayed as a function of
temperature for representative examples of the (A) weak- and (B) strong-coupling pseudogap regimes.
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Mostly infinite matter at T≠0… 

…what about finite nuclei??
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SAMPLING THE DIAGRAMMATIC SPACEMonte Carlo integrajon in the 
topological space of Feynman diagrams:
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Results of the simulation for D=2-10 levels 

Correlation energy �E = E � EHF as a function of g:
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Correlajon energy                                      as a funcjon 
of interacjon strength (g): 

Accuracy for different model spaces model 
spaces (D=2-10 levels):

Spectroscopic funcjon 
for D=10 levels :

[Brolli, CB, Vigezzi, Phys. Rev. Lett. 134, 182502 (2025)]
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Applying DiagMC to nuclei…
DiagMC is being extended to treat realistic microscopic nuclear Hamiltonians 
16O in harmonic oscillator space (Nmax = 2, for now) 

Example of neutron p1/2 self-energy up to 3rd order

Imaginary part of the neutron p 1/2 hole self-energy in 16O.
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 d3/2 — s1/2 inversion of protons at N=28
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FIG. 9. Variation of the energy difference between the first 1/2+

and 3/2+ states for Cl and K isotopes with the neutron number N .
GGF calculations were performed with NNLOsat and NN + 3N(lnl)
interactions. Full squares are experimental values. When only the
absolute value of the energy difference ! has been established,
empty squares are added following a 1/2+

1 or 3/2+
1 hypothesis for

the ground state. No value is given for the calculation of 47Cl with the
NN + 3N(lnl) interaction, as explained in text. Experimental values
for 41,43,45Cl are taken from [3,19–24]; experimental values for K
isotopes are taken from [13–15].

inspecting the theoretical strength distribution, we notice that
states around the Fermi surface in Cl isotopes are much more
fragmented than in their neighboring Z + 2 isotones. The
partial occupations of 1/2+ and 3/2+ states thus likely washes
out the mechanism at play in the K isotopes, which relies on
“naive” occupations of πs1/2 and πd3/2 shells. Two different
aspects induce this behavior. First, simply two fewer protons
are available for the πd3/2–ν f7/2 interaction to operate, with a
subsequent weakening of the attractive effect. Second, several
indications suggest that Ar nuclei around N = 28 constitute a
transitional region between spherical Ca and deformed S iso-
topes (see, e.g., a recent discussion in Ref. [76]). In particular,
44,46,48S are thought to be characterized by static deformation
with either oblate or prolate minima [83–85]. This picture is
indeed consistent with a reduced Z = 16 gap and a mixing
of configurations involving the πs1/2 and πd3/2 orbitals, with
a subsequent fragmentation around the Fermi surface. These
features make the study of Cl isotopes more challenging for
theoretical approaches. Future measurements aiming at pin-
ning down the sign of ! between N = 24 and N = 30 will
provide a unique test bench for the development of both shell-
model interactions and ab initio methods.

VII. CONCLUSION

To summarize, spectroscopy of the neutron rich 47,49Cl
isotopes at N = 30, 32 was carried out for the first time. The
main reaction was the one-proton knockout 50Ar(p, 2p) 49Cl
with detection of photons emitted in-flight, coupled to the
measurement of the momentum distributions of the residues.
Due to the large acceptance of the SAMURAI spectrome-
ter, multinucleon removal reactions were also analyzed. The
ground state of 49Cl was found to be consistent with a Jπ =
3/2+ assignment and a 1/2+ first excited state. This normal
ordering for 3/2+ and 1/2+ states is similar to the recently
observed 51K case, while spin inversion is still under debate
for the less neutron-rich chlorine isotopes 41,43,45,47Cl.

ACKNOWLEDGMENTS

We thank the RIKEN Nishina Center accelerator staff for
their work in the primary beam delivery and the BigRIPS
team for preparing the secondary beams. The development
of MINOS has been supported by the European Research
Council through the ERC Grant No. MINOS258567. B.D.L.,
L.X.C., and N.D.T. acknowledge support from the Viet-
nam Ministry of Science and Technology under Grant No.
ĐTCB.01/21/VKHKTHN. M.G.R. and A.M.M. are sup-
ported by the Spanish Ministerio de Ciencia, Innovación
y Universidades (including FEDER funds) under project
FIS2017-88410-P. F.B. was supported by the RIKEN Spe-
cial Postdoctoral Researcher Program. Y.L.S. acknowledges
the support of Marie Skłodowska-Curie Individual Fel-
lowship (H2020-MSCAIF-2015-705023) from the European
Union. I.G. has been supported by HIC for FAIR and
Croatian Science Foundation. R.-B.G. is supported by the
Deutsche Forschungsgemeinschaft (DFG) under Grant No.
BL 1513/1-1. K.I.H., D.K., and S.Y.P. acknowledge the
support from the IBS grant funded by the Korea govern-
ment (No. IBS-R031-D1). P.K. was supported in part by
the BMBF Grant No. 05P19RDFN1 and HGS-HIRe. D.So.
has been supported by the European Regional Develop-
ment Fund Contract No. GINOP-2.3.3-15-2016-00034 and
the National Research, Development and Innovation Fund
of Hungary via Project No. K128947. This work was sup-
ported in part by JSPS KAKENHI Grants No. JP16H02179,
No. JP18H05404, and No. JP20K03981. J.D.H. and R.S.
acknowledge the support from NSERC and the National Re-
search Council Canada. This work was supported by the
Office of Nuclear Physics, U.S. Department of Energy, under
Grants No. de-sc0018223 (NUCLEI SciDAC-4 collabora-
tion) and the FieldWork Proposal ERKBP72 at Oak Ridge
National Laboratory (ORNL). Computer time was provided
by the Innovative and Novel Computational Impact on The-
ory and Experiment (INCITE) program. This research used
resources of the Oak Ridge Leadership Computing Facil-
ity located at ORNL, which is supported by the Office of
Science of the Department of Energy under Contract No.
DE-AC05-00OR22725. GGF calculations were performed by
using HPC resources from GENCI-TGCC (Contracts No.
A007057392 and No. A009057392) and at the DiRAC Com-
plexity system at the University of Leicester (BIS National

044331-13

V. Somà, P. Navrátil, F. Raimondi, CB, 
T. Duguet, PRC104, 024315 (2021)

Both states populated by proton removal form ACa
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Figure 1: Energy di↵erence between 1/2+ and 3/2+ states in potassium isotopes computed at the ADC(2) level with
di↵erent EFT interactions, and compared to experimental data. The sign of the di↵erence gives an indication of the
relative position of d3/2 and s1/2 proton orbits near Ca isotopes.

and other terms, are su�ciently strong to reproduce the drift in single-particle energies. One should further note
that although NNLOsat force does have some deficiencies in the odd-parity NN partial waves it reproduces very well
the deuteron and the S-D wave, suggesting that its tensor force is reasonable. Finally, the d3/2 and s1/2 orbits
discussed here are states at very low energies and (at least to our knowledge) there is no a priori reason to expect
that the e↵ects of the tensor force on these two orbits should be a↵ected by the 35 MeV threshold.

For clarity, we stress that the trends plotted in Fig. 1 are for the inversion of the low-lying 1/2+ and 3/2+ states
in AK isotopes, where there are available experimental data. As we point out below, these states are reachable by
proton emission from Ca isotopes and therefore they reflect the gap among 1s1/2 and 0d3/2 orbits at Z=20 protons,
as opposed to the Ar case with Z=18.

We comment on this point when we explain the choice of our interactions in the main text at page 4, col. 2
(To gain better insight into the many-body structure of 46Ar, we performed ab initio self-consistent Green’s function
(SCGF) computations [35] using a set of four chiral e↵ective field theory (�-EFT) Hamiltonians: the NNLOsat
[36], the �-full �NNLOGO (394) and �NNLOGO(450) [37] and the newly developed 1.8/2.0/(EM7.5) [38]. These
interactions yield highly reliable predictions of known radii and density distributions, as well as reproducing the trend
of inversion of 3/2+ and 1/2+ low-lying states in K isotopes.).
In the methods section at page 9, col. 2, we have also largely modified and expanded the full paragraph ”Choice of
the Hamiltonian and model space dependence”. We also added Table 2 at pag. 10.

2.3 Shell closure considerations

More importantly the method as it appears to be implemented must start from a nondegenerate closed proton shell
configuration. However the method can only do this by assuming closure of the 1d3/2 shell and complete emptiness
of the 2s1/2 proton orbit. So the first question that arises is does the Hartree-Fock result with NNLOsat generates
this level structure? If it does, how close is the 2s1/2 orbit? If this level is close, a much more appropriate method
involves taking into account the pairing degree of freedom for the protons which is strongly suggested as appropriate
when considering the position of the corresponding experimental proton levels in 45Cl and 47K which demonstrates
that these levels are very close both for addition or removal of a proton from 46Ar suggesting partial occupation of
both orbits.

We had done preliminary computations both neglecting (Dyson-SCGF) and including pairing correlations (Gorkov-
SCGF). These computations were done in the ADC(2) approximation and yielded the same results, showing that
pairing is not needed. The results presented in the manuscript are for Dyson-SCGF (no pairing) but using the more
accurate ADC(3) truncation. Below here, we elaborate further on why a pairing degeneracy should not be an issue
in this specific case.

Figure 2 shows the single-particle spectra we obtain from Hartree-Fock and Hartree-Fock-Bogoliubov (i.e., in-
cluding pairing) calculations. The d3/2-s1/2 inversion is always predicted at the mean-field level for 46Ar, whenever
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Methods

Data analysis The angular distributions of the
direct reactions were computed in the finite-
range DWBA approximation making use of the
FRESCO code [46]. The global optical potential
by Becchetti et al. [47] and by Han et al. [48] were
adopted for the entrance channel 3He-46Ar and for
the exit channel d-47K, respectively. These poten-
tials provide the best fit for the mirror reaction
48Ca(d,3He)47K [49] and the deuteron scattering
on 47K [50].

An a advantage of using direct reactions is
the strong dependence of their di↵erential cross
section on the angular momentum ` of the trans-
ferred nucleon. In particular, the addition to an
s-wave (` = 0) single-particle orbital leads to a dis-
tribution for the ejected deuteron that is peaked
toward backward angles in the laboratory frame of
reference, due the inverse kinematics of the reac-
tion, that can clearly be distinguished from the
distribution of f (` = 3) and d (` = 2) waves.

The computed di↵erential cross sections serve
as an input for a Monte Carlo GEANT4 [51]
simulation that extracts the response of the exper-
imental apparatus for the population of the three
di↵erent states of 47K: ` = 0 transfer to the 1/2+

g.s., ` = 2 transfer to the 3/2+ state and ` = 3 to
the 7/2�. The spectroscopic factors are extracted
with a maximum likelihood fit considering the
following relationship with the inclusive di↵eren-
tial cross section [34], where the k indexes the
populated states:
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where �SP

k
is the theoretical cross section relative

to a single-particle orbit, g represents the sta-
tistical factor and equals the orbital degeneracy,
(2j + 1), for particle addition. The spectroscopic
factor, C2Sk, appears as a modulation factor that
can be interpreted within a theoretical framework
as a fraction of the full orbital occupation.

The maximization of the likelihood is per-
formed on the experimental distribution of the
emission angle while the excitation energy serves
as an independent observation.
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Fig. 5: Comparison of experimental results and
theoretical models. The horizontal (vertical) axes
correlate the amount of ` = 2 (` = 3) over the
amount of transfer to the ground state, ` = 0.
The maximum likelihood analysis, combining the
Monte Carlo GEANT4 simulation and the exper-
imental data indicates a suppressed ` = 2 transfer
to the first excited 3/2+ state of 47K.

The extraction of absolute cross sections, and
thus absolute spectroscopic factors, is avoided due
to the uncertainty caused by the gas density at
temperatures close to the critical point of 3He
and the e↵ect of optical potentials on the abso-
lute cross section. These uncertainties a↵ect in the
same way the di↵erent `-wave transfers and can-
cel out when the relative value of spectroscopic
factors is extracted. The optimal likelihood profile
for the experimental ratios C2S(` = 2)/C2S(` =
0) and C2S(` = 3)/C2S(` = 2) is displayed in
Figure 5 along with the SCGF ab initio simula-
tions discussed in the main text. The prediction
from the NNLOsat Hamiltonian agrees within 1�
with the experiment.

�-ray coincidence analysis. The probability
of detecting discrete �-rays o↵ers the possibility
for an independent analysis with respect to the
angular distribution and the excitation energy.
Neglecting the condition of detecting deuterons
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Methods

Data analysis The angular distributions of the
direct reactions were computed in the finite-
range DWBA approximation making use of the
FRESCO code [46]. The global optical potential
by Becchetti et al. [47] and by Han et al. [48] were
adopted for the entrance channel 3He-46Ar and for
the exit channel d-47K, respectively. These poten-
tials provide the best fit for the mirror reaction
48Ca(d,3He)47K [49] and the deuteron scattering
on 47K [50].

An a advantage of using direct reactions is
the strong dependence of their di↵erential cross
section on the angular momentum ` of the trans-
ferred nucleon. In particular, the addition to an
s-wave (` = 0) single-particle orbital leads to a dis-
tribution for the ejected deuteron that is peaked
toward backward angles in the laboratory frame of
reference, due the inverse kinematics of the reac-
tion, that can clearly be distinguished from the
distribution of f (` = 3) and d (` = 2) waves.

The computed di↵erential cross sections serve
as an input for a Monte Carlo GEANT4 [51]
simulation that extracts the response of the exper-
imental apparatus for the population of the three
di↵erent states of 47K: ` = 0 transfer to the 1/2+

g.s., ` = 2 transfer to the 3/2+ state and ` = 3 to
the 7/2�. The spectroscopic factors are extracted
with a maximum likelihood fit considering the
following relationship with the inclusive di↵eren-
tial cross section [34], where the k indexes the
populated states:

d�

d⌦
=

X

k

gk C2Sk

d�SP

k

d⌦
,

where �SP

k
is the theoretical cross section relative

to a single-particle orbit, g represents the sta-
tistical factor and equals the orbital degeneracy,
(2j + 1), for particle addition. The spectroscopic
factor, C2Sk, appears as a modulation factor that
can be interpreted within a theoretical framework
as a fraction of the full orbital occupation.

The maximization of the likelihood is per-
formed on the experimental distribution of the
emission angle while the excitation energy serves
as an independent observation.
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Fig. 5: Comparison of experimental results and
theoretical models. The horizontal (vertical) axes
correlate the amount of ` = 2 (` = 3) over the
amount of transfer to the ground state, ` = 0.
The maximum likelihood analysis, combining the
Monte Carlo GEANT4 simulation and the exper-
imental data indicates a suppressed ` = 2 transfer
to the first excited 3/2+ state of 47K.

The extraction of absolute cross sections, and
thus absolute spectroscopic factors, is avoided due
to the uncertainty caused by the gas density at
temperatures close to the critical point of 3He
and the e↵ect of optical potentials on the abso-
lute cross section. These uncertainties a↵ect in the
same way the di↵erent `-wave transfers and can-
cel out when the relative value of spectroscopic
factors is extracted. The optimal likelihood profile
for the experimental ratios C2S(` = 2)/C2S(` =
0) and C2S(` = 3)/C2S(` = 2) is displayed in
Figure 5 along with the SCGF ab initio simula-
tions discussed in the main text. The prediction
from the NNLOsat Hamiltonian agrees within 1�
with the experiment.

�-ray coincidence analysis. The probability
of detecting discrete �-rays o↵ers the possibility
for an independent analysis with respect to the
angular distribution and the excitation energy.
Neglecting the condition of detecting deuterons
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of symmetric nuclear and pure neutron matter are computed using the chiral NNLOsat and the phenomenological
AV4′ + UIXc Hamiltonians as inputs to self-consistent Green’s function (SCGF) and auxiliary field diffusion
Monte Carlo (AFDMC) methods. We propose a convenient parametrization of the EoS as a function of the
Fermi momentum and fit it on the SCGF and AFDMC calculations. We apply the ab initio based EDF to carry
out an analysis of the binding energies and charge radii of different nuclei in the local density approximation.
The NNLOsat-based EDF produces encouraging results, whereas the AV4′ + UIXc-based one is farther from
experiment. Possible explanations of these different behaviors are suggested, and the importance of gradient and
spin-orbit terms is analyzed. Our paper paves the way for a practical and systematic way to merge ab initio
nuclear theory and density functional theory, while shedding light on some critical aspects of this procedure.
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I. INTRODUCTION

The need to tackle the very complex nuclear many-body
problem has inspired dramatic advances in the so-called
ab initio methods in recent years [1–3]. These approaches
aim at solving the many-nucleon Schrödinger equation in
an exact or systematically improvable way by using a re-
alistic model for the nuclear interaction in the vacuum.
Examples of these approaches are the Green’s function
Monte Carlo (GFMC) and auxiliary field diffusion Monte
Carlo (AFDMC) [4–6], self-consistent Green’s function
(SCGF) [7–10], coupled-cluster [2,11,12], in-medium similar-
ity renormalization group [3,13], and many-body perturbation
theory methods [14,15]. Successful nuclear structure cal-
culations have been performed for low- and medium-mass
nuclei [1,3,4,16], as well as in infinite nuclear matter [9,17,18]
and neutron stars [19,20]. Although ab initio theory can now
approach masses of A ≈ 140 [21], its predictive power is
affected by the large computational cost and full-scale studies
of heavy nuclei are still out of reach.

In the heavy-mass region of the nuclear chart, the method
of choice is density functional theory (DFT). Originally intro-
duced in condensed matter, DFT is a hugely popular method
that finds application in several areas of physics, ranging from
quantum chemistry [22–25] to nuclear physics [26–31]. In the

*francesco.marino@unimi.it

latter case, it represents the only approach that allows one
to cover almost the whole nuclear chart [26,27,30], with the
partial exception of very light nuclei, and to study both ground
states (g.s.) and, in its time-dependent formulation, excited
states [29]. In principle, DFT provides an exact formulation
of the many-body problem based on the Hohenberg-Kohn
theorems [22,30,32], which state that all observables, starting
from the total energy, can be expressed in a unique way as a
functional of the one-body density (including spin densities
and other generalized densities [33]). However, these theo-
rems give no hints about the actual form of such functional,
which is dubbed as the energy density functional (EDF).
Hence, in practice, DFT turns out to be an approximate, albeit
very powerful, method. In particular, most relativistic [34]
and nonrelativistic [26–28] nuclear EDFs are designed in an
empirical manner. A reasonable ansatz for the functional form
is chosen and its actual parameters are fitted on experimen-
tal observables such as radii and masses of finite nuclei, or
pseudo-observables such as the saturation density of symmet-
ric nuclear matter [27,35]. The available EDFs are overall
successful [26,30], e.g., the experimental binding energies
are reproduced on average within 1–2 MeV and charge radii
within 0.01–0.02 fm. However, it is unclear how to further
improve the performance of traditional EDFs [36]. Despite
attempts to frame DFT as an effective field theory (EFT),
we still lack guiding principles for the systematic improve-
ment of nuclear EDFs [37]. Existing EDFs are affected by
uncontrolled extrapolation errors when applied to systems for

2469-9985/2021/104(2)/024315(14) 024315-1 ©2021 American Physical Society

PHYSICAL REVIEW C 104, 024315 (2021)

Nuclear energy density functionals grounded in ab initio calculations

F. Marino ,1,2,* C. Barbieri ,1,2 A. Carbone,3 G. Colò ,1,2 A. Lovato ,4,5 F. Pederiva,6,5 X. Roca-Maza ,1,2

and E. Vigezzi 2

1Dipartimento di Fisica “Aldo Pontremoli,” Università degli Studi di Milano, 20133 Milano, Italy
2Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy

3Istituto Nazionale di Fisica Nucleare–CNAF, Viale Carlo Berti Pichat 6/2, 40127 Bologna, Italy
4Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

5Istituto Nazionale di Fisica Nucleare–Trento Institute of Fundamental Physics and Applications, 38123 Trento, Italy
6Dipartimento di Fisica, University of Trento, via Sommarive 14, 38123 Povo, Trento, Italy

(Received 29 March 2021; revised 26 May 2021; accepted 13 July 2021; published 9 August 2021)

We discuss the construction of a nuclear energy density functional (EDF) from ab initio computations and
advocate the need for a methodical approach that is free from ad hoc assumptions. The equations of state (EoSs)
of symmetric nuclear and pure neutron matter are computed using the chiral NNLOsat and the phenomenological
AV4′ + UIXc Hamiltonians as inputs to self-consistent Green’s function (SCGF) and auxiliary field diffusion
Monte Carlo (AFDMC) methods. We propose a convenient parametrization of the EoS as a function of the
Fermi momentum and fit it on the SCGF and AFDMC calculations. We apply the ab initio based EDF to carry
out an analysis of the binding energies and charge radii of different nuclei in the local density approximation.
The NNLOsat-based EDF produces encouraging results, whereas the AV4′ + UIXc-based one is farther from
experiment. Possible explanations of these different behaviors are suggested, and the importance of gradient and
spin-orbit terms is analyzed. Our paper paves the way for a practical and systematic way to merge ab initio
nuclear theory and density functional theory, while shedding light on some critical aspects of this procedure.

DOI: 10.1103/PhysRevC.104.024315

I. INTRODUCTION

The need to tackle the very complex nuclear many-body
problem has inspired dramatic advances in the so-called
ab initio methods in recent years [1–3]. These approaches
aim at solving the many-nucleon Schrödinger equation in
an exact or systematically improvable way by using a re-
alistic model for the nuclear interaction in the vacuum.
Examples of these approaches are the Green’s function
Monte Carlo (GFMC) and auxiliary field diffusion Monte
Carlo (AFDMC) [4–6], self-consistent Green’s function
(SCGF) [7–10], coupled-cluster [2,11,12], in-medium similar-
ity renormalization group [3,13], and many-body perturbation
theory methods [14,15]. Successful nuclear structure cal-
culations have been performed for low- and medium-mass
nuclei [1,3,4,16], as well as in infinite nuclear matter [9,17,18]
and neutron stars [19,20]. Although ab initio theory can now
approach masses of A ≈ 140 [21], its predictive power is
affected by the large computational cost and full-scale studies
of heavy nuclei are still out of reach.

In the heavy-mass region of the nuclear chart, the method
of choice is density functional theory (DFT). Originally intro-
duced in condensed matter, DFT is a hugely popular method
that finds application in several areas of physics, ranging from
quantum chemistry [22–25] to nuclear physics [26–31]. In the

*francesco.marino@unimi.it

latter case, it represents the only approach that allows one
to cover almost the whole nuclear chart [26,27,30], with the
partial exception of very light nuclei, and to study both ground
states (g.s.) and, in its time-dependent formulation, excited
states [29]. In principle, DFT provides an exact formulation
of the many-body problem based on the Hohenberg-Kohn
theorems [22,30,32], which state that all observables, starting
from the total energy, can be expressed in a unique way as a
functional of the one-body density (including spin densities
and other generalized densities [33]). However, these theo-
rems give no hints about the actual form of such functional,
which is dubbed as the energy density functional (EDF).
Hence, in practice, DFT turns out to be an approximate, albeit
very powerful, method. In particular, most relativistic [34]
and nonrelativistic [26–28] nuclear EDFs are designed in an
empirical manner. A reasonable ansatz for the functional form
is chosen and its actual parameters are fitted on experimen-
tal observables such as radii and masses of finite nuclei, or
pseudo-observables such as the saturation density of symmet-
ric nuclear matter [27,35]. The available EDFs are overall
successful [26,30], e.g., the experimental binding energies
are reproduced on average within 1–2 MeV and charge radii
within 0.01–0.02 fm. However, it is unclear how to further
improve the performance of traditional EDFs [36]. Despite
attempts to frame DFT as an effective field theory (EFT),
we still lack guiding principles for the systematic improve-
ment of nuclear EDFs [37]. Existing EDFs are affected by
uncontrolled extrapolation errors when applied to systems for

2469-9985/2021/104(2)/024315(14) 024315-1 ©2021 American Physical Society

NUCLEAR ENERGY DENSITY FUNCTIONALS GROUNDED … PHYSICAL REVIEW C 104, 024315 (2021)

FIG. 1. Dots: SNM and PNM EoS computed with the NNLOsat

interaction and the SCGF method. Dashed: model EoS (2,3,4,5,6)
(see text).

saturate; in fact, AV4′ alone predicts no saturation before 0.50
fm−3 [97]. The smallest validation error (MSE = 0.06 MeV2)
is achieved by the (2,5,6) model, which is shown in Fig. 2
together with the ab initio EoS.

To sum up, parametrizing the nuclear EoS as a polynomial
of the Fermi momentum has proved an effective ansatz. Two
optimal models have been found, namely, (2,3,4,5,6) for the
NNLOsat EoS and (2,5,6) for the AV4′ + UIXc EoS. The
parameters of these models are reported in Table III.

B. Predictions of the LDA EDFs in finite nuclei

Two LDA EDFs are derived from the (2,3,4,5,6) and (2,5,6)
parametrizations of the NNLOsat- and the AV4′ + UIXc-based
EoS (Sec. IV A). These are then applied to closed-subshell
nuclei and compared to experimental values, taken from
Refs. [98,99], and to ab initio results. Full ab initio calcula-
tions are available for a set of nuclei up to 54Ca for NNLOsat

TABLE I. Energy per particle e computed with SCGF and the
NNLOsat interaction at several densities ρ in both SNM and PNM.

ρ (fm−3) e (MeV) SNM e (MeV) PNM

0.04 −7.94 5.22
0.08 −11.78 6.71
0.12 −13.98 8.51
0.16 −14.62 11.23
0.20 −13.68 14.99
0.22 −12.61 17.24
0.24 −11.12 19.71
0.26 −9.22 22.40
0.28 −6.91 25.29
0.32 −1.00 31.58

TABLE II. Energy per particle e and standard errors (in paren-
theses) computed with AFDMC and the AV4′ + UIXc interaction at
several densities ρ in both SNM and PNM.

ρ (fm−3) e (MeV) SNM e (MeV) PNM

0.04 −8.17 (1) 7.062 (5)
0.08 −13.60 (1) 11.075 (6)
0.12 −17.48 (1) 15.278 (8)
0.16 −20.74 (2) 20.20 (1)
0.20 −22.80 (1) 26.23 (1)
0.22 −23.42 (2) 29.66 (2)
0.24 −23.68 (3) 33.44 (3)
0.26 −23.58 (3) 37.47 (2)
0.28 −23.15 (3) 42.12 (3)
0.32 −21.10 (3) 52.26 (5)
0.36 −17.0 (1) 63.91 (6)
0.40 −12.21 (8) 77.51 (7)

and 90Zr for AV4′ + UIXc. Moreover, the NNLOsat densities
for 90Zr are available.

The discrepancy between theory and experiment for ener-
gies per nucleon (top) and charge radii (bottom) are shown in
Fig. 3 for NNLOsat and the (2,3,4,5,6) EDF, as well as the
GA-E and GA-r EDFs introduced later on (Sec. IV C). On
the one hand, we can appreciate that NNLOsat predictions are
very close to experiment. On the other hand, the LDA EDF, al-
though less precise, exhibits interesting trends, since it enables
one to reproduce heavier nuclei, especially from 90Zr on, in
a realistic way, with deviations smaller than 1 MeV/nucleon
and 0.05 fm for the energies and radii, respectively. This is
quite remarkable, as the LDA EDF incorporates only infor-
mation on uniform matter. Also, it is unsurprising that light
systems are less amenable to a local density treatment, since

FIG. 2. Dots: SNM and PNM EoS computed with the AV4′ +
UIXc interaction and the AFDMC method. The AFDMC statistical
error bars are shown. Dashed: model EoS (2,5,6) (see text).
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the AFDMC, the spin-isospin degrees of freedom are de-
scribed by single-particle spinors, the amplitudes of which are
sampled using Monte Carlo techniques based on the Hubbard-
Stratonovich transformation, reducing the computational cost
from exponential to polynomial in A. However, some of
the contributions characterizing fully realistic nuclear forces,
such as isospin-dependent spin-orbit contributions, cannot be
treated in this way, yet. Hence, the AFDMC is limited to
somewhat simplified interactions, but it can be applied to
compute larger nuclei and nuclear matter.

The starting point of AFDMC calculations is a trial wave
function, which is commonly expressed as the product of a
long-range component |!⟩ and of two- plus three-body corre-
lations:

|"T ⟩ =
∏

i< j

f c
i j

∏

i< j<k

f c
i jk|!⟩. (7)

In the above equation, we assumed the correlations to be spin-
isospin independent. This simplified ansatz, consistent with
Refs. [58,81,82], is justified by the fact that the AV4′ + UIXc
Hamiltonian does not contain tensor or spin-orbit terms.

In finite nuclei, |!⟩ is constructed by coupling different
Slater determinants of single-particle orbitals in the |nl jmj⟩
basis so as to reproduce the total angular momentum, total
isospin, and parity of the nuclear state of interest [6]. On the
other hand, infinite nuclear matter is modeled by simulating
a finite number of nucleons on which periodic-box boundary
conditions are imposed [83]. In this case, the single-particle
states are plane waves with quantized wave numbers:

k = 2π

L
(nx, ny, nz ) ni = 0,±1,±2, . . . , (8)

where L is the size of the box and the shell closure condition
must be met in order to satisfy translational invariance. As
a consequence, the number of nucleons in a box must be
equal to the momentum space “magic numbers” (1, 7, 19, 27,
33, . . . ) times the number of spin/isospin states: 2 for PNM,
4 for SNM. The equations of state of nuclear matter discussed
in Sec. IV A are computed with 66 neutrons (PNM) and
76 nucleons (SNM) in a periodic box.

The AFDMC method has no difficulty in dealing with
“stiff” forces that can generate wave functions with high-
momentum components. This is in contrast with remarkably
successful many-body approaches that rely on a basis ex-
pansion [11,12,84,85], which need relatively “soft” forces to
obtain converged calculations. However, like standard dif-
fusion Monte Carlo algorithms, the AFDMC suffers from
the fermion sign problem, which results in large statistical
errors that grow exponentially with τ . To control it, we
employ the constrained-path approximation, as described in
Refs. [6,69,86]. This scheme is believed to be accurate for
Hamiltonians that do not include tensor or spin-orbit opera-
tors, as is the case for the AV4′ + UIXc potential. Expectation
values of operators Ô that do not commute with the Hamilto-
nian are evaluated by means of the mixed estimator [4]

⟨Ô(τ )⟩ ≈ 2
⟨"T |Ô|"(τ )⟩
⟨"T |"(τ )⟩

− ⟨"T |Ô|"T ⟩
⟨"T |"T ⟩

. (9)

Also, charge radii are estimated from the proton radii with the
formula r2

ch = r2
p + (0.8 fm)2.

III. METHOD

A. Nuclear EDFs

The general structure of a nonrelativistic nuclear EDF is
described in depth in Refs. [27,28,87]. In this section, the
discussion is limited to even-even nuclei and to quasilocal
EDFs, i.e., functionals that can be expressed as the volume
integral of an energy density E (r) which is a function of
the local densities [28] and their gradients. Nonlocal EDFs
such as Gogny ones are not treated. Moreover, for simplicity
pairing terms are neglected. Applications shall be limited to
magic nuclei and to some closed-subshell ones.

Under these assumptions, the total energy is a functional
of the time-even proton and neutron densities [number density
ρq(r), kinetic density τq(r), and spin-orbit density Jq(r), with
q = n, p] [28,35] and reads

E =
∫

dr E (r) = Ekin + Epot + ECoul. (10)

The kinetic energy term is given by [35]

Ekin =
∫

dr Ekin(r) =
∫

dr
h̄2

2m
τ0(r). (11)

The Coulomb contribution ECoul is treated in the standard
local Slater approximation [88]. The most general form of the
potential term

Epot =
∫

dr Epot(r) (12)

is reported in Eqs. (48) and (49) of Ref. [28], and will be
outlined in the next section. Neutron and proton densities have
been recoupled into the isoscalar (t = 0) and isovector (t = 1)
channels: isoscalar densities are total densities (e.g., ρ0 =
ρn + ρp), while isovector densities account for proton-neutron
differences (ρ1 = ρn − ρp). The coefficients of the various
terms are all, in principle, functions of the density, although
in practice most of them are set to a constant value [27].
The mean field equations are then derived by relating the
densities to the single-particle orbitals φ j (r) and applying the
variational principle [87]:

[
−∇ · h̄2

2m∗
q (r)

∇ + Uq(r) + UCoul(r)δq,p (13)

+ Wq(r) · (−i)(∇ × σ )
]
φ j (r) = ϵ jφ j (r) (14)

where

Uq = δE
δρq

,
h̄2

2m∗
q (r)

= δE
δτq

, Wq = δE
δJq

, (15)

and m∗
q (r), Uq(r), and Wq(r) are called effective mass, mean

field, and spin-orbit potential, respectively.
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C. Construction of the EDFs

The simplest way to define an EDF based on the infinite
matter EoS is LDA [23,31,44]. In LDA, one assumes that
the same expression of the potential energy density valid in
infinite matter holds for nonuniform densities ρq(r) too. This
approximation is well suited in particular for slowly varying
density distributions, so that each small region of a generic
(finite or infinite) system can be treated as a piece of bulk
matter [23]. LDA provides the following expression for the
bulk energy density Ebulk(r):

Ebulk[ρ(r),β(r)] = ρ(r)v[ρ(r),β(r)]. (25)

The LDA EDFs read

ELDA = Ekin + Ebulk + ECoul (26)

and Eq. (13) simplifies, as m∗ = m, W(r) = 0, and Uq(r) =
U bulk

q (r), where

U bulk
q (r) = δEbulk

δρq(r)

=
∑

γ

{(γ + 1)cγ ,0

+ [(γ − 1)β(r) + 2τz]β(r) cγ ,1}ργ (r), (27)

for the potential term (23) and τz = +1 for neutrons and τz =
−1 for protons. See Appendix A for the derivation.

While an ab initio based treatment of LDA is the main sub-
ject of this paper, it is known that such approximation is not
sufficient to accurately describe nuclear systems [31]. Even
for electronic DFT, where LDA is a solid starting point, it is
understood that gradient terms are necessary for quantitatively
accurate predictions [22]. In Sec. IV B, we will show that
the LDA EDFs based on our chosen Hamiltonians give rather
different outcomes. Hence, to better gauge the LDA, we also
perform a preliminary analysis of a set of EDFs that include
surface terms.

These functionals, that we name GA EDFs, are made by
complementing LDA with isoscalar and isovector density-
gradient terms and a one-parameter spin-orbit contribution. It
must be understood that these GA EDFs are treated at a very
preliminary level. For instance, ρτ terms, that are known to
be important in nuclear DFT and produce an effective mass
m∗ ̸= m, are not discussed. Also, no rigorous statistical anal-
ysis is performed and no attempt to derive the surface terms
from ab initio is made. These important themes are left for
future studies.

Our GA EDFs have the following form:

EGA = ELDA + Esurf (28)
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Three parameters, C&
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1 , and W0, are introduced and are
all assumed to be density-independent constants, as in widely
used EDFs. The mean field equations (13) hold, with m∗ = m
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and U surf
q is derived in Appendix B. Appendix C is dedicated

to the concept of rearrangement energy of the EDF.
To tune the surface terms, a grid search on the three param-

eters C&
0 , C&

1 , and W0 is carried out, although full-fledged fits
will be necessary in later works. To benchmark the quality of
the EDF predictions, the root mean square (rms) errors of the
binding energies and the charge radii for the GA EDFs
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are evaluated with respect to the experimental radii of 40Ca,
48Ca, 132Sn, and 208Pb and the binding energies of 40Ca, 48Ca,
90Zr, 132Sn, and 208Pb [96]. All the DFT g.s. calculations are
performed with the SKYRME_RPA code [88], which has been
appropriately modified.

IV. RESULTS

A. Nuclear matter fits

The SNM and PNM equations of state employing the
NNLOsat potential were computed in Ref. [18] using the
SCGF method. The T = 0 limit is shown in Fig. 1 and explicit
values are reported in Table I. In this paper, we consider sim-
ulations up to densities ρ = 0.32 fm−3, as these are still com-
patible with the soft momentum cutoff of this interaction. The
SNM EoS saturates at ρsat =0.15 fm−3 and Esat =−14.7 MeV.
We performed fits on a set of points equally spaced by
0.01 fm−3 following the parametrizations discussed in
Sec. III B. A fivefold cross-validation procedure was used
to estimate the validation error and select the best model.
The optimal choice was the polynomial (2,3,4,5,6), which
achieves a very small MSE = 10−8 MeV2. This model is
shown by the curves in Fig. 1 along with the complete ab
initio dataset used in the fit.

The AV4′ + UIXc EoS has been calculated with the
AFDMC method for several densities up to 0.40 fm−3. To the
best of our knowledge, this is the first application of AV4′ +
UIXc to nuclear matter. The results are reported in Table II.
The saturation point is located at an unusually high density
(ρ = 0.24 fm−3) and low energy (Esat = −23.7 MeV) and the
3N contribution is instrumental in allowing the SNM EoS to
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C. Construction of the EDFs

The simplest way to define an EDF based on the infinite
matter EoS is LDA [23,31,44]. In LDA, one assumes that
the same expression of the potential energy density valid in
infinite matter holds for nonuniform densities ρq(r) too. This
approximation is well suited in particular for slowly varying
density distributions, so that each small region of a generic
(finite or infinite) system can be treated as a piece of bulk
matter [23]. LDA provides the following expression for the
bulk energy density Ebulk(r):
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While an ab initio based treatment of LDA is the main sub-
ject of this paper, it is known that such approximation is not
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for electronic DFT, where LDA is a solid starting point, it is
understood that gradient terms are necessary for quantitatively
accurate predictions [22]. In Sec. IV B, we will show that
the LDA EDFs based on our chosen Hamiltonians give rather
different outcomes. Hence, to better gauge the LDA, we also
perform a preliminary analysis of a set of EDFs that include
surface terms.

These functionals, that we name GA EDFs, are made by
complementing LDA with isoscalar and isovector density-
gradient terms and a one-parameter spin-orbit contribution. It
must be understood that these GA EDFs are treated at a very
preliminary level. For instance, ρτ terms, that are known to
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values are reported in Table I. In this paper, we consider sim-
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values are reported in Table I. In this paper, we consider sim-
ulations up to densities ρ = 0.32 fm−3, as these are still com-
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We performed fits on a set of points equally spaced by
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to estimate the validation error and select the best model.
The optimal choice was the polynomial (2,3,4,5,6), which
achieves a very small MSE = 10−8 MeV2. This model is
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initio dataset used in the fit.

The AV4′ + UIXc EoS has been calculated with the
AFDMC method for several densities up to 0.40 fm−3. To the
best of our knowledge, this is the first application of AV4′ +
UIXc to nuclear matter. The results are reported in Table II.
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(ρ = 0.24 fm−3) and low energy (Esat = −23.7 MeV) and the
3N contribution is instrumental in allowing the SNM EoS to

024315-6

See talk by  

G. Colò this morning

F. Marino 

(EPS PhD thesis 

prize, 2025)



Algebraic diagrammatic construction [ADC(3)] for infinite matter

586 C. Barbieri and A. Carbone

Solution

Upon performing the four frequency integrals, one obtains:

˙
.2;3N/
˛ˇ .!/ D 1

12
W˛!ı;"#$

8
<̂

:̂

X

n1; n2; n3
k4; k5

.X n1
" X n2

# X n3
$ Y k4

! Y k5
ı /

!X n1
"0 X n2

#0 X
n3
$0 Y

k4
! 0Y

k5
ı0

! ! ."Cn1 C "Cn2 C "Cn3 ! ""
k4 ! ""

k5/C i%

C
X

k1; k2; k3
n4; n5

Y k1
" Y k2

# Y
k3
$ X n4

! X n5
ı .Y k1

"0Y k2
#0Y

k3
$0X

n4
! 0 X

n5
ı0 /

!

! ! .""
k1 C ""

k2 C ""
k3 ! "Cn4 ! "Cn5/ ! i%

9
>=

>;
W"0#0$0 ;ˇ! 0ı0 :

(11.26)

11.3 The Algebraic Diagrammatic Construction Method

The most general form of the irreducible self-energy is given by Eq. (11.15).
The ˙.1/ is defined by the mean-field diagrams of Fig. 11.3a and Eq. (11.17a),
while ė.!/ has a Lehmann representation as seen in the examples of Eqs. (11.25)
and (11.26). Similarly to the case of a propagator, the pole structure of the energy-
dependent part is dictated by the principle of causality with the correct boundary
conditions coded by the ˙i% terms in the denominators. This implies a dispersion
relation that can link the real and imaginary parts of the self-energy [22, 26].
Correspondingly, the direct coupling of single particle orbits to ISCs (of 2p1h and
2h1p character or more complex) imposes the separable structure of the residues. In
this section we consider the case of a finite system, for which it is useful to use a
discretized single particle basis f˛g as the model space. From now on we will use
the Einstein convention that repeated indices (n, k, ˛. . . ) are summed over even if
not explicitly stated. Thus, the above constraints impose the following analytical
form for the self-energy operator:
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where, here and in the following, ! and ˙i% are to be intended as multiplication
operators (that is, with matrix elements Œ!C i%'s;s0 D .!C i%/ıs;s0) and the fraction
means a matrix inversion. In Eq. (11.27), theE> and E< are the unperturbed energies
for the forward and backward ISCs and r and s are collective indices that label sets of
configurations beyond single particle structure. Specifically, r is for particle addition
and will label 2p1h, 3p2h, 4p3h, . . . states, in the general case. Likewise, s is for
particle removal and we will use it to label 2h1p states (or higher configurations).
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Ladd Ring

Σ11(ω) = Σ11(∞)  +  ~Σ(𝜔)

Σ⋆(𝜔) = (Σ11(𝜔) Δ
Δ∗ Σ22(𝜔))Gorkov superfluid 

formulation (at 1st order) 

Pairing fieldNormal self-energy
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11 Self-Consistent Green’s Function Approaches 603

https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/
Chapter11-programs/Inf_Matter. We will use the C++ programming language and
will refer to this code for describing the technical details of the implementation.
We then show results based on the Minnesota nuclear potential from [47]. This
is a very simplified model of the nuclear interaction that allows for an easy
implementation. On the other hand, it still retains some physical properties of
the nuclear Hamiltonian that will allow us to discuss the basic features of the
spectral function of nucleonic matter (and of infinite fermionic systems in general).
The reader interested in these physics aspects could refer directly to Sect. 11.4.2.

11.4.1 Computational Details for ADC(n)

The first fundamental step to set up a SCGF computation is the choice of the model
space. For infinite matter, translational invariance imposes that the Dyson equation
is diagonal in momentum and therefore it becomes much easier to solve the problem
in momentum space. However, there remain two possible choices for how to encode
single particle degrees of freedom. The first one is to subdivide the infinite space in
boxes of finite size and to impose periodic boundary conditions (see also Chap. 8).
In this way, the number of fermions included in each box is finite and determined by
the particle density of the system. The resulting model space is naturally expressed
by a set of discretized single particle states and one solves the working equations in
the form of Eqs. (11.38), (11.39) and (11.48). This path requires the same technical
steps needed to calculate finite systems in a box. Numerical results then need to
be converged with respect to the truncation of the k-space (and, for an infinite
system, with respect to the number of nucleons inside each periodic box). We will
follow this approach for the present computational project. The other approach is to
retain the full momentum space and write the SCGF equations already in the full
thermodynamic limit. This choice is best suited to solve the Dyson equation at finite
temperatures and in a full SCGF fashion and will be discussed further in Sect. 11.5.

Construction of the Model Space For simplicity, we assume a total number A of
nucleons in each (cubic) periodic box. For boxes of length L, the density and the
Fermi momentum are expressed, respectively as („=1):
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and pF D 3

s
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where the degeneracy #d is twice the number of different spin- 1
2
fermions and the

basis states are defined by the cartesian quantum numbers nx, ny, nz= 0, 1, 2. . .with
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nucleons in each (cubic) periodic box. For boxes of length L, the density and the
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tions [58, 64]. State-of-the-art simulations of closed-shell
finite nuclei apply ADC at third-order [ADC(3)] in the
so-called Dyson formulation—where reference states con-
serve particle number symmetry. A superfluid extension
of ADC, rooted in Gorkov Green’s functions theory, has
been developed in Refs. [65–67] and applied successfully
to study open-shell nuclei. Numerous Gorkov calcula-
tions have been performed to date for open-shell nuclei
with the second-order truncation, ADC(2), see for exam-
ple Refs. [59, 68, 69], while the Gorkov-ADC(3) working
equations have been derived only recently [67].

This work presents an approach that is founded on
Gorkov theory and achieves ADC(3) for nuclear mat-
ter. Exploratory ADC(3) computations for nuclear mat-
ter were reported in Refs. [58, 70] based on Dyson the-
ory, but were limited by large violations of the particle
number. The issue could be resolved by embedding the
self-energies computed in the Dyson formalism within the
Gorkov framework to include a static self-consistent pair-
ing field [71–73]. Then, the bulk of dynamical contribu-
tions remains described with the Dyson-SCGF scheme
up to ADC(3), allowing to recover a large fraction of cor-
relation energies. A further improvement of our method
exploits a combination of ADC and amplitudes deter-
mined from CC computations to include e↵ectively even
higher-order many-body correlations.

Our method has been already employed success-
fully [72–74], and its accuracy in predicting the EOS has
been demonstrated in Ref. [72], where ADC has been
compared to CC and MBPT at third-order. However,
a full account of our ADC-SCGF approach for nuclear
matter was not yet available. The primary purpose of the
present paper is to give an in-depth account of its working
equation and results. Sec. II first summarizes the main
di↵erences between the Dyson and Gorkov formulations
and then introduces the novel features in the method.
Sec. III covers some technical details of the implementa-
tion and discusses the convergence in actual simulations.
Sec. IV reports our predictions for the EOS, momentum
distributions, and spectral functions (see also [73]) as ob-
tained with di↵erent �EFT interactions. Finally, con-
clusions and perspectives are outlined in Sec. V. Further
details regarding specific working equations and relations
to other conventions used in the Gorkov SCGF literature
are collected in the Appendices.

II. METHOD–FORMALISM

The starting point of our calculations is a Hamiltonian
comprising two-body (2B) and three-body (3B) interac-
tions, respectively V̂ and Ŵ ,

H = H0 +H1, (1)

where
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X
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Greek indices denote a complete set of single-particle
(s.p.) states. Creation (annihilitation) operators are de-
noted as c

†
↵ (c↵), respectively. k↵ denotes the momen-

tum carried by the s.p. state, m is the nucleon mass, and
2B and 3B matrix elements have been antisymmetrized.
In Eqs. (2), we have added and subtracted an exter-
nal one-body (1B) field, Û , that we will use to define
a self-consistent reference state. Both the kinetic energy
and the external field are assumed to be diagonal in our
single-particle basis because of translational invariance of
homogeneous matter.
FM: An important thing is missing is how we include

3N forces, i.e., using No2B approximation. We should
mention at some point.Lo metto poi nelle appendici.

A. Model space

We simulate infinite nuclear matter as a finite system
of A = N +Z nucleons, with N (Z) being the number of
neutrons (protons), enclosed in a cubic box of size L and
open boundaries [34, 58, 71, 75]. Given the nucleon den-
sity ⇢, the size of the box is L = (A/⇢)1/3 and its volume
V = L

3. Translational invariance imposes a discretized
spectrum of momenta as

k =
1

L

✓
2⇡n+ ✓

◆
, (3)

where n = (nx, ny, nz) is a triplet of integer numbers,
ni = 0,±1,±2..., and ✓ denotes a set of three real num-
bers, called twist angles (see below). Assuming time-
reversal invariance, 0  ✓i < ⇡ [33]. In this work, we
truncate the momentum basis according to

|k|2 = k
2
x + k

2
y + k

2
z  4⇡2

L2
Nmax. (4)

The standard case of periodic boundary conditions
(PBCs) is obtained by neglecting all o↵set angles (✓i =
0), which involves degeneracies between several di↵erent
basis states n. When using twisted-angle boundary con-
ditions (TABC) [33, 76], a non-vanishing o↵set ✓ allows
the degeneracy to be lifted and generates a much finer
mesh of momenta.1

1
In the limit of PBC, Eq. (4) reduces to the simpler form |n|2 =

n2
x+n2

y+n2
z  Nmax. When using TABCs, condition (4) retains
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Figure 8. EOS in PNM (top row) and SNM (bottom row) for three chiral interactions: from left to right,
�NNLOgo(394), �NNLOgo(450) and NNLOsat(450) . Calculations using the ADC(3) (diamonds), ADC(3) with
non-skeleton corrections (circles), and ADC(3)-D (squares) approximations are shown (see legend). The ”Cen-kF ”
prescription has been employed in all cases to evaluate the OpRS energies. The gray boxes denote the empirical es-
timates of the SNM saturation point from Ref. [36]. We use the same vertical scale in each row. Lines are a guide
to the eye.

color). Di↵erent units are used in the vertical axis for
momenta below and above kF , but the same scales are
employed in all six panels. As a consequence of PBCs,
we can only access a discrete mesh of s.p. momenta k.
We highlight that ⇢(k) is discontinuous across kF for a
normal Fermi liquid [21, 42], as nuclear matter is known
to be in this range of densities. At variance with the HF
case, where the occupation probability is a sharp step
function, ⇢HF (k) = ✓(k� kF ), correlations alter the mo-
mentum distribution in the full ADC calculations, as it is
manifest in a depletion of ⇢(k) below the Fermi surface,
in particular, ⇢(k = 0) < 1. Correspondingly, a high-
momentum tail appears, as the probability of occupying
s.p. states outside the Fermi sphere is non-zero. Occu-
pations are non-negligible for momenta k & kF , while
they quickly drop at higher momenta. Qualitatively, the

main di↵erence between PNM and SNM is that, in the
former, at k = 0 the occupation is close to 1, while
SNM is depleted already at very low momentum, e.g.,
⇢(k = 0) ⇡ 0.9. From a quantitative point of view, the
tail is more extended in SNM than PNM, in general, and
the occupation of hole states for k ! k

�
F smaller. As

a rule of thumb, correlations get stronger with increas-
ing density, which reflects into an increasingly larger de-
pletion and a more significant transfer of s.p. strength
from below to above the Fermi momentum. Finally, we
point out that ⇢(k) is somewhat sensitive to the choice of
the potential, too. For example, the soft �NNLOgo(394)
force induces fewer many-body correlations. ⇢(k) in less
depleted than for the other two interactions, and resem-
bles more closely a sharp HF distribution. Before con-
cluding, we remind that all distributions shown here were
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Figure 12. Momentum distributions ⇢(k) as a function
of k/kF for PNM (top) and SNM (bottom) at ⇢ =
0.16 fm�3. Calculations performed with the ADC(3)
approximation using PBC (filled symbols) and TABC
(empty symbols) are compared. The �NNLOgo(450)
interaction is employed. Note that di↵erent scales are
used on the vertical axis below and above the disconti-
nuity, whereas the vertical scale for PNM and SNM is
the same.

particle branch that extends far into the high-momentum
region is also apparent. Fragmentation is strongest for
momenta well inside the Fermi sphere, as shown by the
wide band of secondary peaks below the chemical poten-
tial which lie around the HF energies. OpRS energies
are close to the HF ones, with di↵erences of typically 1-2
MeV.

SNM is characterized by stronger correlations, which
manifest themselves in an increased fragmentation of the
SF. Indeed, the background is more extended and com-
prises a large number of satellite peaks with low strength
|Vq

↵|
2 or |Uq

↵|
2. The background fades for states ap-

proaching the Fermi momentum. At the same time, well-
structured excitations at definite energies tend to emerge,

Figure 13. Three-dimensional representation of the
PNM spectral function at ⇢ = 0.16 fm�3. Calcula-
tions are performed with the NNLOsat (450) interaction
with ADC(3)-D and PBCs. Peaks are convoluted with
a Lorentzian with a finite width � = 1.5 MeV for dis-
play purposes. The height Sk(!), in MeV�1, represents
the value of the spectral function for given momen-
tum k and energy ~!. Each section corresponds to a
given inequivalent momentum k. Quasihole and quasi-
particle states are shown with continuous and dashed
lines, respectively, and they are separated by the chem-
ical potential, given by a red dashed line at frequency
~! = µ..

as visible by dark circles on top of an incoherent back-
ground. States close to the Fermi momentum feature
a single dominant pole with |Vq

↵|
2 ' 1 for k < kF or

|Uq
↵|

2 ' 1 for k > kF . For momenta slightly below kF , a
few quasihole excitations with energy close to µ appear.
Above the Fermi momentum, a branch of intense quasi-
particle peaks extends up to k ⇡ 1.5 fm�1. The dominant
peaks follow a roughly parabolic trend as a function of
the momentum, which can be related to the dominance
of the kinetic contributions ⇠ k

2. However, the SF max-
ima have a di↵erent curvature than the HF energies, at
least for k > 1 fm�1, and have lower energies than the
HF ones.

Finally, we have noticed that OpRS energies are close
to the HF energies at low momenta and almost indis-
tinguishable from them for k > kF . However, when
approaching the Fermi surface for k ! k

�
F , the OpRS
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Figure 14. Two-dimensional representation of the spec-
tral function for PNM (top) and SNM (bottom) as a
function of the momentum k and the energy ~!. Cal-
culations are performed at ⇢ = 0.16 fm�3 with ADC(3)
employing TABCs and the �NNLOgo(450) interaction.
The Fermi momentum kF and the chemical potential
µ are marked by dotted and dashed lines, respectively.
The squared amplitudes |Uq

↵|
2 (|Vq

↵|
2) are shown for

poles above (below) the Fermi level. Color scales are
shown next to the plot. HF s.p. energies are repre-
sented by crosses. Optimized s.p. energies generated
by the OpRS scheme are shown as triangles and dis-
cussed in the text.

energies deviate from the monotonic behavior. This is a
consequence of using the Cen-kFprescription. In partic-
ular, Eq. (34) consists in assigning energies < µ to states
with k < kF . Therefore, while in HF theory energies are
continuous (although, strictly speaking, this statement is
true only in the TL), the s.p. spectrum generated by the
OpRS features an excitation gap across kF .

Overall, comparing the SFs in Fig. 14 highlights that,
at saturation density, PNM is a relatively weakly corre-

lated system. In contrast, interactions are much stronger
in SNM, leading to additional fragmentation of the s.p.
strength, a more extended incoherent background in the
SF, and, correspondingly, a larger depletion of the mo-
mentum distribution below the Fermi momentum (see
Fig. 12).

V. CONCLUSIONS AND PERSPECTIVES

In this work, we have developed a novel scheme for
Gorkov-SCGF theory and applied it to infinite nuclear
matter. Our framework combines an approximate treat-
ment of pairing correlations, which are handled at first
order in a self-consistent way, with dynamical correla-
tions included with the state-of-the-art Dyson-ADC(3)
truncation. Essential is the introduction of an e�cient
way to approximate dressed Gorkov propagators in terms
of particle-number-conserving propagators. Moreover,
we have investigated extensions of the standard ADC(3)
scheme by, on the one hand, including the contribution
of non-skeleton diagrams; on the other hand, the hy-
brid ADC(3)-D truncation, which combines ADC(3) and
coupled-cluster, has been thoroughly discussed.
By incorporating, at the same time, pairing and dy-

namical correlations, we can provide robust predictions
in a wide range of densities. Also, we stress that our
approach is capable of handling pairing at the cost of a
standard Dyson-ADC(3) or CC computations [72], which
is much more favorable than the full Gorkov-ADC or Bo-
goliubov CC [107, 108] approaches.
We have studied PNM and SNM using nuclear poten-

tials, including both NN and 3N interactions, at NNLO
in the chiral EFT expansion. We have found satisfying
predictions for the EOS, in substantial agreement with
other many-body techniques [72]. Exploiting the unique
capabilities of SCGF theory, we have also investigated
the momentum distributions and s.p. spectral functions.
While PBCs are accurate for the EOS, exploiting twisted
boundary conditions allows for a better approximation of
the continuum limit and a more detailed understanding
of s.p. properties.

Our ADC-SCGF framework will be applied to study-
ing several aspects of nuclear matter. Investigating quasi-
particle properties, such as e↵ective masses and lifetimes,
will make it possible to better ground the Fermi liquid de-
scription of PNM into microscopic nuclear theory. Also,
PNM at very low densities is a rather interesting system,
bearing connections to the description of the neutron star
crusts and the unitary Fermi gas. In these regions, PNM
is a superfluid liquid, which few methods can address.
The Gorkov formalism is well-suited for giving a consis-
tent description of energies, spectral functions, and pair-
ing gaps in a unified way. Another research line will ex-
plore the implication of the SNM spectral functions for
approximating the true spectral distributions of nuclei.
For example, neutrino-nucleus processes in the impulse
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Figure 10. Occupation probabilities ⇢(k) as a function of the momentum in units of the Fermi momentum k/kF in
PNM (top) and SNM (bottom) for di↵erent densities (in fm�3), reported in the legend, Three di↵erent interactions
are employed. For SNM, neutron distributions are shown. All calculations have been performed using PBCs and
the ADC(3)-D truncation.

Figure 11. Correlation energies per particle obtained
in SNM with A = 132 nucleons at the ADC(3) trun-
cation level employing the NNLOsat(450) interactions.
Results with PBC (TABC) are shown as full (empty)
symbols. In the inset, energies per particle are shown
for the same set of calculations. Lines are a guide to
the eye.

edge of the Fermi surface, it features well-defined narrow
resonances. This stems from the presence of a dominant
peak, which carries most of the s.p. strength, superim-

posed on an incoherent background of satellite solutions
with almost negligible amplitudes. These narrow, long-
lived excitations at the Fermi surface are named quasi-
hole and quasiparticle states in the context of Landau’s
Fermi liquid theory [21, 48, 56] 6 .
Examples of PNM and SNM SFs, represented as two-

dimensional maps, are shown in the top and bottom pan-
els of Fig. 14, respectively. Calculations are performed
using TABCs at ⇢ = 0.16 fm�3 with the ADC(3) trun-
cation, and the �NNLOgo(450) interaction is employed.
(The corresponding momentum distributions are shown
in Fig. 12.) The normal SF S

11 is plotted as a function of
the momentum k = |k↵| (horizontal axis) and the energy
~! (vertical axis). Poles ✏q = µ±~!q for each momentum

are denoted by dots, and the strength |Vq
↵|

2 (|Uq
↵|

2) for
solutions below (above) the Fermi level µ is represented
by a color scale. The chemical potential and the Fermi
momentum are shown as horizontal and vertical lines,
respectively. Crosses denote the s.p. energies at the HF
level. Triangles refer to the OpRS energies obtained with
the Cen-kF recipe.
The PNM SFs at ⇢ = 0.16 fm�3 in Figs. 14 and 13

are consistent, despite using di↵erent chiral interactions.
The main di↵erence is related to using TABCs in Fig.14,
which results in a finer grid of k points. Quasihole excita-
tions are recognizable for states with k . kF , and a quasi-

6
Quasiparticles are predicted to appear for k ! kF and ~! ! µ
as a consequence of the vanishing of the imaginary part of the

self-energy at the chemical potential, see e.g. Refs.[105, 106].
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