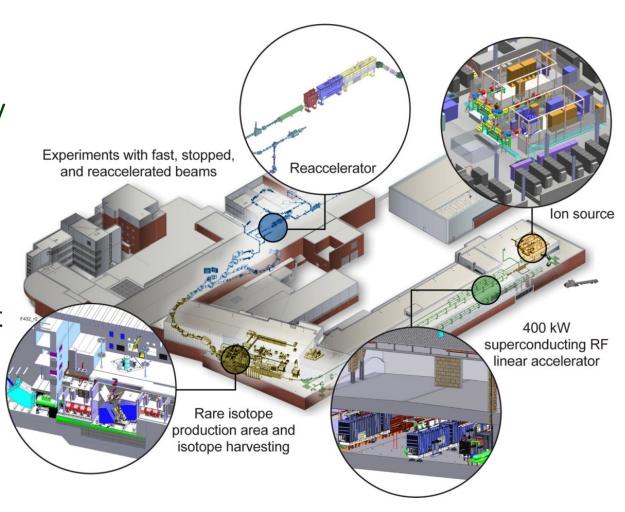


Opportunities in γ Spectroscopy at FRIB

Eleanor Ronning

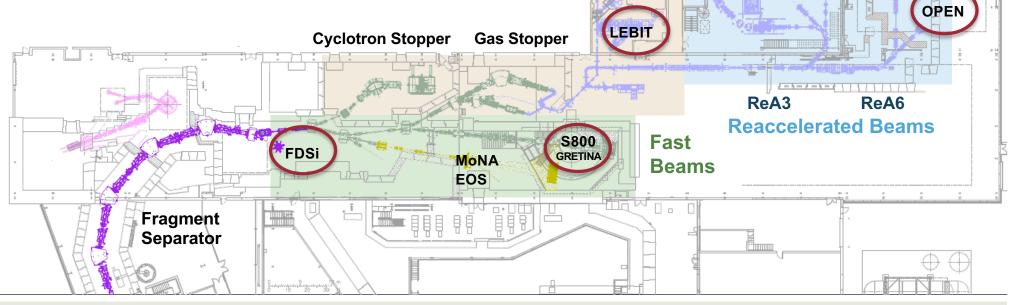
INFN-Padova 24 October 2025


Outline

- Introduction to experimental program at FRIB (focused on gamma spectroscopy)
- FRIB Decay Station initiator (FDSi)
- Post-trap decay spectroscopy experiments
- In-beam γ -ray spectroscopy opportunities
 - GRETA
 - CAESAR
 - SeGA

Facility for Rare Isotope Beams A DOE-SC National User Facility

- Funded by DOE—SC Office of Nuclear Physics with contributions and cost share from Michigan State University
- Serving over 1,400 users
- Key feature is 400 kW beam power for all ions (e.g. 5x10¹³ ²³⁸U/s)
- Separation of isotopes in-flight provides
 - Fast development time for any isotope
 - All elements and short halflives
 - Fast, stopped, and reaccelerated beams

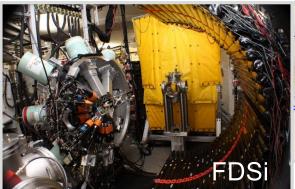

γ-ray Spectroscopy at FRIB

Stopped

BECOLA

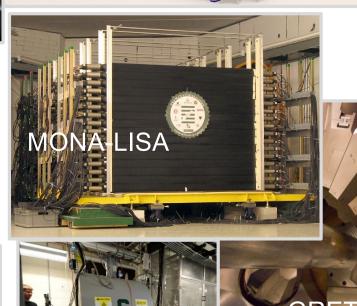
Beams

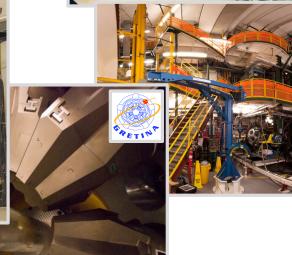
- The FRIB γ -ray spectroscopy performed in three areas:
 - Fast beams
 - » FDSi
 - » S800 (GRETINA/GRETA)
 - Stopped Beams
 - » Open area for stopped beam experiments
 - » Post-trap decay spectroscopy with LEBIT
 - ReA
 - » ReA6 (SeGA/GRETINA/GRETA)



FRIB Experimental Program

SECAR


Available and New Instruments to Come



Michigan State University

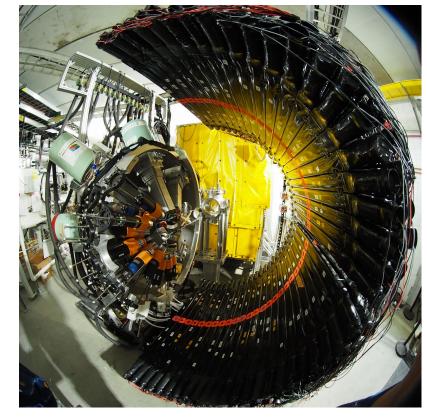
S800

GRETA

> 2024

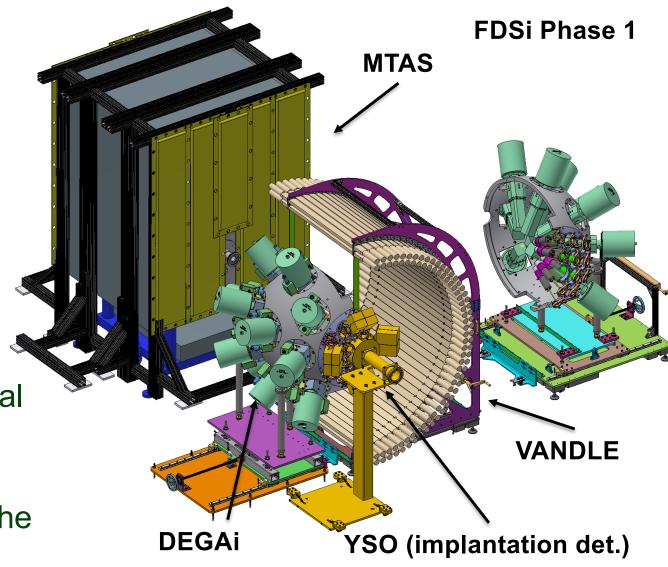
The FRIB Decay Station Initiator

Applications of Isotopes


How can the knowledge and technical progress provided by nuclear physics best be used to benefit society?

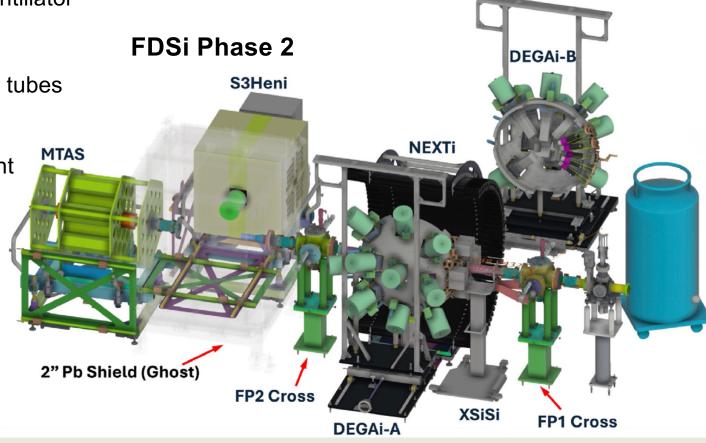
Nuclear Structure	Nuclear Astrophysics	Fundamental Symmetries	Application
How does subatomic matter organize itself and	How did visible matter come into being and	Are the fundamental interactions that are	How can the know progress provided
what phenomena emerge?	how does it evolve?	basic to structure of matter fully understood?	best be used to
1. Shell structure	1. Shell structure	12. Atomic EDM	10. Medical
2. Superheavies	6. Equation of state	15. Mass surface	11. Stewardship
3. Skins	7. r-Process	17. Weak interactions	
4. Pairing	8. ¹⁵ O(α,γ)		
5. Symmetries	9. ⁵⁹ Fe s-process		
6. Equation of state	13. Limits of stability		Trans.
13. Limits of stability	15. Mass surface		
14. Weakly bound nuclei	16. rp-process		
15. Mass surface	17. Weak interactions		

- FDSi aligned to the FRIB experimental program and national priorities.
- Suite of complementary decay detectors
- FDSi organizing committee: R. Grzywacz (UTK), D. Seweryniak (ANL), S.N. Liddick (FRIB), M. Allmond (ORNL)



FDSi is a flexible and modular assembly of community owned equipment

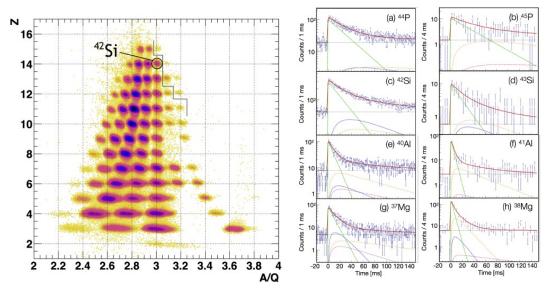
- FDSi includes detectors for
 - Charged particles
 - Neutrons
 - Thermal
 - o Time-of-flight
 - Photons
 - High energy resolution
 - High time resolution
 - Calorimetry
- Overall system can be reconfigured with minimal effort according to experimental needs
- Two focal points along the beam line.



FRIB Decay Station initiator → FRIB Decay Station

- Phase 2 of FDSi:
 - Focal Plane 1
 - DEGAi—HPGe + LaBr₃
 - NEXTi—neutron ToF
 - XsiSi—xy-pixelated scintillator detectors
 - Focal Plane 2
 - S3Hen—HDPE and H³ tubes
 - O MTAS
 - xy-pixelated scintillator detectors and Si implant detectors
- Phase 3 of FDSi
 - Low Energy FDSi

FDSi will continue to evolve to FDS in phases

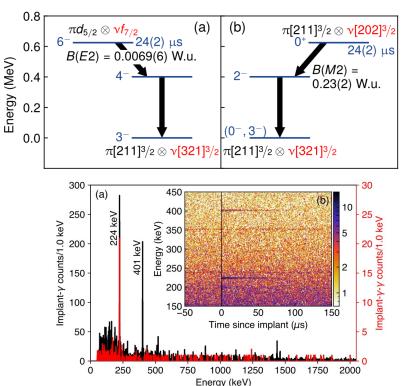


Selected Experimental Results

Crossing N=28 Toward the Neutron Drip Line: First Measurement of Half-Lives at FRIB

H.L. Crawford ¹,*, V. Tripathi², J. M. Allmond, B. P. Crider, R. Grzywacz, S. N. Liddick, A. Andalib^{6,8}, E. Argo^{6,8}, C. Benetti² et al.

Universal Effective Charges in the sd and fp Shells


T.H. Ogunbeku ¹, J.M. Allmond ², T.J. Gray ², M.-J. Ong ¹, B.A. Brown ⁴, A. Gargano ⁵, R. Grzywacz³, J.D. Holt ^{6,7}, A.O. Macchiavelli² *et al.*

 β decay of $^{36}{
m Mg}$ and $^{36}{
m Al}$: Identification of a β -decaying isomer in $^{36}{
m Al}$

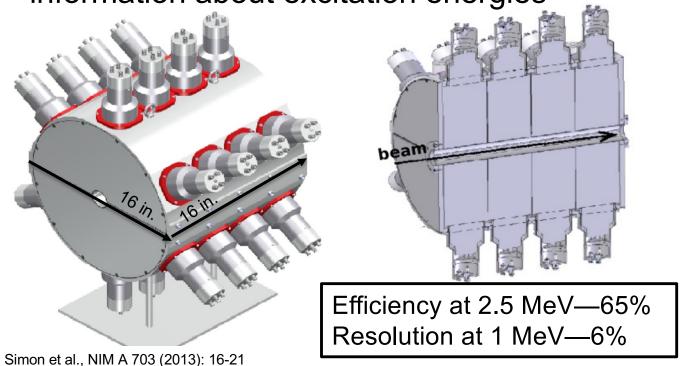
R. S. Lubna ©^{1,*}, S. N. Liddick^{1,2}, T. H. Ogunbeku^{1,3}, A. Chester¹, J. M. Allmond⁴, Soumik Bhattacharya⁵, C. M. Campbell⁶, M. P. Carpenter⁷, K. L. Childers^{8,2} et al.

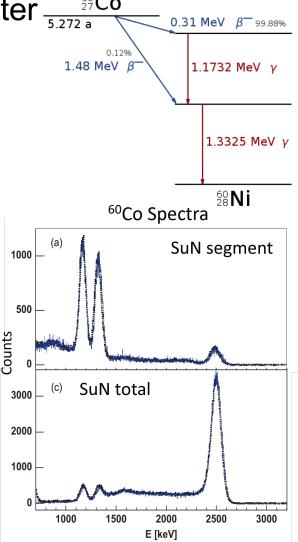
Microsecond Isomer at the N=20 Island of Shape Inversion Observed at FRIB

T. J. Gray 1, J. M. Allmond 1, Z. Xu 2, T. T. King 1, R. S. Lubna 3, H. L. Crawford 4, V. Tripathi 5, B. P. Crider 6, R. Grzywacz^{2,1} et al.

Proton Shell Gaps in N=28 Nuclei from the First Complete Spectroscopy Study with FRIB Decay Station Initiator

I. Cox ¹, Z. Y. Xu ¹, R. Grzywacz ¹, W.-J. Ong ³, B. C. Rasco ², N. Kitamura, D. Hoskins, S. Neupane, T. J. Ruland, T.

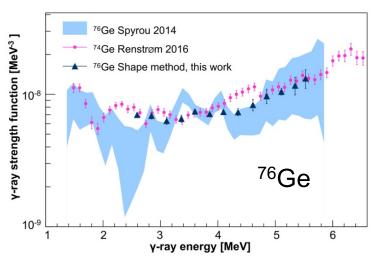


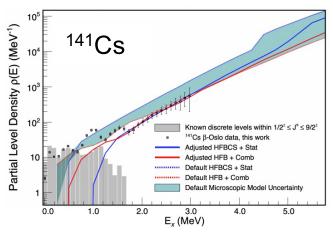

Summing Nal(TI) Total Absorption Spectrometer

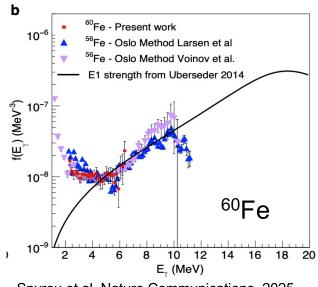
Summing NaI(TI) (SuN) total absorption spectrometer ⁵⁹Co

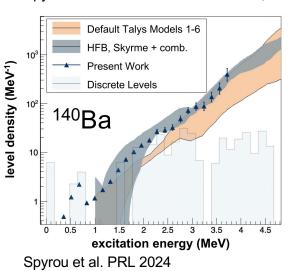
 8 Segments give information about individual γ-rays

 Summing γ-rays from all segments gives information about excitation energies

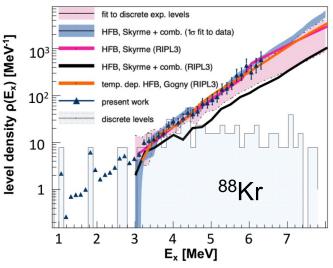





γ-ray strength functions (γSF) and Nuclear Level Densities (NLD) measured with SuN


Mucher et al. PRC Letters, 2023

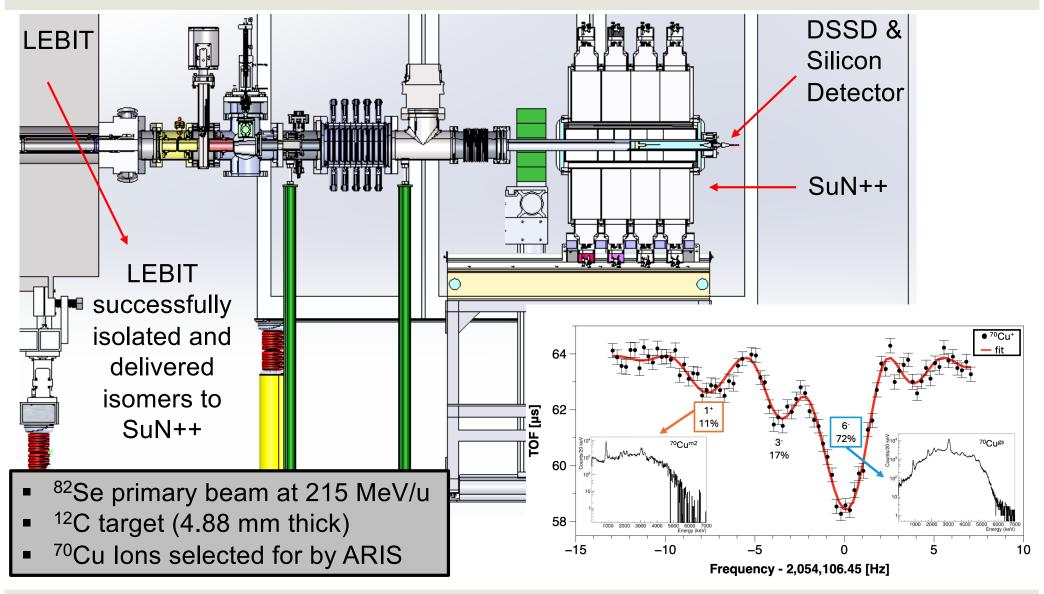
Greaves et al. PLB, submitted 2025


Spyrou et al. Nature Communications, 2025

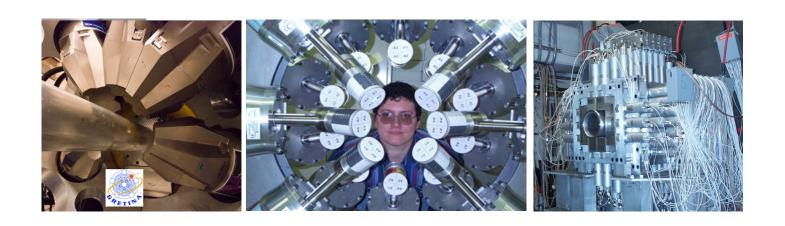
10⁻⁵
10⁻⁶
10⁻⁷
10⁻⁸
10⁻⁸
70Cu

Extrapolation of ⁷²Zn GSF from ⁷⁰Cu⁵⁰
Extrapolation of ⁷²Zn GSF from ⁷⁰Cu⁵⁰
Extrapolation of ⁷²Zn SSN++ from ⁷⁰Cu⁵⁰
⁷²Zn SSN++ from ⁷⁰Cu⁵⁰
⁷²Zn SSN++ from ⁷⁰Cu⁵⁰
⁷²Zn SN++ from ⁷⁰Zn SN++ from ⁷⁰

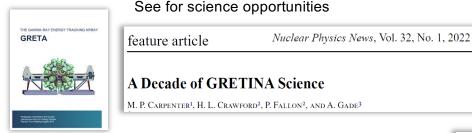
Ronning et al., in prep 2025



Mucher et al. PRC Letters 2023

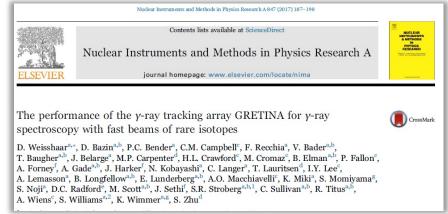

First isomer-separated beam experiment at FRIB with LEBIT and SuN++

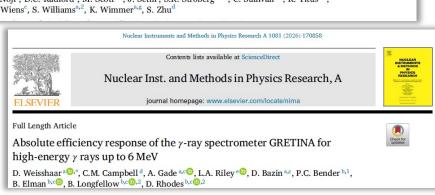
Michigan State University

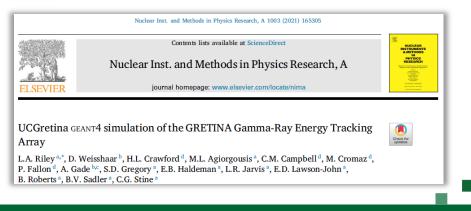

In-beam γ -ray spectroscopy opportunities at FRIB

Instruments maintained and supported by the Gamma Group at FRIB

Highest-resolution spectroscopy with GRETA -to be used with fast and reaccelerated beam


- Most of GRETA has arrived at FRIB and infrastructure is being installed at ReA6 in preparation for offline commissioning (throughout remainder of 2025)
- Locations for GRETA at FRIB
 - Fast beams [at the S800, GRETA will always use the GRETINA framel
 - » Short-term: GRETA@S800
 - » Long-term: GRETA@HRS and S800
 - » Aspiration: GRETA@HRS at FRIB400, GRETA@S800
 - Reaccelerated beams
 - » GRETA@ReA6





Like GRETINA, envision operations with auxiliary instruments such as LENDA, FAUST, ORRUBA, LH2 target, TRIPLEX plunger at the S800/HRS and ORRUBA or CHICOx at ReA

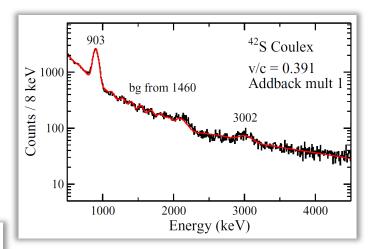
GRETINA at MSU technical publications that apply to GRETA

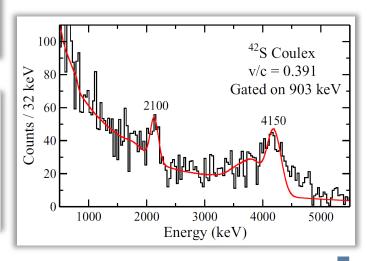
Modest-resolution, high-efficiency in-beam γ ray spectroscopy

■ The Caesium Iodide Array (CAESAR) - consisting of 196 CsI(Na) scintillators in compact, modular geometry - is available for fast-beam experiments at the S800, with the Sweeper Magnet, and in the future at the HRS (often combined with charged-particle or neutron detection)

 Can be used when resolution is not an issue or high-energy γ rays are of interest (and when GRETA is at Argonne National

Laboratory)




CAESAR NIM A paper:

Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A CAESAR—A high-efficiency CsI(Na) scintillator array for in-beam γ -ray spectroscopy with fast rare-isotope beams

New NIM A paper on electronics and DAQ upgrade submitted: S. Gillespie et al. (2025)

D. Weisshaar^{a,*}, A. Gade ^{a,b}, T. Glasmacher ^{a,b}, G.F. Grinyer ^a, D. Bazin ^a, P. Adrich ^a, T. Baugher ^{a,b}, J.M. Cook ^{a,b}, C.Aa. Diget ^a, S. McDaniel ^{a,b}, A. Ratkiewicz ^{a,b}, K.P. Siwek ^{a,b}, K.A. Walsh ^{a,b}

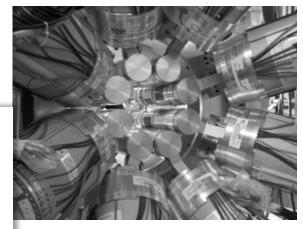
Since GRETINA was offered for experiments at MSU, SeGA has been used within JANUS for barrier-energy Coulomb excitation

SeGA was one of the first highly segmented Ge arrays and was used extensively at NSCL with fast beams at the S800 until GRETINA became available

Nuclear Instruments and Methods in Physics Research A 466 (2001) 492-498

NSTRUMENTS & METHODS IN PHYSICS RESEARCH

www.elsevier.com/locate/nima


Thirty-two-fold segmented germanium detectors to identify γ-rays from intermediate-energy exotic beams

W.F. Mueller^{a,*}, J.A. Church^{a,b}, T. Glasmacher^{a,b}, D. Gutknecht^c, G. Hackman^{a,1}, P.G. Hansen^{a,b}, Z. Hu^a, K.L. Miller^{a,b}, P. Quirin^c

a National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321, USA ^bDepartment of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA ^c Eurisys Mesures, 1 chemin de la Roseraie, F-67383 Lingolsheim, France

Received 26 May 2000; received in revised form 18 October 2000; accepted 24 October 2000

- In JANUS, SeGA surrounds two Micron S3 annular Si detectors in a high-efficiency barrel configuration
- JANUS is run in a collaboration of FRIB, LLNL, and the University of Surrey and is not a supported instrument that can be requested

Nuclear Inst. and Methods in Physics Research, A 885 (2018) 30-37


Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

JANUS — A setup for low-energy Coulomb excitation at ReA3*

b Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

^c Lawrence Livermore National Laboratory, Livermore, CA 94550, USA d Department of Physics, University of Rochester, Rochester, NY 14627, USA

Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA

JANUS: Joint Array for NUclear Structure studies

Thank you!

- FRIB Decay Station initiator (FDSi)
 - Contact: Rebeka Lubna + Sean Liddick
- Post-trap decay spectroscopy experiments
 - Contact: Eleanor Ronning (me ⊕) + Ryan Ringle
- In-beam γ -ray spectroscopy opportunities
 - Contact: Alexandra Gade (speaking in the afternoon session)

