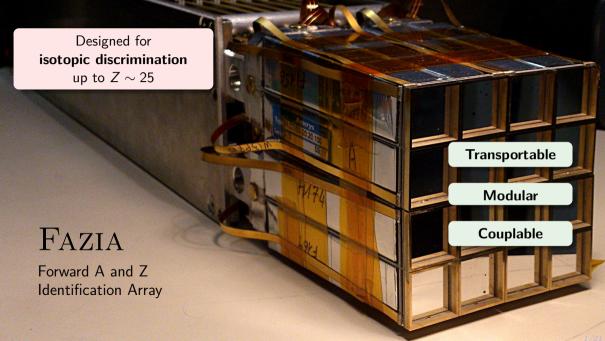


FAZIA collaboration

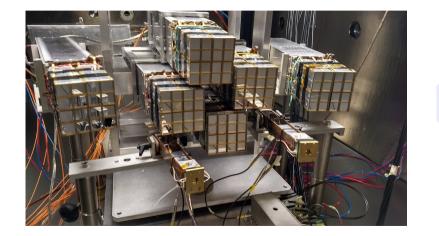




$\mathit{FAZIA}\ \mathit{setup}$

Laboratories where FAZIA measured so far

FAZIA ○○○●


Transportable

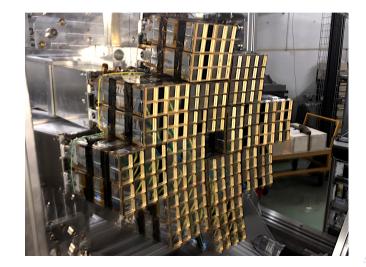
Modular

Couplable

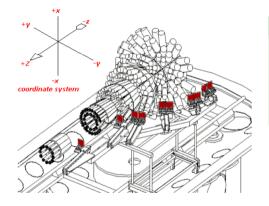

INFN-LNS (Italy) 2014 – 2015

INFN-LNS (Italy) 2016 – 2018

GANIL (France) 2018 – today



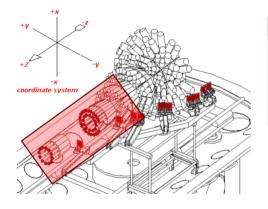
GANIL (France) 2018 – today


Transportable

Modular

Couplable

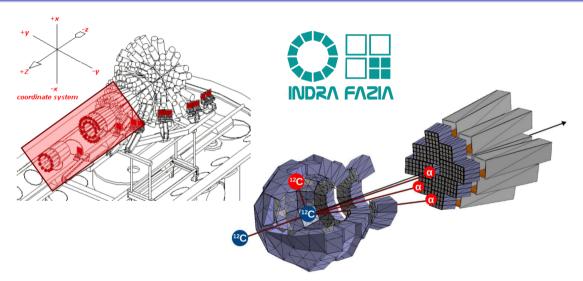
INDRA setup

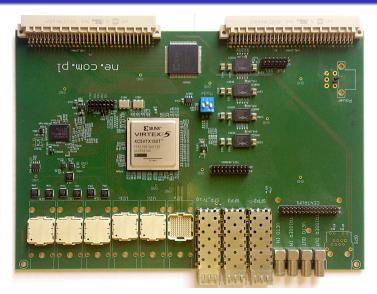


Original configuration (1992-2016)

- 90% of the solid angle covered
- 17 telescope rings (8-24 sectors per ring)
 - ullet ring 1: IC + plastic scintillators
 - rings 2-9: IC-Si-CsI telescopes
 - rings 10-17: IC-Csl telescopes

J. Pouthas et al, Nucl. Instr. and Meth. A 357 (418), 1995


INDRA setup


Present configuration (2017-today)

- FAZIA at forward angles!
- 12 telescope rings (8-24 sectors per ring)
 - rings 1-5: removed!
 - rings 6-9: IC-Si-CsI telescopes
 - rings 10-17: IC-Csl telescopes

$IN\overline{DRA\ setup}$

Regional board

Regional board

Regional Board

- Designed at Jagiellonian University, Krakow
- Features a Xilinx Virtex-5 FPGA
 - VHDL code has been written mainly at INFN Napoli and INFN – Firenze
- 36x 3 Gb/s bi-directional optical links
 - to/from FAZIA blocks
 - fixed latency protocol
- 2x 1 Gb/s optical ethernet links (1000Base-SX)
 - \bullet now only 1 is used \Rightarrow room for transmission speed increase
 - UDP protocol for low-latency transfer
- Possibility to connect GANIL CENTRUM module

Regional board

Regional Board tasks

- Slow control management of all the electronics
 - data transmission and slow control use the same optical fibre
- Trigger board:
 - multiple majority logic for trigger validation
 - trigger scaling by a settable factor
 - asynchronous or master/slave trigger operation (for coupling)
- Event building from data coming from all the blocks
 - it may add the CENTRUM timestamp to each event
- Transmission of acquired data to servers
 - maximum speed achieved: $\sim 80 \, \text{MB/s} \, (\sim 640 \, \text{Mb/s})$

FAZIA - INDRA coupling

FAZIA modularity makes coupling easy:

- CENTRUM¹ modules could be used for coupling
- FAZIA INDRA coupled since 2018!

¹developed at GANIL, Caen

FAZIA - INDRA coupling

FAZIA modularity makes coupling easy:

- CENTRUM¹ modules could be used for coupling
- FAZIA INDRA coupled since 2018!

Triqqer

- Master/slave (common dead time)
- Asynchronous mode (keeping common dead time)

¹developed at GANIL, Caen

FAZIA - INDRA coupling

FAZIA modularity makes coupling easy:

- CENTRUM¹ modules could be used for coupling
- FAZIA INDRA coupled since 2018!

Trigger

- Master/slave (common dead time)
- Asynchronous mode (keeping common dead time)

CENTRUM operation

- Validation received from one or both detectors
- Timestamp given to both detectors

¹developed at GANIL, Caen

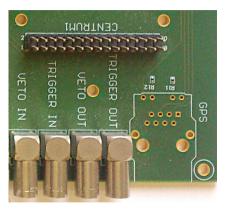
FAZIA - INDRA coupling

FAZIA modularity makes coupling easy:

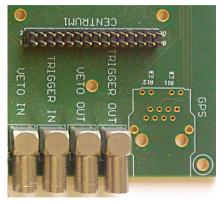
- CENTRUM¹ modules could be used for coupling
- FAZIA INDRA coupled since 2018!
- data merging using NARVAL²

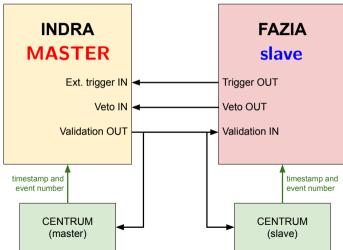
Trigger

- Master/slave (common dead time)
- Asynchronous mode (keeping common dead time)

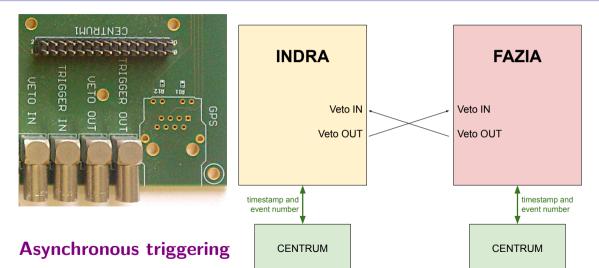

CENTRUM operation

- Validation received from one or both detectors
- Timestamp given to both detectors

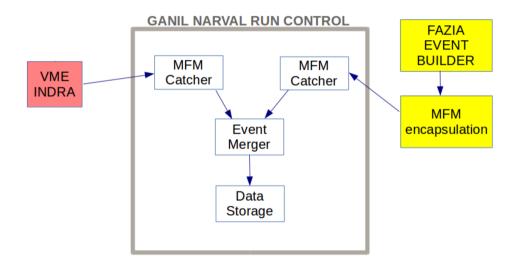

¹developed at GANIL, Caen


²developed at IPN. Orsav

Trigger coupling (preserving common dead time)

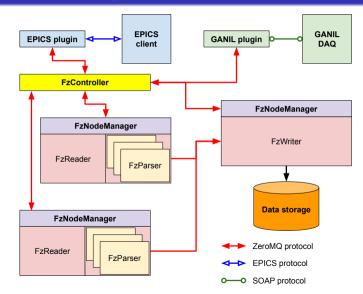


Trigger coupling (preserving common dead time)

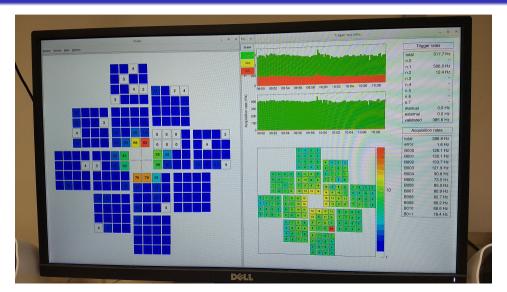


Trigger coupling (preserving common dead time)

Data merging with NARVAL



Acquisition and monitoring


$Acquisition\ system$

- Developed at INFN Napoli
- Finite State Machine logic
- Multi-thread and multi-machine
 - controller sends machine IP addresses to regional board
 - regional board stores IP addresses inside a list
 - each event is sent to a different PC of the list sequentially
- Data merged and written to a data server.
- Monitoring software receives live data from the acquisition
- Data transfer between machines via ZeroMQ protocol
- NARVAL frame encapsulation implemented

Acquisition and monitoring

Acquisition and monitoring

FAZIA now

Present status

- FAZIA is a general purpose, modular and flexible apparatus
- almost full solid angular coverage achieved with INDRA+FAZIA coupling
- setup designed for **Fermi energies** (15–50 AMeV)

FAZIA now

Present status

- FAZIA is a general purpose, modular and flexible apparatus
- almost full solid angular coverage achieved with INDRA+FAZIA coupling
- setup designed for **Fermi energies** (15–50 AMeV)

Future at GANIL

There are still many physics cases to be explored

2 experiments just concluded in 2025!

1 experiment approved for 2026/27!

Future challenges

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

$Future\ challenges$

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

• Thicker sensors with the same FAZIA electronics

Future challenges

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols

Future challenges

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols
- Full re-design of the apparatus based on the FAZIA expertise

Future challenges

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols
- Full re-design of the apparatus based on the FAZIA expertise

FAZIA technology will be fundamental for the future developments

FAZIA @ 23058

- As a first test, FAZIA will measure at FRIB coupled with other apparatuses
- We started a 2-weekly technical meeting cycle to prepare the setup

Mechanics

- The scattering chamber is too small to host FAZIA
- A "nose" will be build to host a FAZIA block at 80 cm distance from target

DAQ and electronics

- FRIB DAQ experts received the full description of the FAZIA data flow protocol
- FAZIA data will be merged with other setups and handled by FRIB
- independent acquisition to store FAZIA data in the old format?

FAZIA @ 23058

- As a first test, FAZIA will measure at FRIB coupled with other apparatuses
- We started a 2-weekly technical meeting cycle to prepare the setup

Mechanics

- The scattering chamber is too small to host FAZIA
- A "nose" will be build to host a FAZIA block at 80 cm distance from target

DAQ and electronics

- FRIB DAQ experts received the full description of the FAZIA data flow protocol
- FAZIA data will be merged with other setups and handled by FRIB
- independent acquisition to store FAZIA data in the old format?
- Successful FAZIA@FRIB coupling test two weeks ago!

FAZIA@FRIB

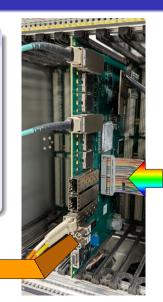
FRIB DAQ coupling

- Common dead time by trigger coupling
- Timestamp (TS) generated from external clock
- TS reset is provided to all the coupled devices
- TS written in data flow
- FRIB DAQ extracts TS to merge data

FAZIA@FRIB

FRIB DAQ coupling

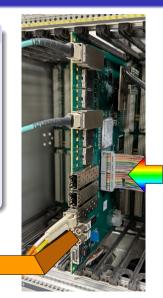
- Common dead time by trigger coupling
- Timestamp (TS) generated from external clock
- TS reset is provided to all the coupled devices
- TS written in data flow
- FRIB DAQ extracts TS to merge data


FRIB veto signal in FAZIA for **common dead time**

FRIB DAQ coupling

- Common dead time by trigger coupling
- Timestamp (TS) generated from external clock
- TS reset is provided to all the coupled devices
- TS written in data flow
- FRIB DAQ extracts TS to merge data

FRIB veto signal in FAZIA for common dead time


Timestamp clock and reset signals are sampled by ReBo and written in data flow

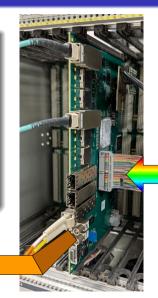
FAZIA@FRIB

FRIB DAQ coupling

- Common dead time by trigger coupling
- Timestamp (TS) generated from external clock
- TS reset is provided to all the coupled devices
- TS written in data flow
- FRIB DAQ extracts TS to merge data

FRIB veto signal in FAZIA for **common dead time**

Timestamp **clock** and **reset** signals are sampled by ReBo and written in data flow


Timestamp coherency verified!

FAZIA@FRIB

FRIB DAQ coupling

- Common dead time by trigger coupling
- Timestamp (TS) generated from external clock
- TS reset is provided to all the coupled devices
- TS written in data flow
- FRIB DAQ extracts TS to merge data

FRIB veto signal in FAZIA for **common dead time**

Extra details from FRIB side in the next talk by **G. Cerizza**

Timestamp **clock** and **reset** signals are sampled by ReBo and written in data flow

Timestamp coherency verified!

- SYMEOS phase 2 will need new kind of detectors, optimized for FRIB energies
- Supra-saturation experiments will produce a broad variety of ejectiles:
 - Very energetic light particles from the fireball
 - Moderately excited fragments from spectator fragments
 - Very slow particles and fragment from spectators in peripheral collisions

Proposed solution in the LoI

- setups constituted by coupling INFN detector systems to equipment already operating at FRIB
- FAZIA upgrade without re-designing a new apparatus from scratch!
- complex setup which may introduce a bias

- SYMEOS phase 2 will need new kind of detectors, optimized for FRIB energies
- Supra-saturation experiments will produce a broad variety of ejectiles:
 - Very energetic light particles from the fireball
 - Moderately excited fragments from spectator fragments
 - Very slow particles and fragment from spectators in peripheral collisions

AZIMUTH solution

- A single apparatus with capabilities typical of correlators, $\Delta E E$ telescopes, and particle trackers
- Modular and portable setup, capable to measure fragments emitted in collisions at E/A from 15 to 500 MeV/u
- Less bias (also thanks to streaming readout acquisition)

European Research Council

Established by the European Commission

AZIMUTH solution

- A single apparatus with capabilities typical of correlators, $\Delta E E$ telescopes, and particle trackers
- Modular and portable setup, capable to measure fragments emitted in collisions at E/A from 15 to 500 MeV/u
- Less bias (also thanks to streaming readout acquisition)
- Project submitted to ERC-CoG 2025!

AZIMUTH solution

- A single apparatus with capabilities typical of correlators, $\Delta E E$ telescopes, and particle trackers
- Modular and portable setup, capable to measure fragments emitted in collisions at E/A from 15 to 500 MeV/u
- Less bias (also thanks to streaming readout acquisition)
- Project submitted to ERC-CoG 2025! not funded!

Even if not funded by ERC, we still may think to build a FAZIA/AZIMUTH-like setup for future measurements at FRIB.

More details on the proposed AZIMUTH detector could be found in "S. Valdré, J. Inst. **20**, C06060 (2025)"

I will summarize here the main characteristics.

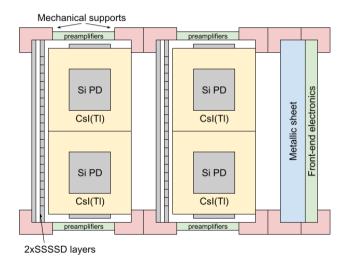
AZIMUTH solution

A and Z Identification

the detector shall discriminate **in charge and mass** ions in a broad range of energies to guarantee the best isotopic discrimination ever achieved for a telescope-based detector

Modular

several telescope configurations shall be available, all of them with the **same connection standard** to front-end electronics and with the **same data acquisition protocol**


Universal

the apparatus shall be **multipurpose**, apt to measure multiple observables at the time, **couplable with other detectors**, and it shall also be used with a large variety of beams

Tracking Hodoscope

the telescopes shall implement **particle tracking** features through the layers in order to maximize the efficiency of light and energetic particle identification

The AZIMUTH block

AZIMUTH challenges

Main obstacles are related to fast particles energy loss profile

Energy straggling

energy loss of ions inside materials happens through a series of scatterings. The more interactions we have, the large variance in energy loss (straggling) we get a

^aS. Kumar and P. K. Diwan, J Radiat Res Appl Sci 8, 538 (2015)

Incomplete energy deposition (IED)

as ions react inside large volume crystals, or they scatter, punching-through the crystal surfaces, identification isn't feasible anymore b

^bC. Frosin et al., Nucl. Instrum. Meth. A **951**, 163018 (2020)

Tracking features

$Energy\ loss\ +\ position\ tracking$

- ullet "multiple ΔE " measurement to track particle energy loss among layers
- position tracking thanks to SSSD (or pixel detectors)

A lot of information per event to be analyzed by a neural network:

- training with simulation of reactions and elastic scattering inside sensors
- reconstruction of trajectories
- reconstruction of original particle E, Z, A

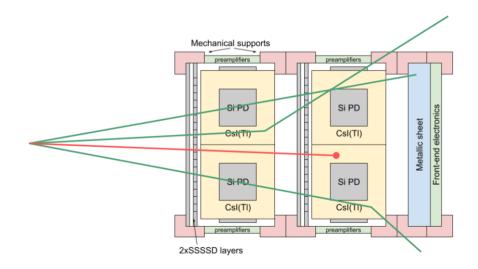
Tracking features

$Energy\ loss\ +\ position\ tracking$

- "multiple ΔE " measurement to track particle energy loss among layers
- position tracking thanks to SSSD (or pixel detectors)

A lot of information per event to be analyzed by a neural network:

- training with simulation of reactions and elastic scattering inside sensors
- reconstruction of trajectories
- reconstruction of original particle E, Z, A


FAZIA

- 1x position (telescope)
- up to 3x partial energy release (Si-Si-Csl)

AZIMUTH

- up to 3x positions (3 stacked modules)
- up to 9x partial energy release (Si-Si-Csl-Si-Si-Csl-Si-Csl)

Tracking features

Summary and future perspectives

AZIMUTH

- **Telescope** approach + **tracking** features
- Position sensitive good for correlations
- Designed for elliptic flow measurements and invariant mass spectroscopy
- Good for FRIB, but also for FAIR (full setup) or low energy Spiral2, SPES, and LNS-FRAISE beams (1- or 2-module blocks)

Next steps

- Start testing of sensor layers and tracking algorithms
- Improve the design after first FRIB experiments
- Strengthen sinergies among HIC collaborations

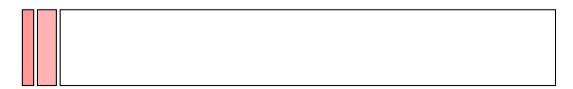
Backup slides

The telescope stages

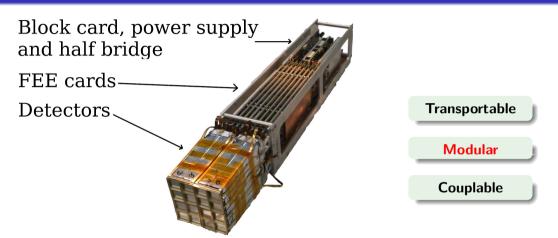
- 300 μm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- 10 cm CsI(TI) cristal read by a photodiode.

The telescope stages

- 300 μm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- 10 cm CsI(TI) cristal read by a photodiode.


The telescope stages

- 300 μm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- 10 cm Csl(Tl) cristal read by a photodiode.


The telescope stages

- 300 µm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- 10 cm CsI(TI) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD input cut at random angle to avoid channeling effects.

The FAZIA block

16 telescopes, together with **front-end electronics**, form a **block** operating in **vacuum**.

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with 14-bit ADCs:
 - on-line processed on FPGAs
 - energy resolution is better than 1 % from 5 MeV to 4 GeV

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with **14-bit** ADCs:
 - on-line processed on FPGAs
 - energy resolution is better than 1 % from 5 MeV to 4 GeV
- common clock distribution for synchronous sampling

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with 14-bit ADCs:
 - on-line processed on FPGAs
 - energy resolution is better than 1 % from 5 MeV to 4 GeV
- common clock distribution for synchronous sampling

- Compactness and modularity
- Very good isotopic discrimination capabilities
- Thresholds (≲10 MeV/u) suited for Fermi energies
 - S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with 14-bit ADCs:
 - on-line processed on FPGAs
 - energy resolution is better than 1 % from 5 MeV to 4 GeV
- common clock distribution for synchronous sampling

- Compactness and modularity
- Very good isotopic discrimination capabilities
- Thresholds (≲10 MeV/u) suited for Fermi energies
 - S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019