

The NUSDAF "Yellow Brick Road"

See G. Verde talk

ReAccelerate beams (<10 AMeV)

Energy degraded fragmentation beams (30-100 AMeV)

Primary fragmentation beams (>150 AMeV)

GASPEC – GAmma and charged particle SPEctroscopy and Collective excitations

SYMEOS – SYMmetry energy and Equation Of State

RIBDCE – Radioactive Ion Beam induced Double-Charge Exchange reactions

NUSYC – NUcleo-SYnthesis and Clustering

SYSTERSE - SYnergic Stategy for fuTure ElectRonics and Streaming rEadout solutions

The FAZIA "Yellow Brick Road"

ReAccelerate beams (<10 AMeV)

Energy degraded fragmentation beams (30-100 AMeV)

Primary fragmentation beams (>150 AMeV)

FAZIAEXOTIC

Exploring exotic clustering configurations

Coupled with OSCAR-like Coupled with FROG-like

How? What FAZIA can offer? Are we ready for that?

FAZIAEXPLORER

Exploring the limit of the drip lines

Possible coupling with GAMMA arrays

How? What FAZIA can offer? Are we ready for that?

SYMEOS

Investigation of the nuclear equation of state at supra-saturation densities

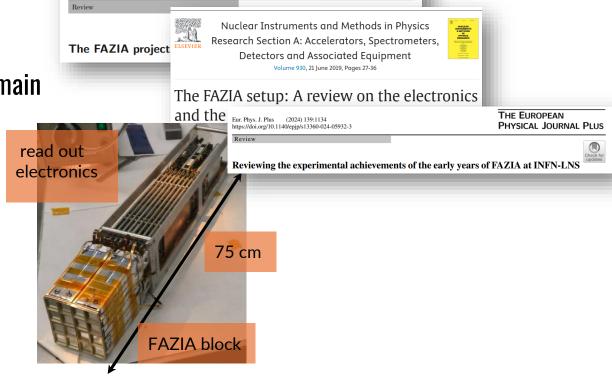
Coupled with local HIRA, LANA, FROG Coupled with other INFN detectors

What FAZIA can offer? Are we ready for that?

The FAZIA "Yellow Brick Road"

Conditions and hypotheses at the base of this presentation Not a precise experiment proposals but a brain-storming idea Needs of a specific reaction chamber Large increase of scientific potential in case of complementary charge particle / gamma-array coupling **FAZIAEX** Explorin Help of theorists is strongly recommended configur mainly to strengthen/define the physics cases Coupled Coupled How? W Are we i

The FAZIA actual status

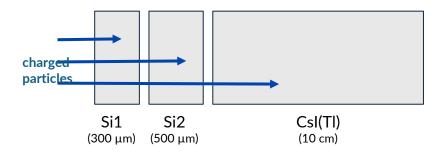

The state of the art of ion identification in the Fermi energy domain

1 BLK = 16 telescope

Telescope (area 2x2 cm²):

Si1, 300um + Si2, 500 um + Csl 10 cm - since 2015 ... Si1, 300um + Si2, 750 um + Csl 10 cm - since 2022 ...

- \sim Doping uniformity within \pm 3%
- \sim Thickness uniformity within ±1 μ m
- Random cut to avoid channeling
- "reverse mounting" configuration
- Reverse current monitor and compensation
- FEE electronics on "block"


THE EUROPEAN

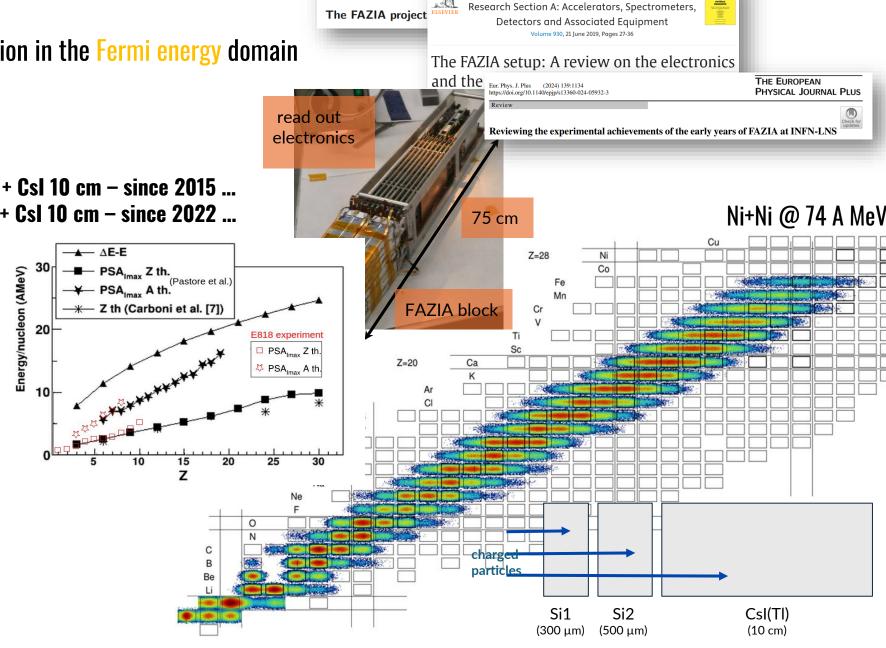
PHYSICAL JOURNAL A

The combination of PSA and $\triangle E$ -E allows for an excellent identification from protons to Z=25 in a broad energy range with low thresholds.

Eur. Phys. J. A (2014) 50: 47

DOI 10.1140/epja/i2014-14047-4

The FAZIA actual status


The state of the art of ion identification in the Fermi energy domain

1 BLK = 16 telescope

Telescope (area 2x2 cm²):

Si1, 300um + Si2, 500 um + Csl 10 cm - since 2015 ... Si1, 300um + Si2, 750 um + Csl 10 cm - since 2022 ...

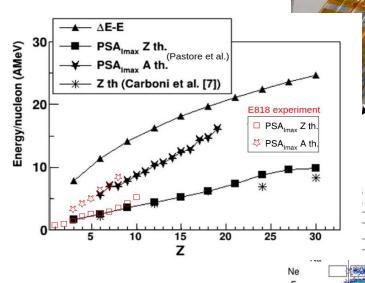
- Doping uniformity within \pm 3%
- Thickness uniformity within ±1 µm
- Random cut to avoid channeling
- "reverse mounting" configuration
- Reverse current monitor and compensation
- FEE electronics on "block"

THE EUROPEAN PHYSICAL JOURNAL A

Nuclear Instruments and Methods in Physics

Eur Phys. I. A (2014) 50: 47

The FAZIA actual status


The state of the art of ion identification in the Fermi energy domain

1 BLK = 16 telescope

Telescope (area 2x2 cm²):

Si1, 300um + Si2, 500 um + Csl 10 cm - since 2015 ... Si1, 300um + Si2, 750 um + Csl 10 cm - since 2022 ...

- \sim Doping uniformity within \pm 3%
- \sim Thickness uniformity within ±1 μ m
- Random cut to avoid channeling
- "reverse mounting" configuration
- Reverse current monitor and compensation
- FEE electronics on "block"

read out

electronics

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, The FAZIA project **Detectors and Associated Equipment** Volume 930, 21 June 2019, Pages 27-36 The FAZIA setup: A review on the electronics and the Eur. Phys. J. Plus (2024) 139:1134 https://doi.org/10.1140/epip/s13360-024-05932-? THE EUROPEAN PHYSICAL JOURNAL PLUS Reviewing the experimental achievements of the early years of FAZIA at INFN-LNS Ni+Ni @ 74 A MeV 75 cm Z=28 Co FAZIA block charged particles

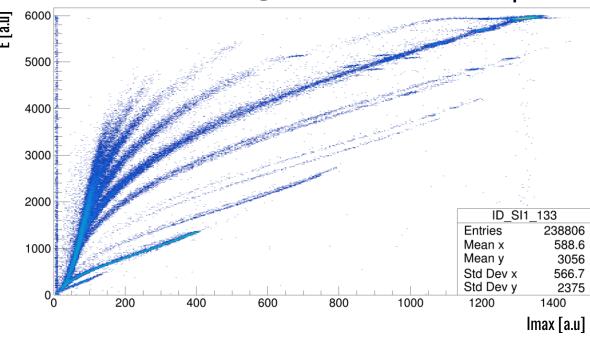
Si₁

(300 µm)

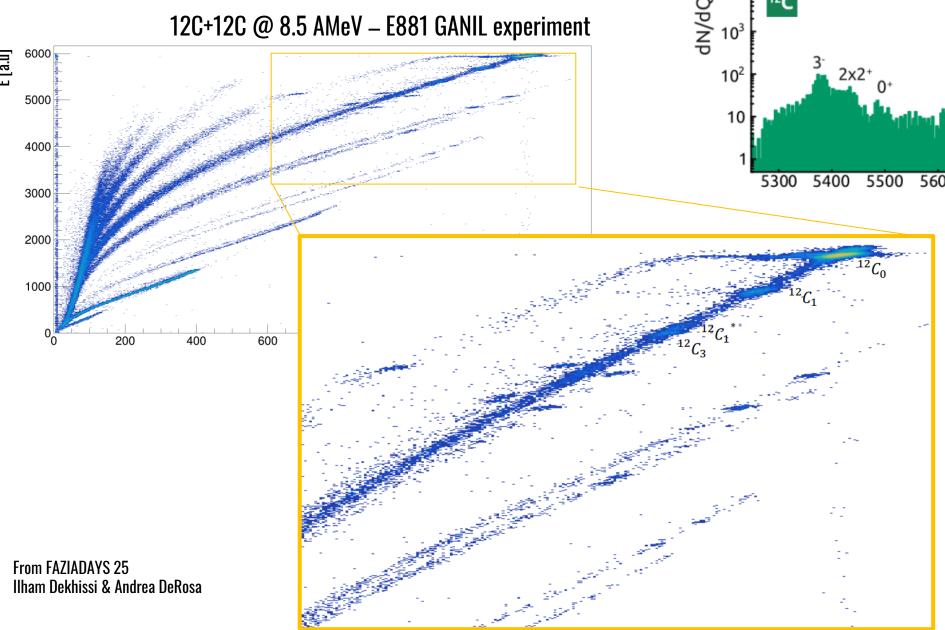
Si₂

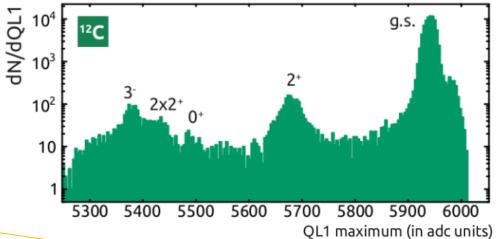
(500 µm)

CsI(TI)


(10 cm)

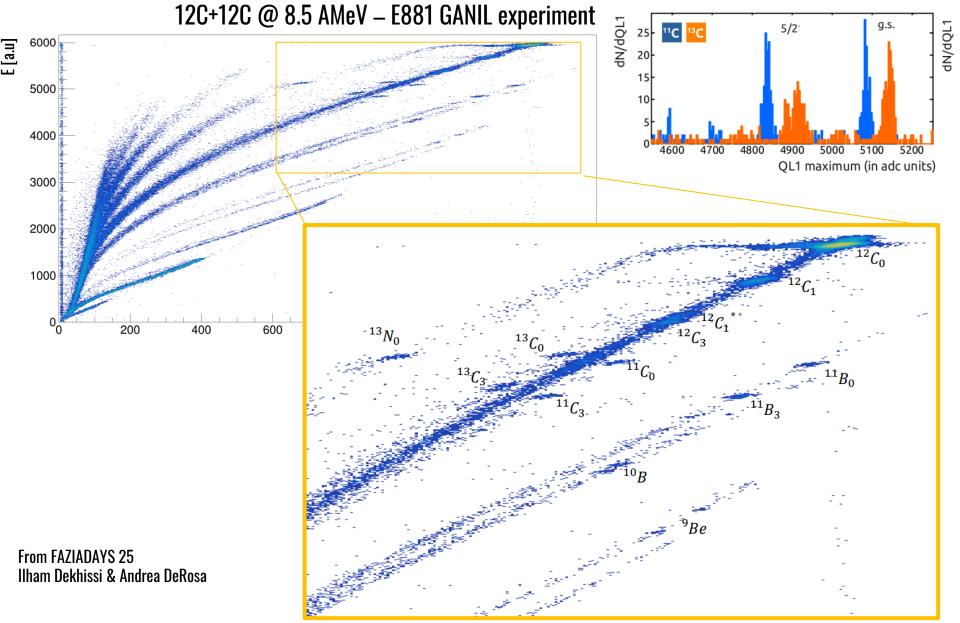
THE EUROPEAN
PHYSICAL JOURNAL A

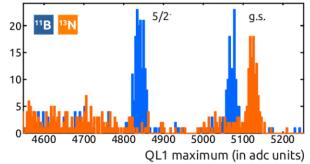

- Is the (Z,A) identification still possibile at 200 AMeV?
- Are the E thresholds a limit for ReA beams?


FAZIA performances below 10 A MeV

12C+12C @ 8.5 AMeV – E881 GANIL experiment

FAZIA performances below 10 A MeV

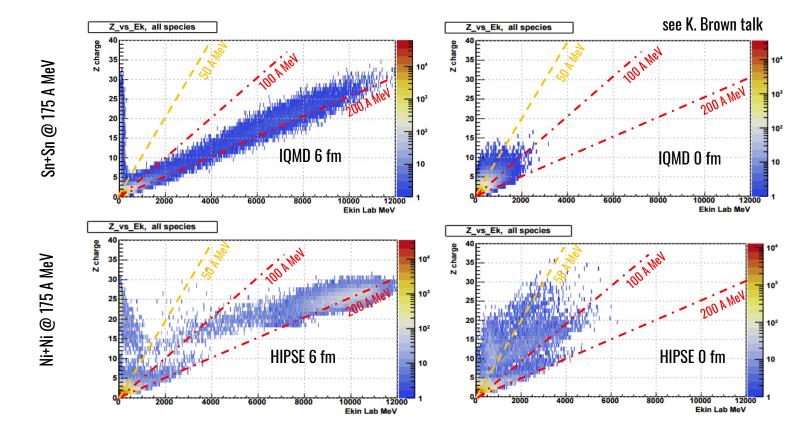




Elastic and inelastic:

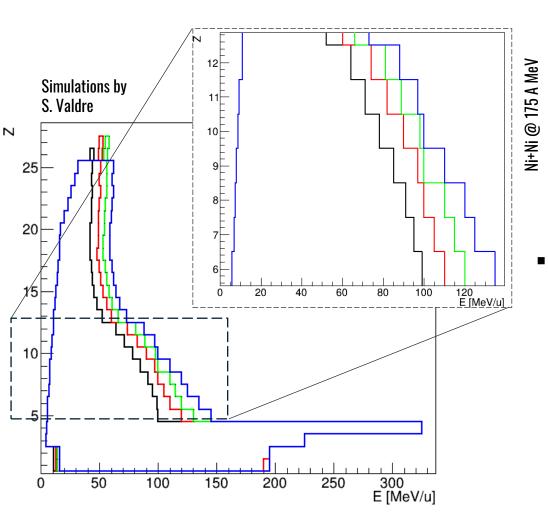
- $12C_0$ elastic
- 12C₁ 4.4 MeV
- 12C₁* 2 x 4.4 MeV
- $12C_3 9.6 \text{ MeV}$

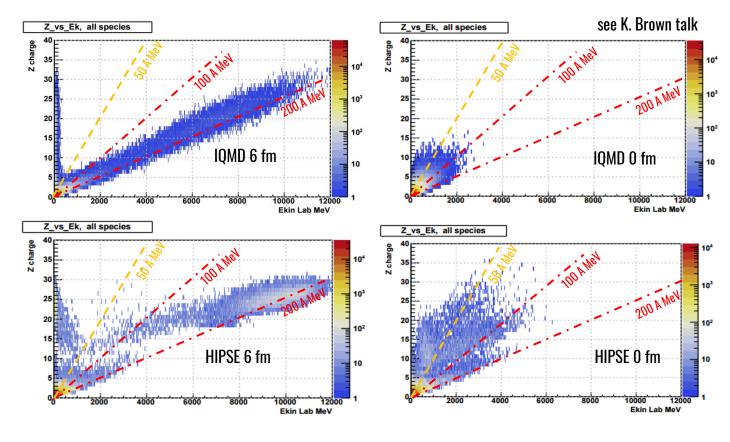
FAZIA performances below 10 A MeV



One Nucleon transfer

- $11C_{0}$, $11C_{3}$ n removal
- $13C_0$, $13C_1$ n transfer
- $11B_0$, $11B_3$ p removal
- $13N_0$ p transfer


FAZIA above 150 A MeV


 The kinematic phase space of an HIC at SYMEOS energies is outside the typical FAZIA energy range

FAZIA above 150 A MeV

 The kinematic phase space of an HIC at SYMEOS energies is outside the typical FAZIA energy range

- FAZIA Identification capabilities for different telescopes thicknesses
 - **300um + 500um + 10cm**

Sn+Sn @ 175 A MeV

- **300um + 750um + 10cm**
- 500um + 750um + 10cm
- **750um + 750um + 10cm**

The FAZIA "Yellow Brick Road"

ReAccelerate beams (<10 AMeV)

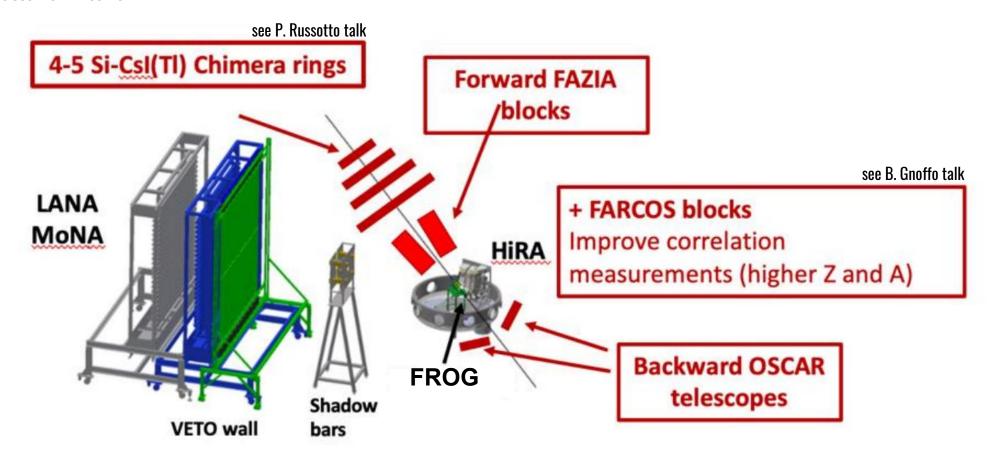
Energy degraded fragmentation beams (20-100 AMeV)

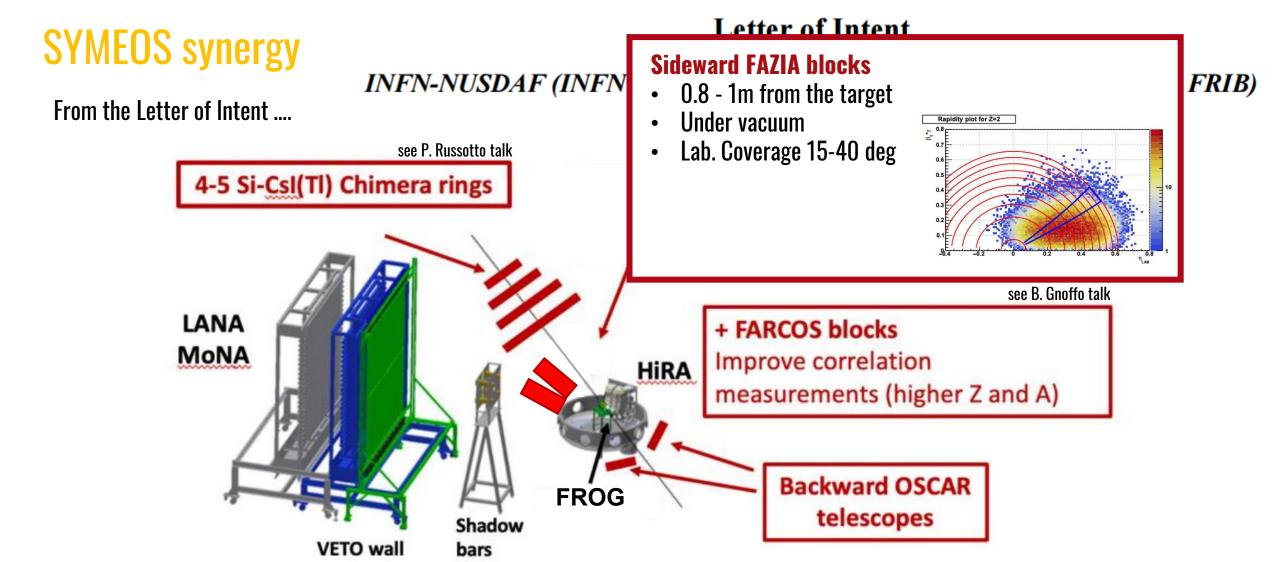
Primary fragmentation beams (>150 AMeV)

SYMEOS

Investigation of the nuclear equation of state at supra-saturation densities

Coupled with local HIRA, LANA, FROG Coupled with other INFN detectors

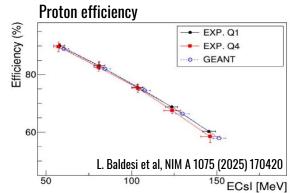

What FAZIA can offer? Are we ready for that?


SYMEOS synergy

Letter of Intent

INFN-NUSDAF (INFN - Nuclear Structure, Dynamics and Astrophysics at FRIB)

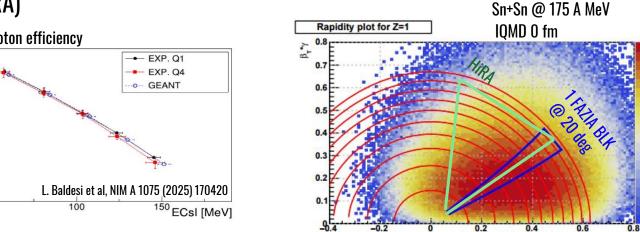
From the Letter of Intent

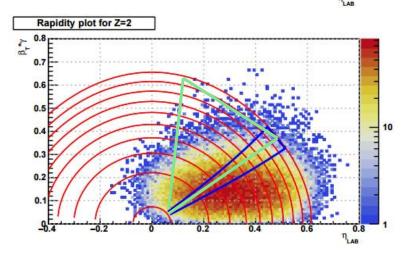

What FAZIA can do for SYMEOS

Blocks of FAZIA can be placed between 15-40° in the lab. frame, extending the acceptance provided by HiRA

We can cover mid-rapity regions accessing (similar to HiRA)

- Protons up to 197 MeV
 - ✓ p flow
 - ✓ p kinematics


Observables aiming at symmetry energy and effective masses



- Light and heavy clusters
 - ✓ multiplicity
 - ✓ kinematics in the whole production range
 - ✓ Coalescence Invariant Flow
 - ✓ Particle-particle and Particle-fragment correlation

Completementary/auxiliary observable for n/p flow

Observables to shed lights on clusterization processes in hot and compressed medium

The FAZIA "Yellow Brick Road"

ReAccelerate beams (<10 AMeV)

Energy degraded fragmentation beams (30-100 AMeV)

Primary fragmentation beams (>150 AMeV)

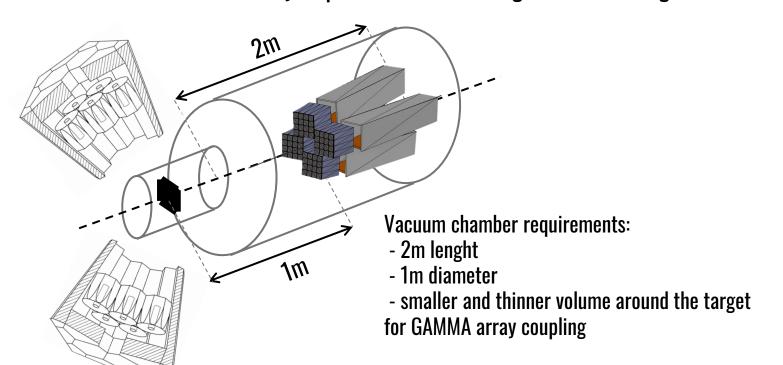
FAZIAEXPLORER

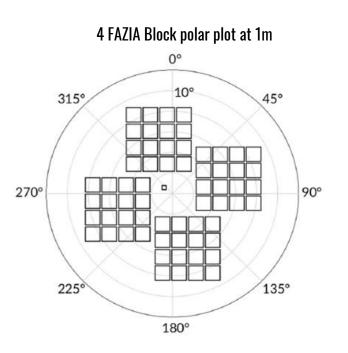
Exploring the limit of the drip lines

Possible coupling with GAMMA arrays

How? What FAZIA can offer? Are we ready for that?

SYMEOS

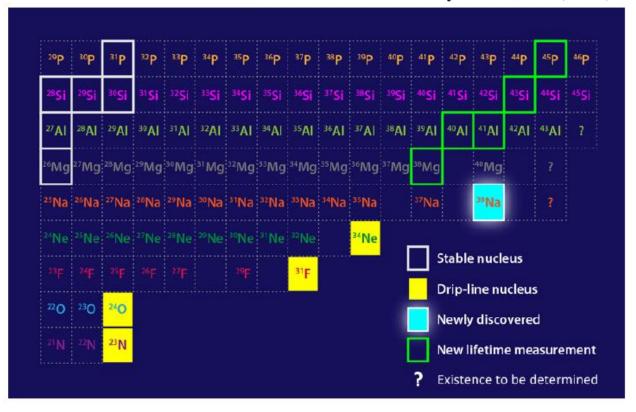

Investigation of the nuclear equation of state at supra-saturation densities


Coupled with local HIRA, LANA, FROG Coupled with other INFN detectors

What FAZIA can offer? Are we ready for that?

FAZIAEXPLORER: a possibile research line at 30-80 MeV/u

- Beam range: 30-80 MeV/u by degrading the primary fragmentation beams
- 4 FAZIA blocks in stand-alone mode mounted in a wall configuration at forward angles,
 1m distance from target
- Polar range: about 2 to 9 degrees with a geometric efficiency in this range about 70%
- Additional Gamma Detector may be placed around the target. Is such configuration suitable for GRETA/GRETINA?

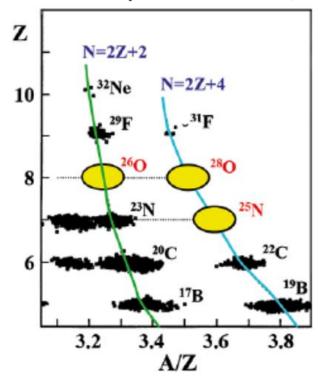


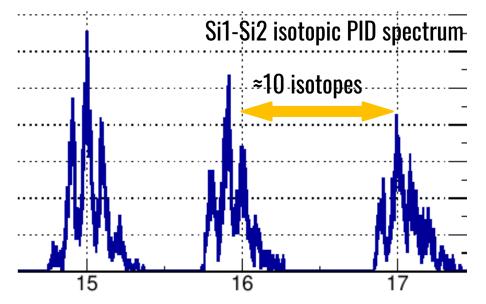
FAZIAEXPLORER: a possibile research line at 30-80 MeV/u

- The idea is to perform experiments with very exotic ions at 40-70MeV/u kinetic energies
- Both directions, towards p-drip and n-drip can be explored
- FAZIA can explore part of this region and also heavier ions up to around Z=20

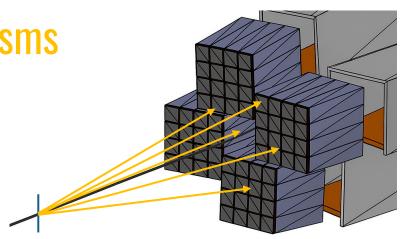
Y. Blumenfeld et al. Physics 15, 177 (2022)

The region of n-rich nuclei from N to P as it is known today. The yellow nuclei are at the n-drip

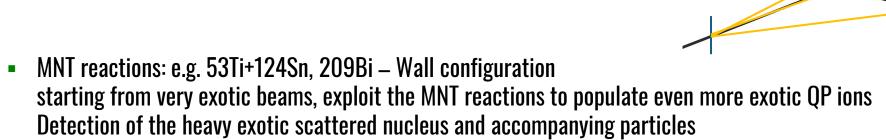

FAZIAEXPLORER: a possibile research line


- The idea is to perform experiments with very exotic ions at 40-70MeV/u kinetic energies
- Both directions, towards p-drip and n-drip can be explored
- FAZIA can explore part of this region and also heavier ions up to around Z=20

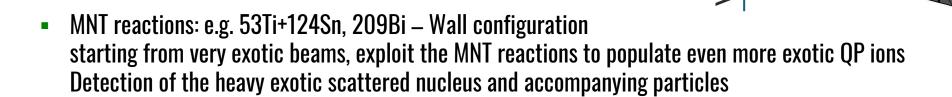
Most experiments towards the drip lines (either to assess the drip nuclei either to inform on exotic species properties) have been made with mass spectrometers


The FAZIA structure (+-0.6deg granularity) will allow to detect and identify the main QP species up to Z=20 but also, LCP and cluster in coincidence to attempt correlation and reconstruction studies

M. Notani et al. Phys.Rev.C 76 044605 (2007)


 QP fragmentation: e.g. 53Ti, 70Ni+12C – Wall configuration Relatively light neutron-rich beams in reverse kinematics Detection of the light and exotic charge produced

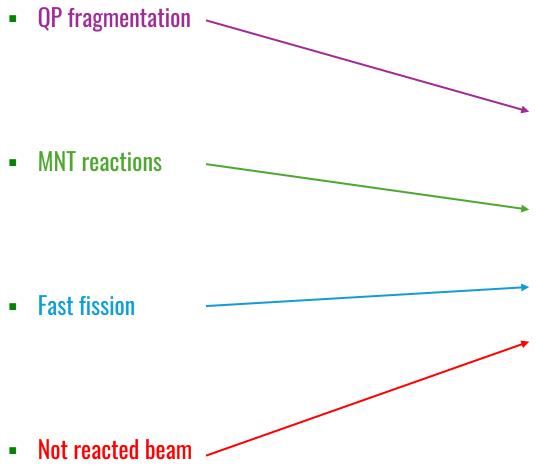
 QP fragmentation: e.g. 53Ti, 70Ni+12C — Wall configuration Relatively light neutron-rich beams in reverse kinematics.
 Detection of the light and exotic charge produced


 MNT reactions: e.g. 53Ti+124Sn, 209Bi – Wall configuration starting from very exotic beams, exploit the MNT reactions to populate even more exotic QP ions. Detection of the heavy exotic scattered nucleus and accompanying particles

 QP fragmentation: e.g. 53Ti, 70Ni+12C — Wall configuration Relatively light neutron-rich beams in reverse kinematics Detection of the light and exotic charge produced

Fast fission: e.g. 130Sn,106Sn+12C — Wall configuration
 Heavy exotic beams on light targets to study in a complete way the fast fission channel far from stability

 QP fragmentation: e.g. 53Ti, 70Ni+12C — Wall configuration Relatively light neutron-rich beams in reverse kinematics Detection of the light and exotic charge produced



Fast fission: e.g. 130Sn,106Sn+12C — Wall configuration
 Heavy exotic beams on light targets to study in a complete way the fast fission channel far from stability

Not reacted beam: e.g. . 35Ca,53Ca – ZeroDegree configuration
 For ions available only with very low currents some cross sections (interaction, charge exchange) could be measured with the transmission method

FAZIAEXPLORER: some possible beams

From https://frib.msu.edu/user-facilities/frib/calculator

beam isotope	target species	θ_g deg	current	prod rate (cps) with	time for	method
energy (MeV/nucl.)	(thickness mg/cm ²)		$10^6 (pps)$	1µbarn D)	10 hits	E)
⁶⁸ Ni 60	¹² C (1)	0.4	58	$2.8 \ 10^{-3}$	5 h A)	fragm
⁷⁰ Ni 60	$^{12}C(1)$	0.4	1	$5 \ 10^{-5}$	11.5 d A)	fragm
⁷⁰ Ni 60	Al (1)	0.7	1	$4.4 \ 10^{-5}$	26.5 d A	fragm
⁷⁰ Ni 60	¹²⁴ Sn (1)	2.2	1	$4.6 \ 10^{-6}$	125 d A)	fragm
⁵⁶ Ni 60	$^{12}C(1)$	0.5	400 C)	$2 \ 10^{-2}$	2500 s A)	fragm
⁵³ Ti 60	$^{12}C(1)$	0.4	4.8	$2.4 \ 10^{-4}$	2.5 d A)	fragm
⁵³ Ti 60	¹²⁴ Sn (1)	3	4.8	$2.4 \ 10^{-5}$	24 d A)	fragm
⁵² Ti 60	¹² C (1)	0.4	20	$1 \ 10^{-4}$	14 h A)	fragm
⁴³ Ti 60	¹² C (1)	0.5	10	$5 \ 10^{-4}$	28 h A)	fragm
¹³⁰ Sn 60	$^{12}C(1)$	0.3	1.4	$7 \ 10^{-5}$	33 d B)	fragm
¹⁰⁶ Sn 60	¹² C (1)	0.4	6	$3 \ 10^{-4}$	7.5 d B)	fragm
⁵³ Ca 60	$^{12}C(1)$	_	< 0.001	_	_	transm
³⁵ Ca 60	¹² C (1)	_	< 0.001	_	_	transm

Some ingreedients

- Primary current:
 FRIB online culculator & factor 5 (conservely) for energy-degrade beams
- Target thickness: fixed at 1mg/cm2 & pencil beam (beam dimension not an issue for energy degraded beams)
- Production rate: for a channel at 1ubarn level
- Time for 10hits:
 assuming 20% efficiency for 2b
 5% efficiency for 3b channels

The FAZIA "Yellow Brick Road"

ReAccelerate beams (<10 AMeV)

Energy degraded fragmentation beams (20-100 AMeV)

Primary fragmentation beams (>150 AMeV)

FAZIAEXOTIC

Exploring exotic clustering configurations

Coupled with OSCAR-like Coupled with FROG-like

How? What FAZIA can offer? Are we ready for that?

FAZIAEXPLORER

Exploring the limit of the drip lines

Possible coupling with GAMMA arrays

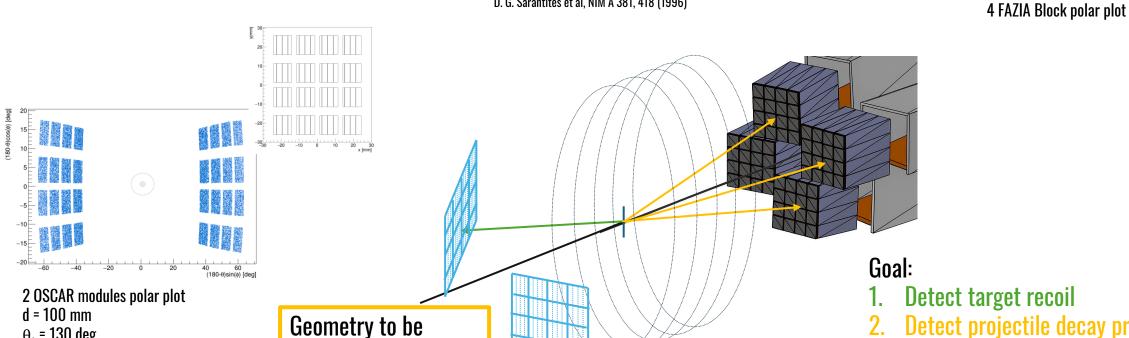
How? What FAZIA can offer? Are we ready for that?

SYMEOS

Investigation of the nuclear equation of state at supra-saturation densities

Coupled with local HIRA, LANA, FROG Coupled with other INFN detectors

What FAZIA can offer? Are we ready for that?


FAZIAEXOTIC: for ReA and primary E degraded beams

- Beam range: <10 MeV/u but also 30-80 MeV/u
- Same 4 FAZIA block configuration plus
 - Position sensitive detector with low energy thresholds placed at backwards/forward angles. e.g. OSCAR modules D. Dell'Aquila et al., NIM A 877 (2018) 227-237

decided case by case

Large acceptance detector e.g FROG-like or MicroBall

D. G. Sarantites et al, NIM A 381, 418 (1996)

 $\theta_c = 130 \text{ deg}$

 $\Phi_c = 90 \deg$

Detect projectile decay product(s)

Reject fusion-evaporation events

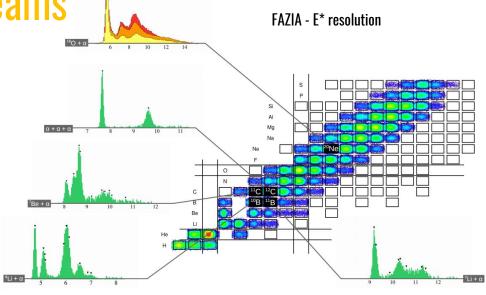
00

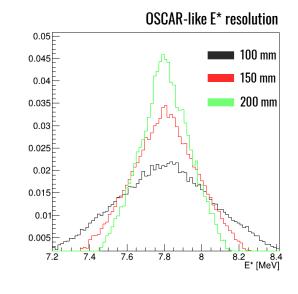
180°

315°

225

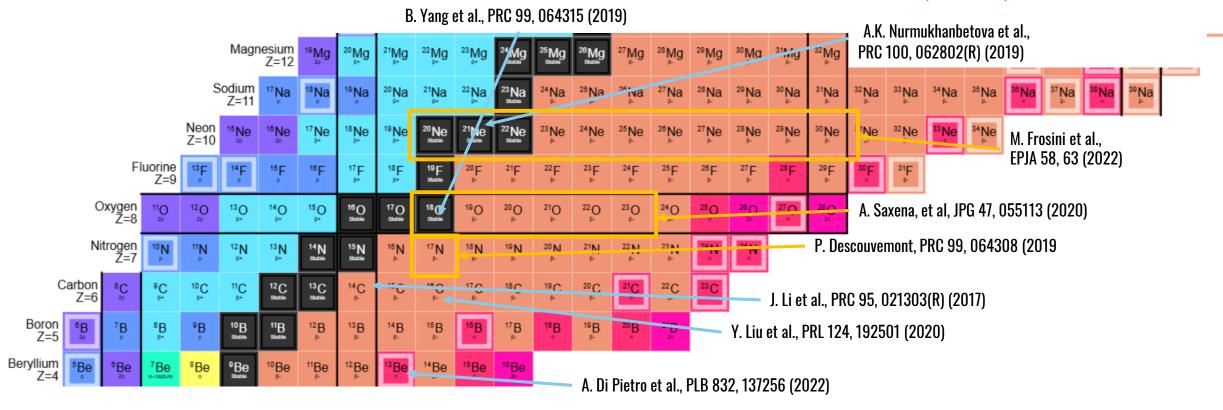
270°

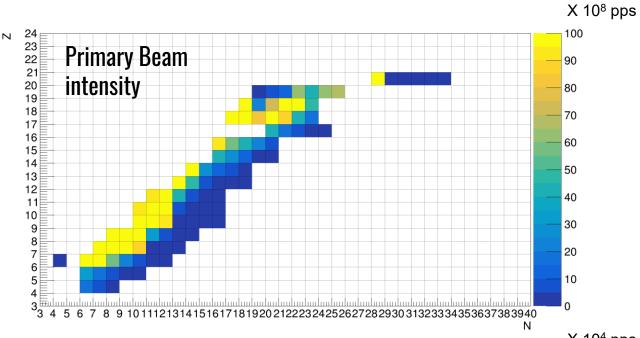

FAZIAEXOTIC: for ReA and primary E degraded beams

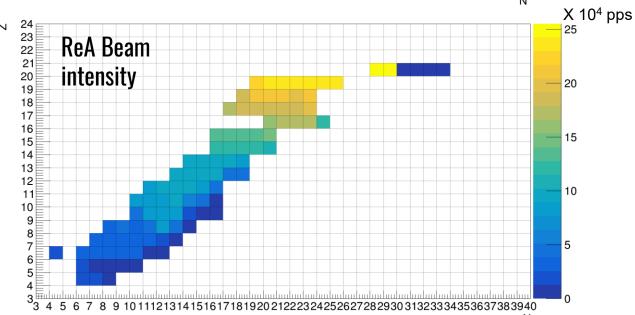

- Beam range: <10 MeV/u but also 30-80 MeV/u
- Same 4 FAZIA block configuration plus
 - 1. Position sensitive detector with low energy thresholds placed at backwards/forward angles. e.g. OSCAR modules
 D. Dell'Aquila et al., NIM A 877 (2018) 227-237
 - 2. Large acceptance detector e.g FROG-like or MicroBall

D. G. Sarantites et al, NIM A 381, 418 (1996)

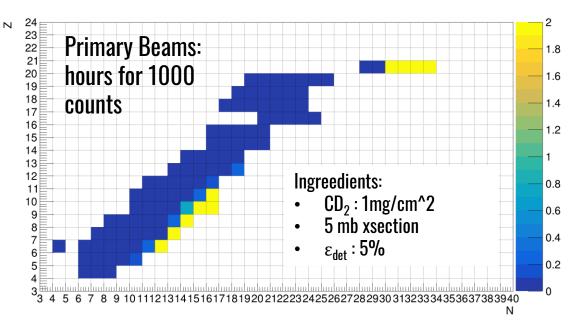
- Access E* nuclei of interest
- 2. Access J:
 - a. from recoil target nuclei
 - b. from decay products (if M_{riv}>2) M. Freer, NIM A 383 (1996) 463-472
- 3. Estimate decay branching ratio

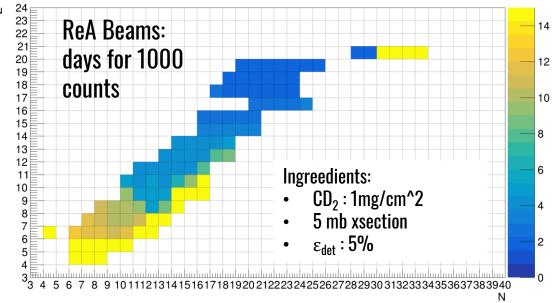



FAZIAEXOTIC: searching for exotic configurations


- Such a technique may be applied to search for the occurrence of exotic (alpha-)cluster configuration moving towards the n-drip line
- Even if some studies on dedicated even Z nuclei exist in the vicinity of the valley of stability, we are still in front of a quite-unexplored landscape
- Some (non-exhausting) recent available experimental information:

I. Lombardo, D. Dell'Aquila, La Rivista del Nuovo Cimento 46, 521–618, 2023




FAZIAEXOTIC: beams and rates

From https://frib.msu.edu/user-facilities/frib/calculator

Conclusions

ReAccelerate beams (<10 AMeV)

Energy degraded fragmentation beams (30-100 AMeV)

Primary fragmentation beams (>150 AMeV)

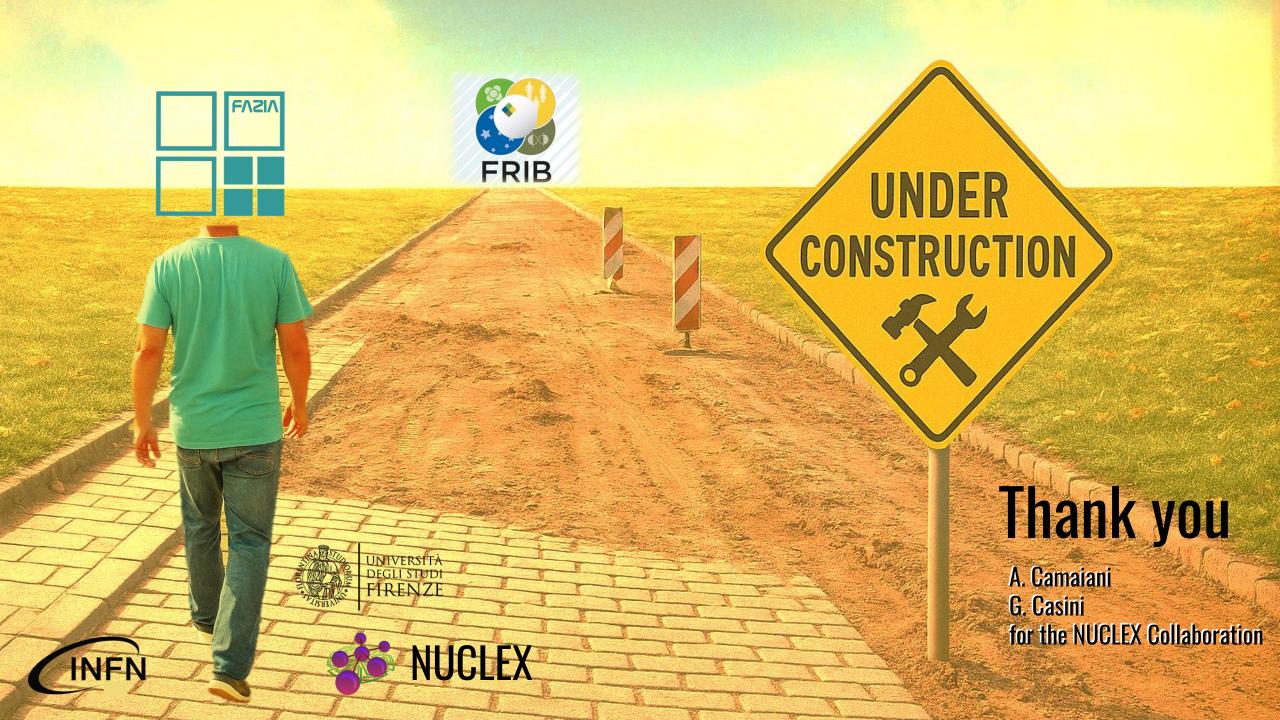
onclusions > Starting Point

ReAccelerate beams (<10 AMeV)

Energy degraded fragmentation beams (30-100 AMeV)

FAZIAEXPLORER

- FAZIA as a surrogate of mass spectrometer (Z<20) exploring the n-drip lines
- FAZIA is ready
- Are the rates a limit?

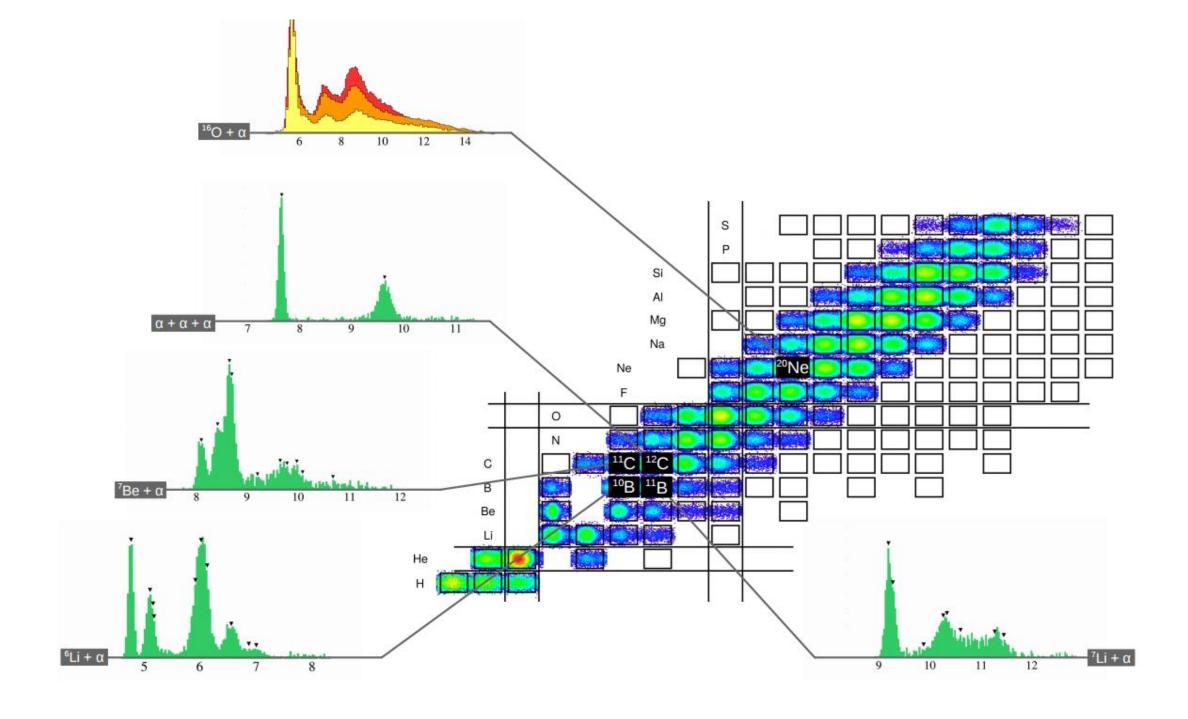

FAZIAEXOTIC

- Multi-particle detection from exotic nuclei
- To be coupled to other detector to tag the reaction
- Are the rates a limit? FAZIA is ready

Primary fragmentation beams (>150 AMeV)

SYMEOS

- We can extend the phase space covered
- Completementary/auxiliary observable for n/p
- Observables to shed lights on clusterization processes in hot and compressed medium
- FAZIA is "ready" but thicker Si stages are usefull. Work is on going



Stopped Beams

Beam rates for experiments in the stopped beam areas and for delivery to ReAccelerator (ReA) have been estimated based on observed performance of the Advanced Cryogenic Gas Stopper (ACGS). The estimates assume optimal conditions and are only intended to provide a rough indication of experiment feasibility. Actual rates will likely be less. The rate estimates take into account the transport efficiency for fast beams from the ARIS separator to the gas stoppers and the stopping efficiency, calculated with LISE++ assuming optimum fast beam momentum compression settings. Also included is a parametrization of the extraction efficiency from the gas stopper as a function of the ion mass and the incoming fast beam rate. Stopping efficiency range from a maximum of 95% for heavy ions to 10% for low atomic numbers. Extraction efficiency vary from 20% for mass numbers A > 6 to near unity for A > 70. Decay losses are considered using measured extraction times that vary from 15 ms for light ions to 60 ms for heavy ions. The possible effect of radio-molecule formation that can lead to lower delivered beam rates is not taken into account. Atomic numbers lower than four were excluded from rate estimates.

Reaccelerated beams

Beam intensities in the reaccelerated beam areas have been estimated using the stopped beam intensities multiplied by efficiencies for the Beam-Cooler-Buncher (BCB), the Electron Beam Ion Trap (EBIT) charge breeder, and the ReA-linac. The efficiencies are based on data from experiment runs and beam tests. The BCB efficiency ranges from 15% for ions with A50. Decay losses in the EBIT are considered assuming an average breeding time of 100 ms. The ReAlinac and beamline transport efficiencies are assumed to be 60%.

FAZIAEXOTIC: possible beams and reactions To be fineshed

Z A Fast Stopped Reaccelerated [pps]	ZA	Fast	Stopped	Reacce	lerated	[pps]	
--------------------------------------	----	------	---------	--------	---------	-------	--

4 10 8.17e+9 7.50e+5 2.02e+4

4 11 2.56e+9 8.06e+5 2.17e+4

5 11 1.73e+10 8.07e+5 1.45e+4

6 12 5.13e+10 8.59e+5 3.09e+4

6 13 4.82e+10 9.07e+5 3.26e+4

6 14 2.90e+10 9.51e+5 3.42e+4

6 15 1.10e+10 9.88e+5 3.46e+4

6 16 3.60e+9 1.02e+6 3.33e+4

6 17 3.95e+7 4.98e+5 1.25e+4

7 14 1.04e+11 9.51e+5 3.42e+4

7 15 8.83e+10 9.92e+5 3.57e+4

7 16 9.01e+10 1.03e+6 3.67e+4

7 17 4.38e+10 1.06e+6 3.77e+4

7 18 1.24e+9 1.08e+6 3.48e+4

7 19 1.79e+8 6.08e+5 1.78e+4

8 16 3.57e+13 9.66e+5 3.48e+4

8 17 1.32e+11 _{1.07e+6} 3.84e+4

8 18 3.12e+13 1.03e+6 3.72e+4

8 19 1.57e+10 _{1.13e+6} 4.07e+4

8 20 4.62e+9 1.16e+6 8.33e+4

8 21 4.31e+7 6.19e+5 4.37e+4

9 19 8.75e+10 _{1.13e+6} 4.08e+4

9 20 9.50e+10 1.16e+6 8.32e+4

9 21 4.52e+10 1.19e+6 8.43e+4

9 22 5.80e+8 1.14e+6 8.09e+4

9 23 1.59e+7 3.13e+5 2.19e+4

10 20 4.64e+10 _{1.16e+6} 8.38e+4

10 21 1.27e+11 1.19e+6 8.59e+4

10 22 2.24e+13 1.14e+6 8.24e+4

10 23 2.91e+9 _{1.25e+6} 8.97e+4

10 24 3.44e+8 8.75e+5 6.30e+4

10 25 3.90e+7 6.24e+5 4.00e+4

10 26 5.25e+6 1.15e+5 5.81e+4