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Equation of state and phenomenological models

Outline of the presentation

© Many-body (MB) correlations and clustering phenomena in nuclear systems
e Understanding Equation of State (EOS) for nuclear matter (NM)
@ Phenomenological models based on energy density functionals (EDF)

@ Extended EDF-based models: recent developments and results

® Unified (thermodynamic) description of few-body correlations and clusters
o Embedding short-range correlations within relativistic mean-field approaches
o Global mass-shift parameterization for a multi-purposes EOS

© Dynamical approach with light clusters as degrees of freedom (DOF)
o Phase-space excluded-volume approach in dilute nuclear medium
e Quasi-analytical characterization of spinodal instability and growth rates

© Further developments and outlooks
o Connection between hydrodynamical and linearized Vlasov approach
o Extensive numerical calculations of the dynamics with light clusters
o Consistent description of fragment formation mechanisms in heavy-ion collisions

© Summary
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Equation of state and phenomenological models

Heavy-ion collisions: clustering effects and EOS

@ Heavy-ion collisions (HIC) at Epeam = (30 — 300) AMeV = EOS
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Heavy-ion collisions: clustering effects and EOS

@ Heavy-ion collisions (HIC) at Epecam = (30 — 300) AMeV = EOS
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Heavy-ion collisions: clustering effects and EOS
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Equation of state and phenomenological models

Heavy-ion collisions: clustering effects and EOS

@ Heavy-ion collisions (HIC) at Epecam = (30 — 300) AMeV = EOS
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In-medium effects and correlations in the continuum

In-medium (Mott) effects and cluster dissolution

@ Pauli-blocking (Mott) effect = cluster dissolution
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In-medium effects and correlations in the continuum

In-medium (Mott) effects and cluster dissolution

@ Pauli-blocking (Mott) effect = cluster dissolution TR
o Microscopic in-medium effects = Mass-shift (Am) 2 1|
o (Effective) binding energy — B =B—Am £ :3;:
[S. Typel et al., PRC 81, 015803 (2010)] g 0’
@ AmU"") from in-medium Schrédinger equation (SE) g llg‘jz
[G. Répke, NPA 867 (2011) 66-80] :gm e
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In-medium effects and correlations in the continuum

In-medium (Mott) effects and cluster dissolution

@ Pauli-blocking (Mott) effect = cluster dissolution W
@ Microscopic in-medium effects = Mass-shift (Am) E:zzi
o (Effective) binding energy — B*f = B — Am 5 :3::
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In-medium effects and correlations in the continuum

In-medium (Mott) effects and cluster dissolution

@ Pauli-blocking (Mott) effect = cluster dissolution o T
@ Microscopic in-medium effects = Mass-shift (Am)
o (Effective) binding energy — B =B—Am
[S. Typel et al., PRC 81, 015803 (2010)]

mass shift Am [MeV]

@ AmU"") from in-medium Schrédinger equation (SE)
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@ Parameterization Am(p, 8, T,Pc.m.) = heuristic Am®&) beyond Mott density
e Bound clusters survive only if |Pc.m.| > Pyott (Mott momentum)
o Few-body short-range correlations (SRCs) in the continuum
[S. Burrello, S. Typel, EPJA 58, 120 (2022)]
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Short-range correlations within mean-field approaches

Clusters as surrogate for SRCs in extended EDFs

@ Unified mass-shift parameterization for bound d / np SRCs (ps < pmott)
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Embedding short-range correlations in relativistic density
functionals through quasi-deuterons

S. Burrello'(, S. Typel @
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Dynamics of dilute nuclear matter with light clusters

Outline of the presentation

@ Extended EDF-based models: recent developments and results

© Dynamical approach with light clusters as degrees of freedom (DOF)
o Phase-space excluded-volume approach in dilute nuclear medium
o Quasi-analytical characterization of spinodal instability and growth rates
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Dynamics of dilute nuclear matter with light clusters

Effective phase-space excluded-volume approach

@ Modeling dynamics of HIC at intermediate energies = Transport theories
@ Boltzmann—Uehling-Uhlenbeck (BUU) equation for the distribution function f;

(at + vpe‘r ° Vr - Vrfi\‘r‘ ° vp) f‘r = I7€011[fn7 ﬁh N ']7 T=np, d: t, h7 (€7
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Effective phase-space excluded-volume approach

@ Modeling dynamics of HIC at intermediate energies = Transport theories
@ Boltzmann—Uehling-Uhlenbeck (BUU) equation for the distribution function f;
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@ Extended kinetic approaches = Light clusters & in-medium effects
o Solving in-medium SE V (r, t) point (computationally very demanding)
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Dynamics of dilute nuclear matter with light clusters

Effective phase-space excluded-volume approach

@ Modeling dynamics of HIC at intermediate energies = Transport theories
e Boltzmann—Uehling-Uhlenbeck (BUU) equation for the distribution function f;
(Bt + Vper - Ve — Vier - Vp) fr = 1SN, 5, .. ], T=n,p,d,t, ha
@ Extended kinetic approaches = Light clusters & in-medium effects
e Solving in-medium SE V (r, t) point (computationally very demanding)
o Effective phase-space excluded-volume approach

[P. Danielewicz, G. F. Bertsch, NPA 533, 712 (1991)]
[C. Kuhrts et al., PRC 63, 034605 (2001)]
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(gl,’p = free-space 1-body probability (Gaussian) distribution
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20 —— T

. . . . . e symbols: HICs
(including contributions from light clusters) 000 00T ooz 003
3
16 10
npd matter 5 in-medium SE pg (fm™)
T 4 p| black: T=5Mev £ 08] © inmedium &(P)
S "4 red: T=20 Mev S AV -+ ructih > arxi2506 16457
8 | F=0.15 g 06 AT XLV > nuckth > arXiv:2506.16437
=08 panzg20 =
2o S04 Nuclear Theory
k4 o
5,,0_4 bound ¥ 5 [Submitted on 19 un 2025]
unbound % 0.2 Phase-space excluded-volume approach for light clusters in nuclear medium
©

0.0 > . 00 7 ~ o Rui Wang, Zhen Zhang, Stefano Burrello, Maria Colonna, Edoardo G. Lanza
10 10~ 107 10 10" 10 10° 10

pg (fm) pe (fm?)

Clustering & EoS in extended EDF approaches




Dynamics of dilute nuclear matter with light clusters

Kinetic approach for HIC with light-clusters DOF

@ Integrating phase-space excluded-volume in transport models = cut-off in /!

= Description of cluster yields from FOPI collaboration for A < 4

[R. Wang, Y.-G. Ma, L.-W. Chen, C. M. Ko, K.-J. Sun, & Z. Zhang, Phys. Rev. C 108, L031601 (2023)]
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Dynamics of dilute nuclear matter with light clusters

Kinetic approach for HIC with light-clusters DOF

@ Integrating phase-space excluded-volume in transport models = cut-off in /!
= Description of cluster yields from FOPI collaboration for A < 4

[R. Wang, Y.-G. Ma, L.-W. Chen, C. M. Ko, K.-J. Sun, & Z. Zhang, Phys. Rev. C 108, L031601 (2023)]
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Dynamics of dilute nuclear matter with light clusters

Kinetic approach for HIC with light-clusters DOF

Integrating phase-space excluded-volume in transport models = cut-off in /°°!!
= Description of cluster yields from FOPI collaboration for A < 4

[R. Wang, Y.-G. Ma, L.-W. Chen, C. M. Ko, K.-J. Sun, & Z. Zhang, Phys. Rev. C 108, L031601 (2023)]
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Dynamics of dilute nuclear matter with light clusters

Density-dependent (Mott) momentum cut-off

( PHYSICAL REVIEW C 110, L031601 (2024) ‘
L teter ]

Dynamics of dilute nuclear matter with light clusters and in-medium effects

\ Rui Wang©."” Stefano Burrello®.>' Maria Colonna® > and Francesco Matera™$

@ Pauli-blocking = Cut-off (Mott) momentum PM°* = A;(pp,, T) parameterization

(27h)3”
Adpd

dp .
v=g | £ j=npd (=0, for g=n,p)
[p[>A;

@ Chemical equilibrium = Xy = consistent with microscopic calculations
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Dynamics of dilute nuclear matter with light clusters

Linearized Vlasov equations for NM+-deuterons

@ Linear response to collision-less Boltzmann = linearized Vlasov equations for NMd

o; (515-)+Vr(56)-Vpsijpf}-Vr(Jsj) =0 = op =X (R +F) o0 — a3, 0L0p

@ Single-particle energy ¢; = (from EDF € =K 4+ U)

5f( )
p? i 8/\

Y 2 d d

€j 2j+Uj\:j (8 ox &F ~ )

@ Momentum-independent Skyrme-like interaction (= for bound and free nucleons)

Ak B g CAs D
2p0  a+2pstt 2 po 2

D
U= (Vrpo)? = 2 (Vrps)?

@ Density-dependent (Mott) momentum cut-off = extra-terms in both dp; and ¢;

dp i dp
pi = g-/ ———f j=npd — 6pj(rt)= g-/ —0jq o'sp,
! ’ [p|>A; (2mh)3 ! ’ [p|>A; (2“5)3 ' /HZ/;d :
@ ¢ -£ 0 = adding in-medium effects for cluster appearance/dissolution in dynamics
aus ., o0& ) ‘ :
@ Landau procedure ( F ~ =L F' ~ —J) forsf ~ S sfkeilkr—wt)
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Dynamics of dilute nuclear matter with light clusters

Dispersion relation and spinodal instability region

@ Solving linearized Vlasov equations = dispersion relation w = w(k)

0p; = —x; X (R + F) 01 — 80 3, 0560,
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Dynamics of dilute nuclear matter with light clusters

Dispersion relation and spinodal instability region

@ Solving linearized Vlasov equations = dispersion relation w = w(k)
il il
0p; = —x; X (R + F) 01 — 80 3, 0560,

@ w = Im(w) < unstable mode (spinodal region) *

[R. Wang, S. Burrello, M. Colonna, F. Matera, PRC 110, L031601 (2024)]
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Dynamics of dilute nuclear matter with light clusters

Dispersion relation and spinodal instability region

@ Solving linearized Vlasov equations = dispersion relation w = w(k)
opj = —Xj 22 (Fé’ + ’:_i/) 3p1 — 0ja 32, P op)

@ w = Im(w) < unstable mode (spinodal region) % 9@

“ s 0O

[R. Wang, S. Burrello, M. Colonna, F. Matera, PRC 110, L031601 (2024)]
@ w=0(xj=1) = border
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Dynamics of dilute nuclear matter with light clusters

Dispersion relation and spinodal instability region

@ Solving linearized Vlasov equations = dispersion relation w = w(k)

op; = —Xj 2 (Fé’ + ’:_il) 8p1 — 8ja 32 S0y

@ w = Im(w) < unstable mode (spinodal region)

[R. Wang, S. Burrello, M. Colonna, F. Matera, PRC 110, L031601 (2024)]
@ Im(w) = growth rate

@ w=0(xj =1) = border
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@ Slowdown of instability rate & different fragmentation modes
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Dynamics of dilute nuclear matter with light clusters

Instability direction: “distillation” mechanism

@ Direction of instability in space of density fluctuations: % (ps = pn+ pp)

) . .
0 25 2 0 = Nucleons and deuterons fluctuations move in (out) of phase

5 Pd

E e T B EP R e w/o in-medium with in-medium
-1

wn

a3 F /

S~

=5 with In-medium

<

g 7 = = - wioin-medium

S0 T=5MeV T=8MeV T=11MeV

~ 0.01 0. 0.01 0. 0.01 0.

-3 -3 -3
pp (fm™) po (fm™) po (fm™) r

[R. Wang, S. Burrello, M. Colonna, F. Matera, PRC 110, L031601 (2024)]
@ NMd with in-medium effects:

o Deuterons move to low densities
o They might be separately emitted
= “distillation” mechanism

@ NMd with no in-medium effects:
o Favored growth of instabilities
o Cooperation to form fragments

approaches
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Dynamics of dilute nuclear matter with light clusters

Outline of the presentation

© Further developments and outlooks
o Connection between hydrodynamical and linearized Vlasov approach
o Extensive numerical calculations of the dynamics with light clusters
o Consistent description of fragment formation mechanisms in heavy-ion collisions

Clustering & EoS in extended E approaches



Dynamics of dilute nuclear matter with light clusters

Further developments and outlooks

@ Hydrodynamics vs linearized Vlasov approach
[S. Burrello et al., in preparation]
. *T NM (wlo clusters)
o Interplay (d + «) & different cut-off 5 15| NMd (wo in-medium)
>
[Carmelo Piazza's Master’s Thesis work] E
@ Microscopic description from in-medium SE

[Pablo Nieto Gallego's Master’s Thesis work]
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Dynamics of dilute nuclear matter with light clusters

Further developments and outlooks

. . . 2,
Hydrodynamics vs linearized Vlasov approach ——
21 B
--B=05
[S. Burrello et al., in preparation] s B=08
. NM (w/o clusters)
o Interplay (d + a) & different cut-off S sl NMd (/o in-medium)
]
[Carmelo Piazza's Master’s Thesis work] E,z,
@ Microscopic description from in-medium SE o
[Pablo Nieto Gallego's Master’s Thesis work] o : \."‘. 4
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Work in progress

@ Implementation within transport simulations

@ Connection with Bayesian methods

[ PHYSICAL REVIEW C 112, 035802 (2025) ]

Bayesian inference of neutron star crust properties using an ab-initio-benchmarked metamodel

S. Burrello®,"” F. Gulminelli ®, M. Antonelli,> M. Colonna®,' and A. F. Fantina®*
VNEN, Laboratori Nazionali del Sud, 1-95123 Catania, ltaly
iversité de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, 14000 Caen, France
*Grand Accélérateur National d'lons Lourds (GANIL), CEA/DRF - CNRS/IN2P3, Boulevard Henri Becquerel, 14076 Caen, France

® (Received 6 June 2025 revised 23 July 2025 accepted 8 August 2025 published 5 September 2025)
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Dynamics of dilute nuclear matter with light clusters

Outline of the presentation

© Summary
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Dynamics of dilute nuclear matter with light clusters

Final remarks and conclusions

@ Description of correlations & clustering with phenomenological EDF models

@ Dynamics of dilute NM with light clusters DOF and local in-medium effectsJ

@ Unified mass-shift parametrization for deuterons & SRCs and impact on EOS

@ Validation of phase-space excluded-volume approach against in-medium SE

@ Role of clusters on SNM spinodal instability and fragmentation dynamics

Further developments and outlooks

@ Screening effects for bound nucleons and connection with hydrodynamics

@ Extension to ANM with other light clusters and cut-off parameterizations

@ Numerical calculations & consistent description of HIC fragment formation
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Dynamics of dilute nuclear matter with light clusters

Final remarks and conclusions

@ Description of correlations & clustering with phenomenological EDF models

@ Dynamics of dilute NM with light clusters DOF and local in-medium effects )

@ Unified mass-shift parametrization for deuterons & SRCs and impact on EOS
@ Validation of phase-space excluded-volume approach against in-medium SE

@ Role of clusters on SNM spinodal instability and fragmentation dynamics

Further developments and outlooks

@ Screening effects for bound nucleons and connection with hydrodynamics
@ Extension to ANM with other light clusters and cut-off parameterizations

@ Numerical calculations & consistent description of HIC fragment formation
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