Clustering and Equation of State within extended density functional approaches

1st Collaboration Meeting on NUclear Structure, Dynamics and Astrophysics at FRIB (NUSDAF 2025)

Physics and Astronomy Department - University of Catania (Italy)

22th - 24th October 2025

Authors: S. Burrello, M. Colonna, R. Wang
INFN - Laboratori Nazionali del Sud, Catania

Outline of the presentation

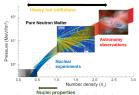
- Many-body (MB) correlations and clustering phenomena in nuclear systems
 - Understanding Equation of State (EOS) for nuclear matter (NM)
 - Phenomenological models based on energy density functionals (EDF)
- Extended EDF-based models: recent developments and results
 - Unified (thermodynamic) description of few-body correlations and clusters
 - Embedding short-range correlations within relativistic mean-field approaches
 - Global mass-shift parameterization for a multi-purposes EOS
 - Dynamical approach with light clusters as degrees of freedom (DOF)
 - Phase-space excluded-volume approach in dilute nuclear medium
 - Quasi-analytical characterization of spinodal instability and growth rates
- Further developments and outlooks
 - Connection between hydrodynamical and linearized Vlasov approach
 - Extensive numerical calculations of the dynamics with light clusters
 - Consistent description of fragment formation mechanisms in heavy-ion collisions
- Summary

Outline of the presentation

- Many-body (MB) correlations and clustering phenomena in nuclear systems
 - Understanding Equation of State (EOS) for nuclear matter (NM)
 - Phenomenological models based on energy density functionals (EDF)
- Extended EDF-based models: recent developments and results

- Further developments and outlooks
 - Extensive numerical calculations of the dynamics with light clusters
 - Consistent description of fragment formation mechanisms in heavy-ion collisions
- Summary

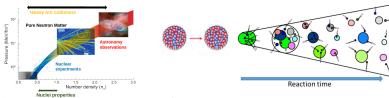
• Heavy-ion collisions (HIC) at $E_{
m beam} pprox (30-300)\, A {
m MeV} \Rightarrow {
m EOS}$



- Expansion following initial compression
 - \Rightarrow low density (ρ) & temperature (T)
 - Spinodal instabilities → frame
 - ullet Few-body correlations o light clusters
- Phenomenological EDF with clusters DOF

Theoretical challenge

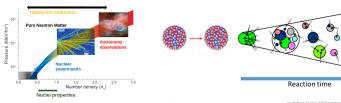
• Heavy-ion collisions (HIC) at $E_{\mathrm{beam}} \approx (30-300)\, A \mathrm{MeV} \Rightarrow \mathrm{EOS}$



- Expansion following initial compression
 - \Rightarrow low density (ρ) & temperature (T)
 - Spinodal instabilities → fragment
 - Few-body correlations → light clusters
- Phenomenological EDF with clusters DOF
- □ Dilute NM → mixture (nucleons+nuclei)

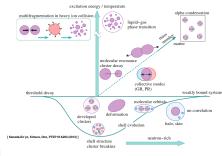
Theoretical challenge

• Heavy-ion collisions (HIC) at $E_{
m beam} pprox (30-300)\, A {
m MeV} \Rightarrow {
m EOS}$



- Expansion following initial compression
 ⇒ low density (ρ) & temperature (T)
 - Spinodal instabilities → fragment
 - Few-body correlations → light clusters
- Phenomenological EDF with clusters DOF

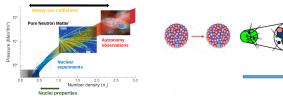
Theoretical challenge



Reaction time

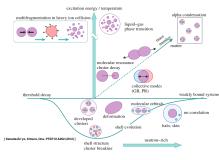
Heavy-ion collisions: clustering effects and EOS

• Heavy-ion collisions (HIC) at $E_{
m beam} pprox (30-300)\, A {
m MeV} \Rightarrow {
m EOS}$

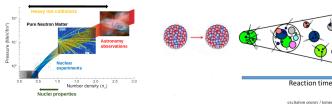


- Expansion following initial compression
 ⇒ low density (ρ) & temperature (T)
 - Spinodal instabilities → fragment
 - Few-body correlations \rightarrow light clusters
- Phenomenological EDF with clusters DOF
 - Dilute NM → mixture (nucleons+nuclei)

Theoretical challenge

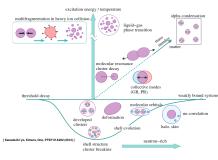


• Heavy-ion collisions (HIC) at $E_{
m beam} pprox (30-300)\, A {
m MeV} \Rightarrow {
m EOS}$



- Expansion following initial compression
 ⇒ low density (ρ) & temperature (T)
 - Spinodal instabilities → fragment
 - Few-body correlations → light clusters
- Phenomenological EDF with clusters DOF
 - Dilute NM → mixture (nucleons+nuclei)

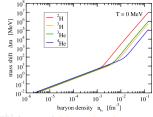
Theoretical challenge



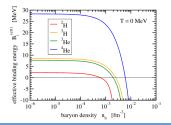
- Pauli-blocking (Mott) effect ⇒ cluster dissolution
 - Microscopic in-medium effects
 - (Effective) binding energy $\rightarrow B^{\mathrm{eff}} = B \Delta m$
- ullet $\Delta m^{(\mathrm{low})}$ from in-medium Schrödinger equation (SE)
 - [G. Röpke, NPA 867 (2011) 66-80]
- Parameterization $\Delta m(\rho, \beta, T, P_{c.m.}) \Rightarrow$ heuristic $\Delta m^{(high)}$ beyond Mott density

- Pauli-blocking (Mott) effect ⇒ cluster dissolution
 - Microscopic in-medium effects \Rightarrow Mass-shift (Δm)
 - (Effective) binding energy $\rightarrow B^{\rm eff} = B \Delta m$ [S. Typel et al., PRC 81, 015803 (2010)]
- ullet $\Delta m^{
 m (low)}$ from in-medium Schrödinger equation (SE)

[G. Röpke, NPA 867 (2011) 66-80]

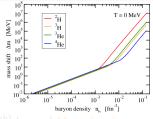


Parameterization $\Delta m(
ho,eta,T,\mathsf{P}_{\mathrm{c.m.}})\Rightarrow$ heuristic $\Delta m^{(\mathrm{nign})}$ beyond Mott density

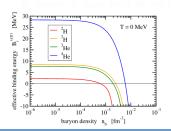


- Pauli-blocking (Mott) effect ⇒ cluster dissolution
 - Microscopic in-medium effects \Rightarrow Mass-shift (Δm)
 - (Effective) binding energy $\rightarrow B^{\text{eff}} = B \Delta m$ [S. Typel et al., PRC 81, 015803 (2010)]
- $oldsymbol{\Delta} m^{(\mathrm{low})}$ from in-medium Schrödinger equation (SE)

[G. Röpke, NPA 867 (2011) 66-80]

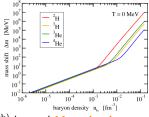


• Parameterization $\Delta m(
ho,eta,T,\mathsf{P}_{\mathrm{c.m.}})\Rightarrow$ heuristic $\Delta m^{(\mathrm{high})}$ beyond Mott density



- Pauli-blocking (Mott) effect ⇒ cluster dissolution
 - Microscopic in-medium effects \Rightarrow Mass-shift (Δm)
 - (Effective) binding energy $\rightarrow B^{\rm eff} = B \Delta m$ [S. Typel et al., PRC 81, 015803 (2010)]
- ullet $\Delta extit{m}^{(\mathrm{low})}$ from in-medium Schrödinger equation (SE)

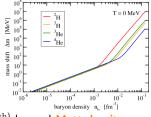
[G. Röpke, NPA 867 (2011) 66–80]



- Parameterization $\Delta m(
 ho, eta, T, \mathbf{P}_{\mathrm{c.m.}}) \Rightarrow \mathsf{heuristic} \ \Delta m^{(\mathrm{high})}$ beyond Mott density
 - ullet Bound clusters survive only if $|P_{
 m c.m.}| > P_{
 m Mott}$ (Mott momentum
 - Few-body short-range correlations (SRCs) in the continuum

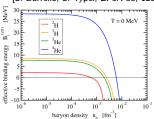
- Pauli-blocking (Mott) effect ⇒ cluster dissolution
 - Microscopic in-medium effects \Rightarrow Mass-shift (Δm)
 - (Effective) binding energy $\rightarrow B^{\text{eff}} = B \Delta m$ [S. Typel et al., PRC 81, 015803 (2010)]
- $\Delta m^{(low)}$ from in-medium Schrödinger equation (SE)

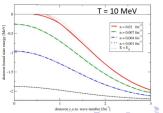
[G. Röpke, NPA 867 (2011) 66-80]

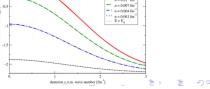


- Parameterization $\Delta m(\rho, \beta, T, \mathbf{P}_{c.m.}) \Rightarrow \mathbf{heuristic} \ \Delta m^{(high)} \ \mathbf{beyond} \ \mathbf{Mott} \ \mathbf{densitv}$
 - **Bound** clusters survive only if $|P_{c.m.}| > P_{Mott}$ (Mott momentum)
 - Few-body short-range correlations (SRCs) in the continuum

[S. Burrello, S. Typel, EPJA 58, 120 (2022)]



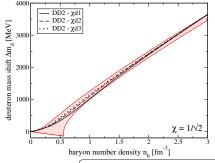


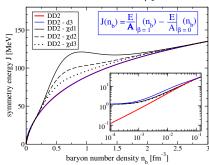


Clusters as surrogate for SRCs in extended EDFs

• Unified mass-shift parameterization for bound d / np SRCs ($\rho_B \leq \rho_{\text{Mott}}$)

$$\Delta m_d(x) = \frac{ax}{1+bx} + cx^{\eta+1} \left[1 - \tanh(x) \right] + fx \tanh(gx), \qquad x = \frac{\rho_b}{\rho_0}$$





Eur. Phys. J. A. (2022) \$81:20 THE EUROPEAN PHYSICAL JOURNAL A

Regular Article - Theoretical Physics

Embedding short-range correlations in relativistic density functionals through quasi-deuterons

S. Burretlo | **O. S. Type| **D. S. Type|

Outline of the presentation

- Many-body (MB) correlations and clustering phenomena in nuclear systems
- (--- y

Extended EDF-based models: recent developments and results

- Unified (thermodynamic) description of few-body correlations and clusters
 - Clobal mass shift parameterization for a multi-nursesse EOS
 - Dynamical approach with light clusters as degrees of freedom (DOF)
 - Phase-space excluded-volume approach in dilute nuclear medium
 - Quasi-analytical characterization of spinodal instability and growth rates
- Further developments and outlooks
- Extensive numerical calculations of the dynamics with light clusters
- Consistent description of fragment formation mechanisms in heavy-ion collisions
- Summary

Effective phase-space excluded-volume approach

- Modeling dynamics of HIC at intermediate energies \Rightarrow Transport theories
 - Boltzmann–Uehling–Uhlenbeck (BUU) equation for the distribution function f_{τ}

$$(\partial_t + \nabla_{\mathbf{p}} \varepsilon_{\tau} \cdot \nabla_{\mathbf{r}} - \nabla_{\mathbf{r}} \varepsilon_{\tau} \cdot \nabla_{\mathbf{p}}) f_{\tau} = I_{\tau}^{\text{coll}} [f_n, f_p, \dots], \qquad \tau = n, p, d, t, h, \alpha$$

Extended kinetic approaches ⇒ Light clusters & in-medium effects

Effective phase-space excluded-volume approach

- Modeling dynamics of HIC at intermediate energies ⇒ Transport theories
 - Boltzmann–Uehling–Uhlenbeck (BUU) equation for the distribution function f_{τ}

$$(\partial_t + \nabla_{\mathbf{p}} \varepsilon_{\tau} \cdot \nabla_{\mathbf{r}} - \nabla_{\mathbf{r}} \varepsilon_{\tau} \cdot \nabla_{\mathbf{p}}) f_{\tau} = I_{\tau}^{\text{coll}} [f_n, f_p, \dots], \qquad \tau = n, p, d, t, h, \alpha$$

- Extended kinetic approaches ⇒ Light clusters & in-medium effects
 - Solving in-medium SE \forall (r, t) point (computationally very demanding)
 - Effective phase-space excluded-volume approach
 [P. Danielewicz, G. F. Bertsch, NPA 533, 712 (1991)]
 [C. Kuhrts et al., PRC 63, 034605 (2001)]
 - $\langle T_{\tau} \rangle_{\nu}(\Gamma) = \int \frac{1}{(2\pi\hbar)^3} I_{\tau} \cdot \langle P \rangle |\Psi_{\nu}, P \langle P \rangle| \leq r_A$
 - $\hat{\phi}_{p,p} \equiv$ free-space 1-body probability (Gaussian) distribution $\hat{E}^{(o)} \equiv$ total phase-space assume of the medium
 - (including contributions from light clusters)

Effective phase-space excluded-volume approach

- Modeling dynamics of HIC at intermediate energies ⇒ Transport theories
 - ullet Boltzmann-Uehling-Uhlenbeck (BUU) equation for the distribution function $f_ au$

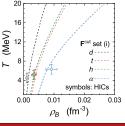
$$(\partial_t + \nabla_{\mathbf{p}} \varepsilon_{\tau} \cdot \nabla_{\mathbf{r}} - \nabla_{\mathbf{r}} \varepsilon_{\tau} \cdot \nabla_{\mathbf{p}}) f_{\tau} = I_{\tau}^{\text{coll}} [f_n, f_p, \dots], \qquad \tau = n, p, d, t, h, \alpha$$

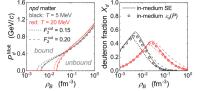
- Extended kinetic approaches ⇒ Light clusters & in-medium effects
 - Solving in-medium SE \forall (r, t) point (computationally very demanding)
 - Effective phase-space excluded-volume approach
 [P. Danielewicz, G. F. Bertsch, NPA 533, 712 (1991)]

[C. Kuhrts et al., PRC 63, 034605 (2001)]

$$\langle f_{ au}
angle_{
u}(\mathsf{P}) \equiv \int rac{\mathrm{d} \mathbf{p}}{(2\pi\hbar)^3} f_{ au}^{\mathrm{tot}}(\mathbf{p}) |\tilde{\phi}_{
u,\mathbf{p}}(\mathbf{p})|^2 < F_A^{\mathrm{cut}}$$

 $\tilde{\phi}_{\nu,P} \equiv$ free-space 1-body probability (Gaussian) distribution $f_{\tau}^{\mathrm{tot}} \equiv$ total phase-space occupation of the medium (including contributions from light clusters)

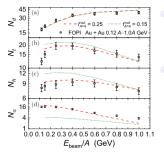




Kinetic approach for HIC with light-clusters DOF

- Integrating phase-space excluded-volume in transport models \Rightarrow cut-off in I_{τ}^{coll}
 - \Rightarrow **Description** of cluster **yields** from **FOPI** collaboration for $A \le 4$

[R. Wang, Y.-G. Ma, L.-W. Chen, C. M. Ko, K.-J. Sun, & Z. Zhang, Phys. Rev. C 108, L031601 (2023)]

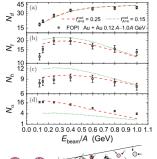


- Kinetic approach for HIC at intermediate energies
 - No consistent light & heavier fragments production
- Spinodal instability \Rightarrow Mean-field (Vlasov) dynamics $(\partial_t + \nabla_p \varepsilon_\tau \cdot \nabla_r \nabla_r \varepsilon_\tau \cdot \nabla_p) f_\tau = 0$

Kinetic approach for HIC with light-clusters DOF

Integrating phase-space excluded-volume in transport models ⇒ cut-off in I_τ^{coll} ⇒ Description of cluster yields from FOPI collaboration for A ≤ 4

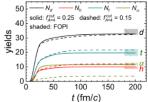
[R. Wang, Y.-G. Ma, L.-W. Chen, C. M. Ko, K.-J. Sun, & Z. Zhang, Phys. Rev. C 108, L031601 (2023)]



- Kinetic approach for HIC at intermediate energies
 - No consistent light & heavier fragments production

Spinodal instability ⇒ Mean-field (Vlasov) dynamics

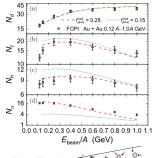
$$\left(\partial_t + \nabla_{\boldsymbol{p}} \varepsilon_{\tau} \cdot \nabla_{\boldsymbol{r}} - \nabla_{\boldsymbol{r}} \varepsilon_{\tau} \cdot \nabla_{\boldsymbol{p}}\right) f_{\tau} = 0$$



Kinetic approach for HIC with light-clusters DOF

Integrating phase-space excluded-volume in transport models ⇒ cut-off in I_τ^{coll} ⇒ Description of cluster yields from FOPI collaboration for A ≤ 4

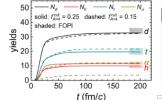
[R. Wang, Y.-G. Ma, L.-W. Chen, C. M. Ko, K.-J. Sun, & Z. Zhang, Phys. Rev. C 108, L031601 (2023)]



- Kinetic approach for HIC at intermediate energies
 - No consistent light & heavier fragments production

Spinodal instability \Rightarrow Mean-field (Vlasov) dynamics

$$\left(\partial_t + \nabla_{\boldsymbol{p}} \varepsilon_{\tau} \cdot \nabla_{\boldsymbol{r}} - \nabla_{\boldsymbol{r}} \varepsilon_{\tau} \cdot \nabla_{\boldsymbol{p}}\right) f_{\tau} = 0$$



Our goal

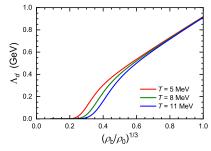
Assess if light clusters (from compression phase) affect spinodal instability (expansion stage)

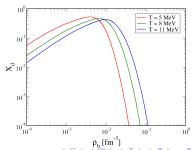
Density-dependent (Mott) momentum cut-off

• Pauli-blocking \Rightarrow Cut-off (Mott) momentum $P_j^{ ext{Mott}} \equiv \Lambda_j(\rho_b, T)$ parameterization

$$\rho_j = g_j \int_{|\mathbf{p}| > \Lambda_j} \frac{d\mathbf{p}}{(2\pi\hbar)^3} f_j \qquad j = n, p, d \qquad (\Lambda_q = 0, \text{ for } q = n, p)$$

• Chemical equilibrium $\Rightarrow X_d = \frac{A_d \rho_d}{\rho_0}$ consistent with microscopic calculations





Linearized Vlasov equations for NM+deuterons

Linear response to collision-less Boltzmann ⇒ linearized Vlasov equations for NMd

$$\partial_t \left(\delta f_j \right) + \nabla_{\mathbf{r}} (\delta f_j) \cdot \nabla_{\mathbf{p}} \varepsilon_j - \nabla_{\mathbf{p}} f_j \cdot \nabla_{\mathbf{r}} (\delta \varepsilon_j) = 0 \quad \Rightarrow \quad \delta \rho_j = -\chi_j \sum_l \left(F_0^{jl} + \tilde{F}_\lambda^{jl} \right) \delta \rho_l - \delta_{jd} \sum_l \Phi_\lambda^{dl} \delta \rho_l$$

• Single-particle energy $\varepsilon_j \equiv \frac{\delta \mathcal{E}}{\delta f_i(\mathbf{p})}$ (from EDF $\mathcal{E} = \mathcal{K} + \mathcal{U}$)

$$\varepsilon_j = \frac{\rho^2}{2m_j} + U_j + \tilde{\varepsilon}_j^{\lambda} \qquad (\tilde{\varepsilon}_j^{\lambda} \propto \Phi_{\lambda}^{dj} \sim \frac{\partial \Lambda_d}{\partial \rho_j})$$

Momentum-independent Skyrme-like interaction (= for bound and free nucleons)

$$\mathcal{U} = \frac{A}{2} \frac{\rho_b^2}{\rho_0} + \frac{B}{\alpha + 2} \frac{\rho_b^{\alpha + 2}}{\rho_0^{\alpha + 1}} + \frac{C(\rho)}{2} \frac{\rho_3^2}{\rho_0} + \frac{D}{2} (\nabla_r \rho_b)^2 - \frac{D_3}{2} (\nabla_r \rho_3)^2$$

• Density-dependent (Mott) momentum cut-off \Rightarrow extra-terms in both $\delta \rho_i$ and ε_i

$$\rho_{j} = g_{j} \int_{|\mathbf{p}| > \Lambda_{j}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} f_{j} \quad j = n, p, d \quad \rightarrow \quad \delta \rho_{j}(\mathbf{r}, t) = g_{j} \int_{|\mathbf{p}| > \Lambda_{j}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \int_{\mathbf{p}} \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \delta f_{j} - \delta_{jd} \sum_{l = n, p, d} \Phi_{\lambda}^{dl} \delta \rho_{ll} \delta \rho_{l$$

• $\Phi_{\lambda}^{dl} \neq 0 \Rightarrow$ adding in-medium effects for cluster appearance/dissolution in dynamics

• Landau procedure
$$\left(F_0^{jl} \sim \frac{\partial U_j}{\partial \rho_l}, \tilde{F}_\lambda^{jl} \sim \frac{\partial \tilde{\mathcal{E}}_j^\lambda}{\partial \rho_l}\right)$$
 for $\delta f_j \sim \sum_{\mathbf{k}} \delta f_j^{\mathbf{k}} e^{i(\mathbf{k}\cdot\mathbf{r} - \omega t)}$

• Solving linearized Vlasov equations \Rightarrow dispersion relation $\omega = \omega(k)$

$$\delta\rho_{j}=-\chi_{j}\sum_{l}\left(\textit{\textbf{F}}_{0}^{jl}+\tilde{\textit{\textbf{F}}}_{\lambda}^{jl}\right)\delta\rho_{l}-\delta_{jd}\sum_{l}\Phi_{\lambda}^{dl}\delta\rho_{l}$$

• $\omega = \text{Im}(\omega) \Leftrightarrow \text{unstable mode (spinodal region)}$

[R. Wang, S. Burrello, M. Colonna, F. Matera, PRC 110, L031601 (2024)

$$ullet$$
 $\omega=0$ $(\chi_j=1)\Rightarrow$ border $ullet$ Im $(\omega)\Rightarrow$ growth rate

• Solving linearized Vlasov equations \Rightarrow dispersion relation $\omega = \omega(k)$

$$\delta
ho_j = -\chi_j \sum_l \left(F_0^{jl} + \tilde{F}_{\lambda}^{jl} \right) \delta
ho_l - \delta_{jd} \sum_l \Phi_{\lambda}^{dl} \delta
ho_l$$

• $\omega = \text{Im}(\omega) \Leftrightarrow \text{unstable mode (spinodal region)}$

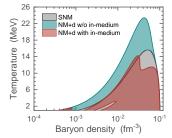
[R. Wang, S. Burrello, M. Colonna, F. Matera, PRC 110, L031601 (2024)]

Solving linearized Vlasov equations \Rightarrow dispersion relation $\omega = \omega(k)$

$$\delta
ho_j = -\chi_j \sum_l \left(F_0^{jl} + \tilde{F}_\lambda^{jl} \right) \delta
ho_l - \delta_{jd} \sum_l \Phi_\lambda^{dl} \delta
ho_l$$

• $\omega = \text{Im}(\omega) \Leftrightarrow \text{unstable mode (spinodal region)}$

[R. Wang, S. Burrello, M. Colonna, F. Matera, PRC 110, L031601 (2024)]



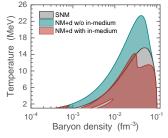
Solving linearized Vlasov equations \Rightarrow dispersion relation $\omega = \omega(k)$

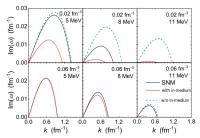
$$\delta
ho_j = -\chi_j \sum_l \left(F_0^{jl} + \tilde{F}_{\lambda}^{jl} \right) \delta
ho_l - \delta_{jd} \sum_l \Phi_{\lambda}^{dl} \delta
ho_l$$

• $\omega = \text{Im}(\omega) \Leftrightarrow \text{unstable mode (spinodal region)}$

[R. Wang, S. Burrello, M. Colonna, F. Matera, PRC 110, L031601 (2024)]

- $\omega = 0 \ (\chi_i = 1) \Rightarrow \text{border}$
- $Im(\omega) \Rightarrow growth rate$





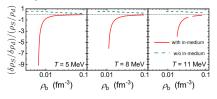
In-medium effects in dynamics

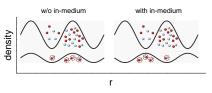
Slowdown of instability rate & different fragmentation modes

Legend full

Instability direction: "distillation" mechanism

- Direction of instability in space of density fluctuations: $\frac{\delta \rho_{\rm S}}{\delta \rho_{\rm d}} \left(\rho_{\rm S} = \rho_{\it n} + \rho_{\it p} \right)$
 - $\frac{\delta \rho_S}{\delta \rho_d} \gtrsim 0 \Rightarrow$ **Nucleons** and **deuterons** fluctuations move in (out) of phase





[R. Wang, S. Burrello, M. Colonna, F. Matera, PRC 110, L031601 (2024)]

- NMd with no in-medium effects:
 - Favored growth of instabilities
 - Cooperation to form fragments

- NMd with in-medium effects:
 - Deuterons move to low densities
 - They might be separately emitted
 - ⇒ "distillation" mechanism

Outline of the presentation

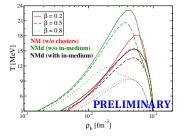
- Many-body (MB) correlations and clustering phenomena in nuclear systems
- Prienomenological models based on energy density functionals (EDF)
- Extended EDF-based models: recent developments and results

- Further developments and outlooks
 - Connection between hydrodynamical and linearized Vlasov approach
 - Extensive numerical calculations of the dynamics with light clusters
 - Consistent description of fragment formation mechanisms in heavy-ion collisions
- Summary

Further developments and outlooks

- Hydrodynamics vs linearized Vlasov approach
 [S. Burrello et al., in preparation]
 - [S. Burrello et al., in preparation]
 - Interplay $(d + \alpha)$ & different cut-off [Carmelo Piazza's Master's Thesis work]
 - Microscopic description from in-medium SE

[Pablo Nieto Gallego's Master's Thesis work]



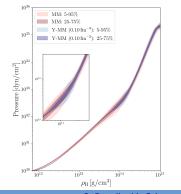
Further developments and outlooks

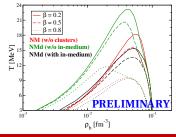
- Hydrodynamics vs linearized Vlasov approach
 - [S. Burrello et al., in preparation]
 - Interplay $(d + \alpha)$ & different **cut-off**

[Carmelo Piazza's Master's Thesis work]

Microscopic description from in-medium SE

[Pablo Nieto Gallego's Master's Thesis work]





Work in progress

- Implementation within transport simulations
- Connection with Bayesian methods

PHYSICAL REVIEW C 112, 035802 (2025) Bayesian inference of neutron star crust properties using an ab-initio-benchmarked metamodel

S. Burrello[®], ^{1,*} F. Gulminelli[®], ² M. Antonelli[®], ² M. Colonna[®], ¹ and A. F. Fantina[®]

¹ INFN, Laboratori Nazionali del Sud, 1-95123 Catonia, Italy

³ Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, 14000 Caen, France
³ Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF - CNRS/IN2P3, Boulevard Henri Becquerel, 14076 Caen, France

(Received 6 June 2025; revised 23 July 2025; accepted 8 August 2025; published 5 September 2025)

Outline of the presentation

- Many-body (MB) correlations and clustering phenomena in nuclear systems
 Understanding Equation of State (EOS) for nuclear matter (NM)
 Phenomenological models based on energy density functionals (EDF)
- Extended EDF-based models: recent developments and results

 $\ensuremath{\mathfrak{S}}$ Dynamical appears with light dusters as degrees of freedom (DOF)

- Further developments and outlooks
 - Connection between hydrodynamical and linearized Vlasov approach
 - Extensive numerical calculations of the dynamics with light clusters
 - Consistent description of fragment formation mechanisms in heavy-ion collisions
- Summary

Final remarks and conclusions

Main topic

- Description of correlations & clustering with phenomenological EDF models
- Dynamics of dilute NM with light clusters DOF and local in-medium effects

Main results

- Unified mass-shift parametrization for deuterons & SRCs and impact on EOS
- Validation of phase-space excluded-volume approach against in-medium SE
- Role of clusters on SNM spinodal instability and fragmentation dynamics

Further developments and outlooks

- Screening effects for bound nucleons and connection with hydrodynamics
- Extension to ANM with other light clusters and cut-off parameterizations
- Numerical calculations & consistent description of HIC fragment formation

Final remarks and conclusions

Main topic

- Description of correlations & clustering with phenomenological EDF models
- Dynamics of dilute NM with light clusters DOF and local in-medium effects

Main results

- Unified mass-shift parametrization for deuterons & SRCs and impact on EOS
- Validation of phase-space excluded-volume approach against in-medium SE
- Role of clusters on SNM spinodal instability and fragmentation dynamics

Further developments and outlooks

- Screening effects for bound nucleons and connection with hydrodynamics
- Extension to ANM with other light clusters and cut-off parameterizations
- Numerical calculations & consistent description of HIC fragment formation

THANK YOU FOR YOUR ATTENTION!