RIBDCE Radioactive Ion Beam induced Double-Charge Exchange reactions

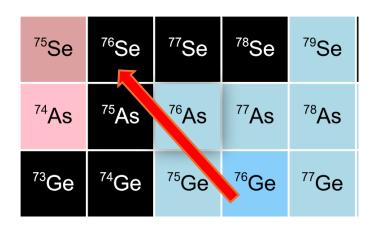
Francesco Cappuzzello

NUSDAF 2025 - 1st Collaboration Meeting on NUclear Structure, Dynamics and Astrophysics at FRIB

Catania, October 22-24, 2025

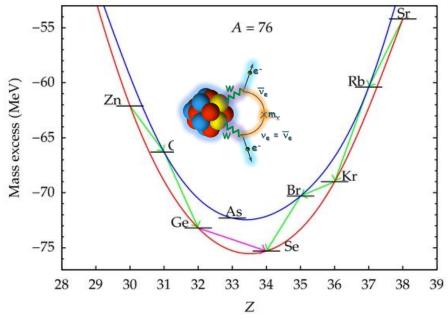
0νββ decay

Open problem in modern physics:


Neutrino absolute mass scale

0νββ is considered the most promising approach

Neutrino nature


E. Majorana, Il Nuovo Cimento 14 (1937) 171W. H. Furry, Phys Rev. 56 (1939) 1184

Still not observed

$${}_{Z}^{A}X_{N} \rightarrow {}_{Z+2}^{A}Y_{N-2} + 2e^{-}$$

Isobaric nuclear transition where a parent nucleus spontaneously decays into a daughter nucleus changing its charge by two units and leaving the mass number unchanged

- Mediated by the weak interaction
- \checkmark Observable in even-even nuclei where the **single** β -decay is energetically **forbidden**

Beyond standard model:

- Violation of lepton number conservation
- > Probing the Majorana nature of neutrino
- Access to matter-antimatter asymmetry

Ejiri, H.; Suhonen, J.; Zuber, K., Physics Reports **2019**, 1, 797 Agostini, M.; Benato, G.; Detwiler J.A.; Menendez, J.; Vissani, F.; Reviews of Modern Physics **2023**, 95, 025002

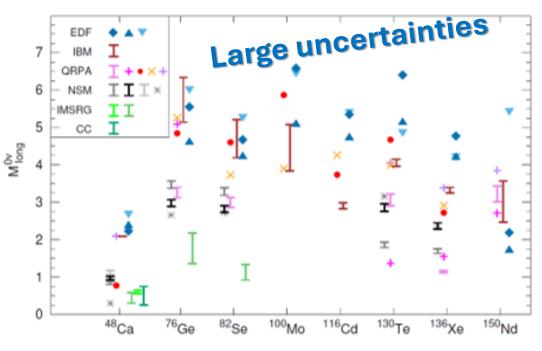
Ovββ decay

A worldwide challe

Intense activities in the searches for experimental evidence of this process

Ovββ decay rate

Contains the BSM physics $\left(T_{\frac{1}{2}}^{0\nu\beta\beta}(0^{+}\to 0^{+})\right)^{-1} = G_{0\nu\beta\beta} \left|M^{0\nu\beta\beta}\right|^{2} \left|f(m_{i},U_{ei})\right|^{2}$


$$\left| M_{\varepsilon}^{0\nu\beta\beta} \right|^{2} = \left| \left\langle \Psi_{f} \middle| \hat{O}_{\varepsilon}^{0\nu\beta\beta} \middle| \Psi_{i} \right\rangle \right|^{2}$$

Nuclear Matrix Element (NME)

Transition probability for the **nuclear** process

- \checkmark NMEs are not physical observables (\rightarrow calculations)
- ✓ Much work on the **transition operator**, now including all the known short-range weak interaction physics F.F. Deppisch et al., PRD 102, 095016 (2020)
- ✓ The challenge is the description of the nuclear many body states

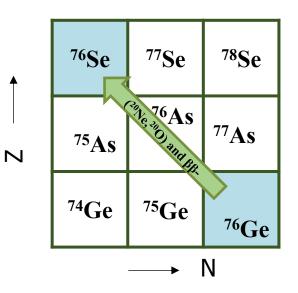
State of the art NME calculations

M. Agostini et al., Rev. Mod. Phys. 95, 025002 (2023)

An interesting experimental tool

(NUclear Matrix Elements for Neutrinoless double beta decay)

F. Cappuzzello et al., EPJ A (2018) 54:72


Heavy-Ion induced Double Charge Exchange reactions (DCE) as

a surrogate process of $0v\beta\beta$ to stimulate in the laboratory the same nuclear transition (g.s. to g.s.)

Extraction from measured cross-sections of *data-driven* **information on NME** for all the systems candidate for 0vββ

- Constraints to the existing theories of NMEs (nuclear wave functions)
- Model-independent comparative information on the sensitivity of $0\nu\beta\beta$ experiments
- Complete study of the reaction mechanism

Heavy-ion induced DCE

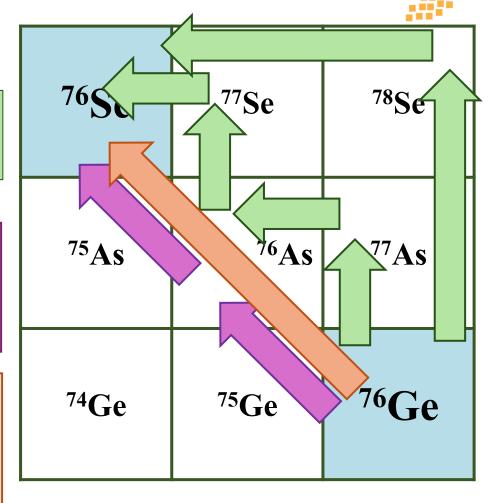
Heavy ion DCE can proceed via:

Mean field driven processes

1) Sequential multi-nucleon transfer (TDCE)

J.L. Ferreira et al., PRC 105, 014630 (2022) J.L. Ferreira et al., PRC 111, 014630 (2025)

Collisional processes


2) Two-step DCE - Double single charge exchange (DSCE): two consecutive single charge exchange processes, mediated by NN isovector interaction

J.I.Bellone et al., Phys. Rev. C 111, L061602 (2025)

H.Lenske et al., Universe, 7, 93 (2024)

3) One-step DCE - Two-nucleon mechanism (MDCE): relying on short range NN correlations, leading to the correlated exchange of two charged mesons between projectile and target

H. Lenske et al. Progr. Part. and Nucl. Physics 109 (2019) 103716

The DCE cross section combines the three different classes of reaction dynamics

H. Lenske, Universe (2024) 10, 202

(³H, 3p) double charge exchange

(³H, 3p) double charge exchange

³H is the **lightest projectile** that can induce a DCE reaction. The transition of the projectile can be treated with **ab-initio methods**, removing uncertainties due to the many-body features of heavy nuclei

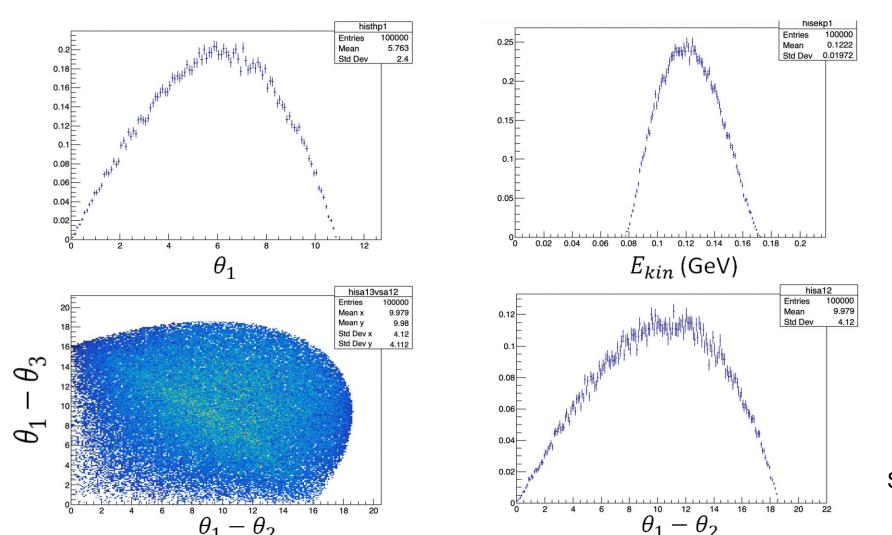
• Selective access to few-body **open quantum system** in ab-initio theory (discussion with ab-initio experts already started)

NUCLEAR STRUCTURE

• ³He(³H,3p)3n allows studying the DCE process in conditions where distortions due to ISI and FSI are suppressed (more direct access to reaction form factors)

NUCLEAR REACTIONS

• ³He(³H,3p)3n could allow the study of the DCE mechanism from "first principles" if the 6-body problem in the continuum is faced (discussion with HIDCE theory experts started)

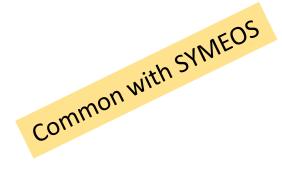

NUCLEAR INTERACTIONS

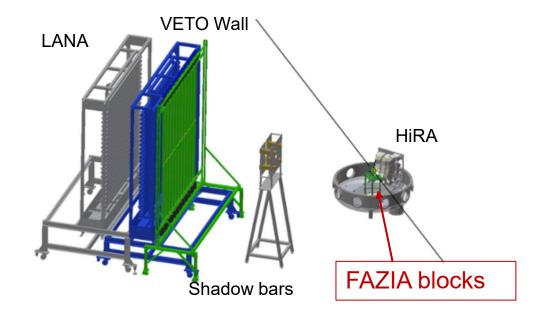
• 3 He(3 H,3p)3n investigates all three-body nuclear systems (3n, 3p, 3 H(pnn), 3 He(ppn)) with $|Tz| \le 3/2$, providing valuable data for direct access to nuclear forces, particularly **three-body forces**, with its relevance to the study of fewbody nuclear systems and to the EoS of asymmetric nuclear matter at high densities (**synergy with SYMEOS**)

Some simulation for the ³He(³H,3p)3n

Simulations of phase-space 3-body distributions of protons in $^3H + ^3He \rightarrow 3n + 3p$

 $(E_{cm,3p} = 120 \text{ MeV/nucleon})$


Simulations by G. Verde


Experimental setup for the ³He(³H,3p)3n

Detecting 3 protons and measuring their momentum vectors to study two- and three-body correlations

- High granularity solid-state detectors arranged in Si-CsI(TI) telescopes as a possible choice
- Excellent PID, energy and angle measurement of the 3p in coincidence
- Measure at small scattering angles

The telescopes can be the FAZIA blocks/ HiRA Detecting also the 3 neutrons?

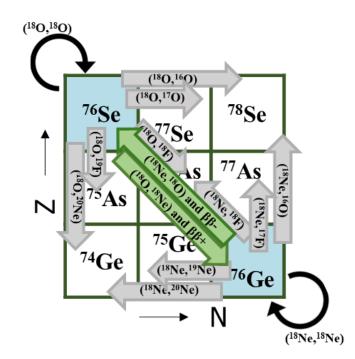
Measurable with FAZIA blocks - 3 protons with E_{kin} =80-140 MeV and distributed over θ =4°-15° with relative angles of more than 2°...

Challenges for the ³He(³H,3p)3n

- Cross section estimation needed to tune beam time request and detector set-up: work started
- **Proton spatial distribution** (impact on detector granularity and angular acceptance): first simulations already done
- ³H beam as secondary beam with high intensity already discussed with FRIB colleagues
- ³He target availability at FRIB already discussed
- **Detectors for protons** (and neutrons): exploring availability and detector performances (efficiency, resolution, granularity, ...). Discussion started
- **Involvement of few-body theorists** for Ab-initio wave functions: first brainstorming meetings already started

The (³H,3p) in a broader perspective

- In general, the (³H,3p) is a very promising DCE reaction due to the possibility of ab-initio methods for studying the reaction mechanism
- In particular, the distortions due to ISI and FSI may be calculated from first principles


- One should expect a steep rise of the cross section due to the weaker absorption compared to heavy-ion DCE
- In addition, thicker target can be used due to the much smaller energy loss and straggling of ³H and protons, thus boosting the DCE yield.
- The experimental technique proposed for the case of 3 He(3 H,3p)3n may be generalized to any target of interest for $0\nu\beta\beta$ decay research

(18Ne,18O) double charge exchange

(18Ne, 18O) double charge exchange

¹⁸Ne radioactive beam at FRIB

- Both ¹⁸O and ¹⁸Ne nuclei are of primary importance for DCE experiments. Indeed, the ¹⁸Ne (¹⁸O) projectile exhibits a **strong clusterization into** ¹⁶O + **2p** (¹⁶O +**2n**) in its ground state. The ¹⁸Ne (¹⁸O) beam offers the closest similarity to a 2p (2n) beam, which would be the most elementary nuclear system that can activate the DCE reaction
- the (¹⁸Ne, ¹⁸O) reactions represent the time reversal of the (¹⁸O, ¹⁸Ne) reactions already widely explored (and planned) in NUMEN at INFN-LNS. This will allow tests of time invariance of the NMEs in detail

RIBDCE will need to measure:

- Z, A and p^{\rightarrow} for identifying the reaction channel (18O, 18F, ...)
- p (with high resolution for energy spectrum measurements)
- differential cross-sections

(18Ne, 18O) features and challenges

NUMEN data at 15 MeV/u I_{beam} ~1 pnA, target ~ 300 ug/cm² ~20 days beam time

$$0^{\circ} < \theta_{lab} < 8^{\circ}$$

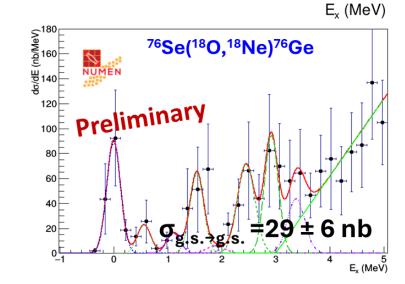
$$0^{\circ} < \theta_{lab} < 8^{\circ}$$

$$7^{6}Ge(^{20}Ne,^{20}O)^{76}Se$$

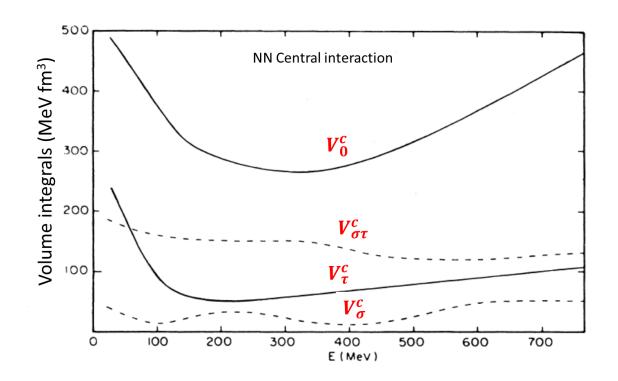
$$7^{0}Oe^{(20}Ne,^{20}O)^{76}Se$$

$$7^{0}Oe^{(20}Ne,^{20}O)^{76}Se$$

$$7^{0}Oe^{(20}Ne,^{20}O)^{76}Se$$


$$7^{0}Oe^{(20}Ne,^{20}O)^{76}Se$$

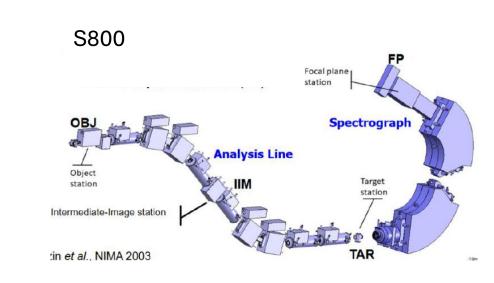
$$7^{0}Oe^{(20}Ne,^{20}O)^{76}Se$$

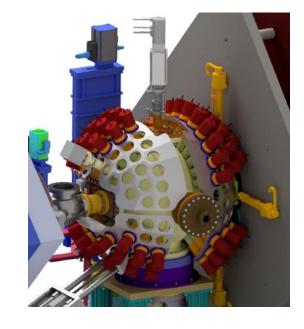

$$7^{0}Oe^{(20}Ne,^{20}O)^{76}Se$$

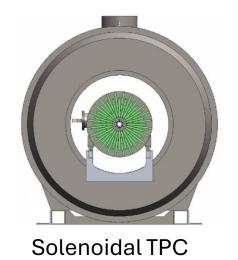
$$7^{0}Oe^{(20}Ne,^{20}O)^{76}Se$$

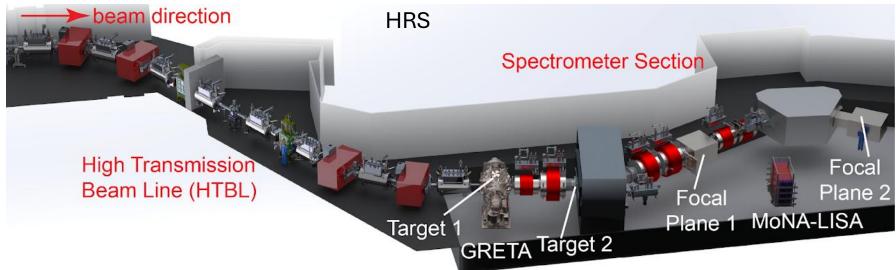
20

- Larger cross section expected compared to NUMEN at 15 MeV/u, due to reduced absorption
- Possibility to make thicker targets
- Requirement of high energy resolution (500 keV -> 1/10000!)
- Challenging use of gamma-array spectrometer due to expected low yields


Experimental setup for ¹⁸Ne experiments


To be explored


G-NUMEN array of LaBr3(Ce)


FAZIA-like blocks

NUMEN DCE at FRIB

Designing campaigns of measurements at FRIB is a very promising perspective for the NUMEN collaboration. Two specific aspects can be outlined:

1. Performing DCE reactions with beams that are complementary to the ones that will be offered by the upgraded LNS stable beam facility, namely beams of radioactive isotopes at 15 to 350 MeV/u

2. The use of a multi-purpose experimental setup to be shared with the groups working on EoS and on nuclear astrophysics, thus strongly enhancing the synergic character of the proposed project

Thanks

backup

Why:

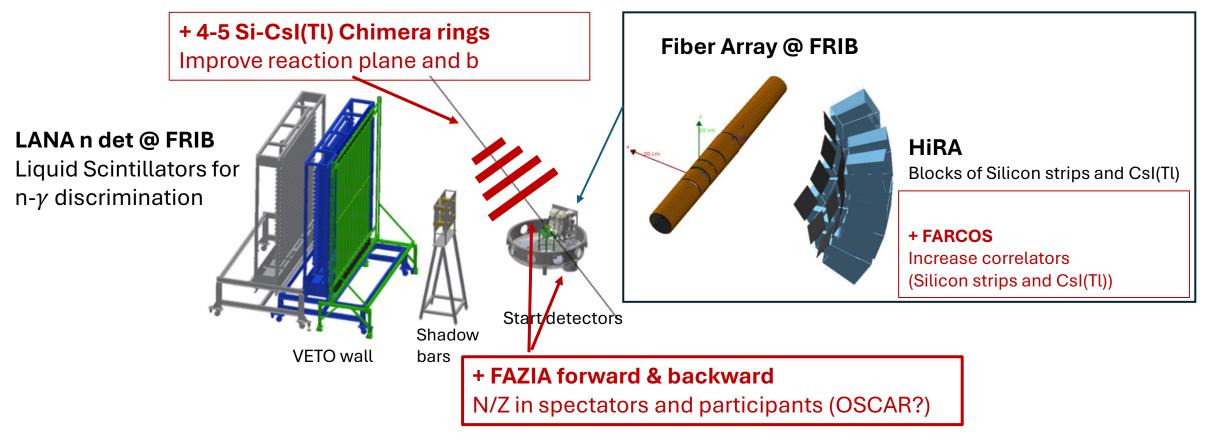
- the lightest system to explore short range correlations in Double Charge Exchange (DCE) mechanism
- A direct access to nucleonic 3-body systems and interactions

How:

- Tritium beam and 3He target. It would require the detection of 3 protons at forward angles in coincidence and 3 neutrons in the full solid angle.

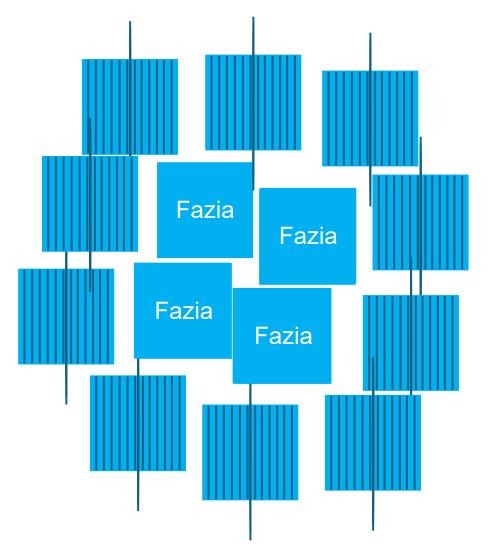
Where:

- FRIB facility at MSU seems the best place


Issues:

- Cross section estimation needed to tune beam time and detector setup
- Proton spatial distribution (impact on detector granularity and angular acceptance)
- t beam as secondary beam with high intensity. Energy? Intensity?
- 3He target. Availability? Liquid? Gas? Thickness?
- Detectors for protons and neutrons. Availability, Efficiency, resolution
- Involvement of few-body theorists for Ab-initio wave functions?

When


- Call for proposal?

SYMEOS campaigns of measurements

- Heavy-ion collision campaigns at E/A=120-400 MeV
 56,70Ni + 58,64Ni, 104,132Sn +112,124Sn, etc.... towards FRIB400
- Interest in TPC phase 1 (solenoidal) and phase 2 (HRS)

FAZIA-HiRA/Farcos for other physics cases

Possible configuration FAZIA-HiRA to increase solid angle coverage

- FAZIA at forward angles and at 1 m distance from the target
- HiRA at large angles and closer to the target

Homogeneous angular resolution as particles are detected at larger polar angles (useful for correlations)

Slide by G. Verde

Why:

- the lightest system to explore short range correlations in Double Charge Exchange (DCE) mechanism
- A direct access to nucleonic 3-body systems and interactions

How:

- Tritium beam and 3He target. It would require the detection of 3 protons at forward angles in coincidence and 3 neutrons in the full solid angle.

Where:

- FRIB facility at MSU seems the best place

Issues:

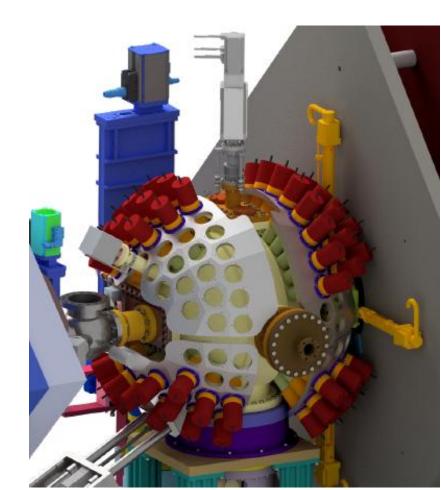
- Cross section estimation needed to tune beam time and detector setup
- Proton spatial distribution (impact on detector granularity and angular acceptance)
- t beam as secondary beam with high intensity. Energy? Intensity?
- 3He target. Availability? Liquid? Gas? Thickness?
- Detectors for protons and neutrons. Availability, Efficiency, resolution
- Involvement of few-body theorists for Ab-initio wave functions?

When

- Call for proposal?

The G-NUMEN array

110 Single LaBr3(Ce) crystals (size 38 mm diameter and 50 mm length)


Demonstrator (15 crystals) already available at LNS

Expected performances

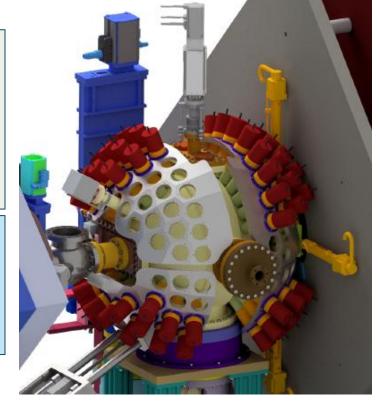
- Total photopeak efficiency of 4% at 1.3 MeV
- Energy resolution of 2.8% (6.4%) at 662 (122) keV
- Time resolution better than 1 ns
- Observational limit 0.3×10^{-9} ($\sigma_{DCE} = 1 \text{ nb/state for } \sigma_R = 3 \text{ b}$)
- Radiation tolerance up to 10^{10} neutrons/cm² (need of new data)

G-NUMEN array of LaBr3(Ce) in coincidence measurements will improve the energy resolution of the measured spectra populated via DCE reactions, allowing to separate ground state transition from the transitions to the excited states of ejectiles and residual nuclei. The modularity of the G-NUMEN array will allow its coupling with various detectors and setups in different configurations, with **possible** applications also to other physics cases.

G-NUMEN: The γ array detector

Mesurement of γ transitions in coincidence (or anti-coincidence) with DCE events in the Focal Plane Detector when the energy resolution in MAGNEX is not sufficient to resolve between states of the reaction products such as for deformed target-nuclei 110 Pd, 150 Nd and 160 Gd, and in all cases, at high reaction energies.

Requirements for **G-NUMEN**


- **Observational limit** $\sigma_{DCE}/\sigma_R < 10^{-8}$
- **Energy resolution** to separate g.s from excited states in DCE events
- **Time resolution** better than 2-3 ns
- **Radiation Tolerance** at 10¹¹ fast neutrons/cm²
- **Stability of the output pulse** with the **count rate** (up to 300 kHz)
- Good linearity of the output pulse charge with energy

G-NUMEN: 110 LaBr₃(Ce) scintillators coupled with Hamamatsu R6231PMT-type tubes purchased by the EPIC crystal company.

- Single crystal size 38 mm diameter and 50 mm length
- 24 cm distance from the target
- Total solid angle coverage = 20%

Expected performances

- Total photopeak efficiency of 4% at 1.3 MeV
- Energy resolution of 2.8% (6.4%) at 662 (122) keV
- Time resolution better than 1 ns
- Observational limit 0.3 x 10^{-9} ($\sigma_{DCE} = 1$ nb/state for $\sigma_R = 3$ b)
- Radiation tolerance up to 10¹⁰ neutrons/cm² (need of new data)

Challenge: distinguish γ rays from DCE events (very few) in the region of interest, in experimental conditions dominated by a **very high rate** of events coming from the projectile-target interactions-> **G-NUMEN demonstrator (15 detectors)**