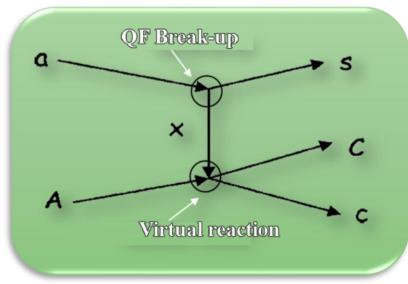
Detector arrays for indirect experiments with RIBs in Nuclear Astrophysics

NUSDAF 2025 - 1st Collaboration Meeting on NUclear Structure, Dynamics and Astrophysics at FRIB

G.L. Guardo on behalf of the AsFiN group



The Trojan Horse Method

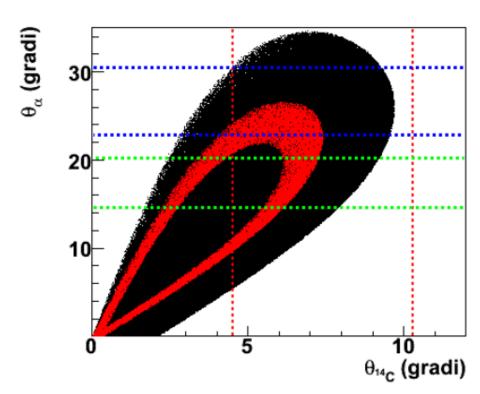
The idea of the **THM** is to extract the cross section of an astrophysically relevant two-body reaction $A+x \rightarrow c+C$ at low energies from a suitable three-body reaction $a+A \rightarrow c+C+s$

Quasi free kinematics is selected

 \checkmark only *x* - A interaction

 \checkmark s = spectator (p_s~0)

$$E_A > E_{Coul} \rightarrow$$


- NO coulomb suppression
- NO electron screening
- NO centrifugal barrier

Preliminary Study

Study of the ¹⁷O(n,α)¹⁴C reaction: extension of the Trojan Horse Method to neutron induced reactions

Black points: kinematic calculations Red points: kinematic calculations + $|p_s|$ <5

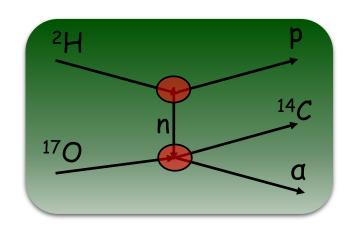
MeV/c

$$E_{cm}+B_{xs}=E_{ax}pprox 2.45 MeV=E_{fascio}rac{m_N}{m_N+m_{^{17}O}}$$

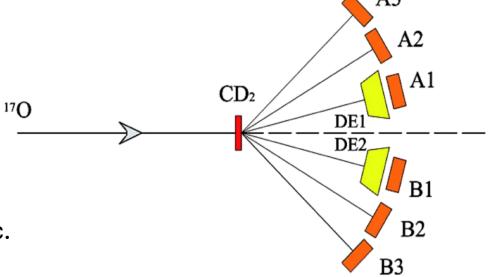
$$^{17}{
m O} +^2{
m H, E_{beam}} = 43.3 \ {
m MeV}$$

Deuteron as source of virtual neutrons!!

This allows then to determine the experimental apparatus:

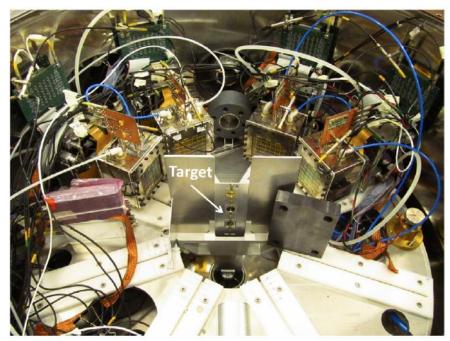

14
C detection → 6°< θ_{c} <10°

$$\alpha$$
 detection → 15°< θ_{α} <20°
→ 23°< θ_{α} <31°

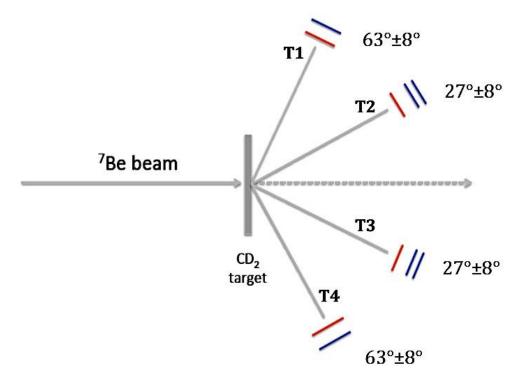

Experimental Setup

- The reaction $^{17}O(n,\alpha)^{14}C$ was studied via the $^{2}H(^{17}O,\alpha^{14}C)p$, $V_{coul}=2.3$ MeV;
- > The deuteron is the TH nucleus. Strong cluster n+p; B=2.2 MeV, $|p_s|$ =0 MeV/c.

- ✓ Experiments performed at ISNAP at the University of Notre Dame (USA) and LNS of Catania;
- ✓ $E_{\text{beam}}(^{17}\text{O}) = 43.5 \text{ MeV};$
- ✓ Target thickness $CD_2 \sim 150 \,\mu g/cm^2$;
- ✓ IC filled with ~50 mbar isobutane gas;
- ✓ Angular position to cover the QF angular region
- ✓ Symmetric set-up in order to increase the statistic.



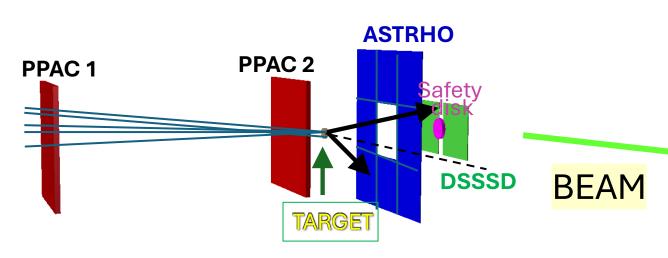
The BELICOS Experimental Setup

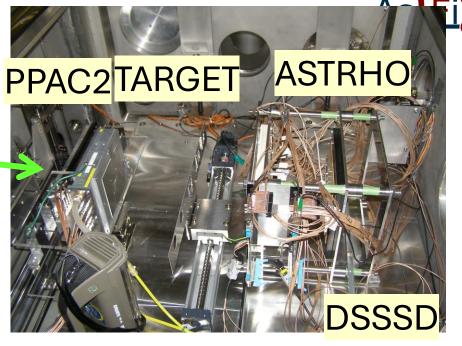


The ⁷Be(n,α)α reaction via THM

- 400 µg/cm² CD₂ target;
- EXPADES detection system
 Pierroutsakou, D. et al. 2016, NIMPA, 834, 46

T2(T3)
$$\rightarrow$$
 IC + DSSSD (300 µm) + SPad (300 µm)
T1(T4) \rightarrow IC + DSSSD (300 µm)




Setup symmetrical, respect to the beam line, in the reaction plane

Trigger: coincidence between two telescopes Calibration with ⁷Li beam on ¹²C, ¹⁹⁷Au and CH₂

THM study of $^{18}F(p,\alpha)^{15}O$ @ CRIB

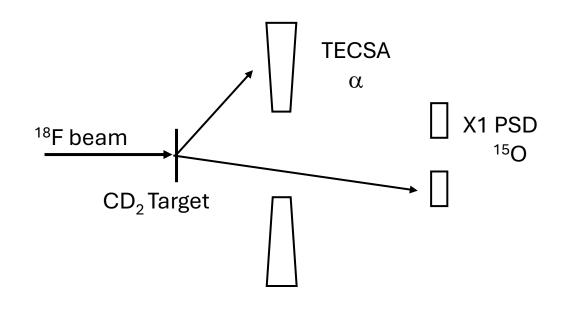
CD₂ TARGET 150-200 µg/cm²

ASTRHO $\rightarrow \alpha$

n. 8 bidimensional position-sensitive detectors (BPSD, $45 \times 45 \text{ mm}^2$, $500 \mu m$ thick

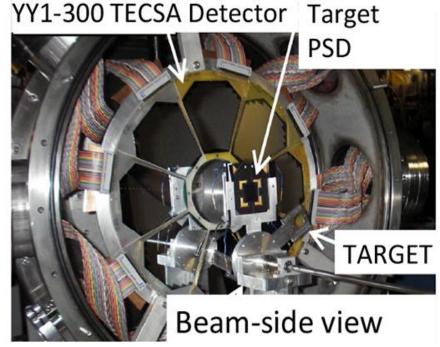
DSSSD → 150

n. 2 Double Sided Silicon Strip Detectors (16 strips x-y)


Trigger: total or, off-line multiplicity 2 fixed

	DSSSD	ASTRHO
Angular range	2° - 11°	11° - 31°
Angular resolution	0.5° (tracking+ detectors)	0.5° (tracking+ detectors)
Energy resolution	0.8%	0.8%

THM study of $^{18}F(p,\alpha)^{15}O$ @ TAMU


CD₂ TARGET 400-800 μg/cm²

TECSA $\rightarrow \alpha$

n. 8 16 arch strip YY1-300 um B.T. Roeder et al. NIM A634, 71 (2011)

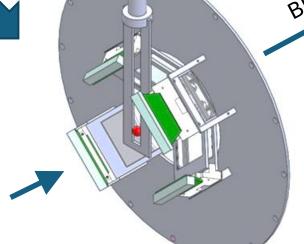
$X1-PSD \rightarrow ^{15}O$

n. 2 16 strips each, position sensitive

Trigger: TECSA X1-PSD

coincidence

	X1-PSD	TECSA
Angular range	3° - 12°	15° - 40°
Angular resolution	0.7°	1.1°
Energy resolution	0.8%	0.8%


THM study of ²⁶Al(n,p)²⁶Mg @ TRIUMF

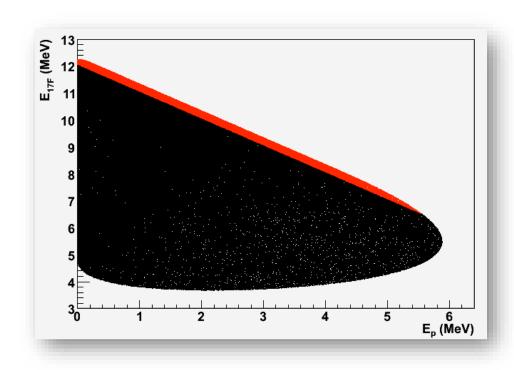
8 telescopes arranged into two groups:

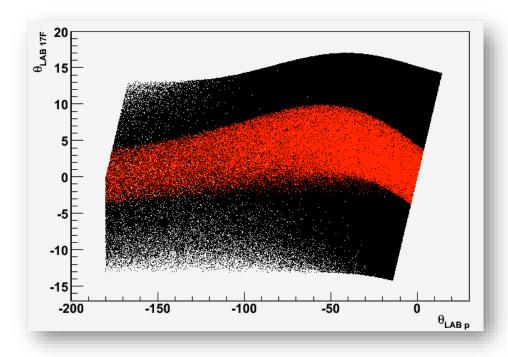
- group **A** 60 mm away from the target, made up of two couples of telescopes, set in the vertical (A1) and in the horizontal (A2) planes. Each telescope will be composed of one DSSSD 1000 µm thick (32x32 strips, 51.2x51.2 mm²) and one pad detector 1500 µm thick

BEAMDIRECTION

A1 group will cover the angular ranges 9.4°-55.6°, while those in A2 will cover 32.9°-79.1°

the 2°-6.1° angular range, while B2 telescopes will cover the 2.9°-7.1° interval


B1 detectors will cover


- The second group of detectors (named **B)** will be placed at about 700 mm from the target position. Two couples of telescopes, set in the vertical (B1) and in the horizontal (**B2**) planes, each composed of a 20 μm SSSSD and a 1000 µm DSSSD

THM study of $^{14}O(\alpha,p)^{17}F$ @ FRIB

Requirements:

- Large area coverage
- Low detection threshold
- No PSD or DE techniques are viable for particle ID
- High energy and angular resolution for kinematical particle ID

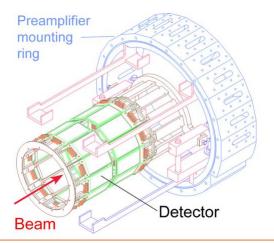
THM study of $^{14}O(\alpha,p)^{17}F$ @ FRIB

Nuclear Instruments and Methods in Physics Research A 711 (2013) 160-165

Contents lists available at SciVerse ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima



Construction and commissioning of the SuperORRUBA detector

D.W. Bardayan a.*, S. Ahn b, J.C. Blackmon c, A.J. Burkhart d, K.Y. Chae a.e, J.A. Cizewski f, J. Elson g, S. Hardy h, R.L. Kozub d, L. Linhardt c, B. Manning f, M. Matoš c, S.D. Pain a, L.G. Sobotka g, M.S. Smith a

Technical detail

SuperORRUBA consists of two rings of silicon detectors designed to operate with one ring forward of 90° in the laboratory and the second backward of 90°. The silicon detectors are based on double-sided non-resistive silicon strip technology. The detectors cover an area, 7.5 cm by 4 cm, with the front sides divided into 64 1.2 mm by 4 cm strips, and the back sides segmented into 4 7.5 cm by 1 cm strips. The 1.2-mm strips are oriented perpendicular to the beam direction, while the 1-cm strips were parallel. The angular resolution in polar angle is less than 1-deg. The azimuthal angular resolution is less important, and thus larger strip pitches are used on the backside.

Nuclear Inst. and Methods in Physics Research, A 870 (2017) 1-11

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

ANASEN: The array for nuclear astrophysics and structure with exotic nuclei

E. Koshchiy ^{a,c,*}, J.C. Blackmon ^b, G.V. Rogachev ^{a,c}, I. Wiedenhöver ^c, L. Baby ^c, P. Barber ^c, D.W. Bardayan ^d, J. Belarge ^c, D. Caussyn ^c, E.D. Johnson ^c, K. Kemper ^c, A.N. Kuchera ^c, L.E. Linhardt ^b, K.T. Macon ^b, M. Matoš ^d, B.S. Rasco ^b, D. Santiago-Gonzalez ^{b,c}

Technical detail

ANASEN uses a 43-cm long position-sensitive proportional counter surrounding the beam axis to enable an active-target mode. Silicon-strip detectors surround the proportional counter in a barrel configuration with 3 rings of 12 rectangular Super X3 and annular QQQ3 detectors at forward angles form the cap of the barrel. All detectors in the array are backed by trapezoidal-shaped 2-cm thick CsI(TI) crystals.

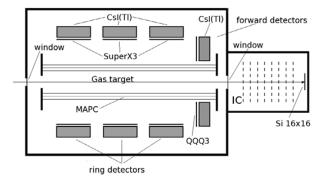
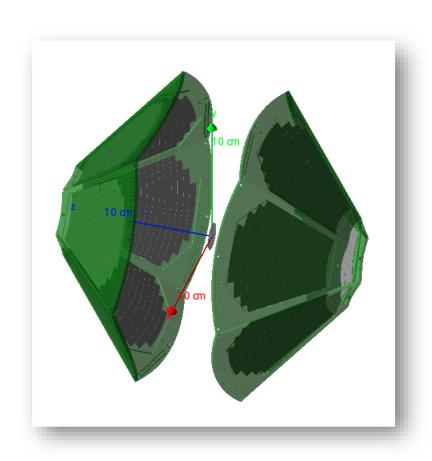
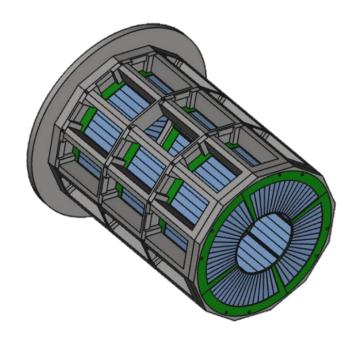



Fig. 1. Schematic cross-section view of ANASEN.


Large High-resolution Array of Silicon for Astrophysics

Characteristics:

- Wide angular range coverage
- Low energy threshold
- Compactness
- High energy resolution
- Angular resolution allows for PID



Extreme Light Infrastructure Silicon Strip Array

Barrel configuration:

- √ 3 rings of 12 position sensitive X3 silicon-strip detectors by Micron
- ✓ 2 end cap detectors made up of 4
 QQQ3 DSSSD by Micron
- √ >550 channels readout with standard/digital electronics

Characteristics:

- Wide angular range coverage
- Low energy threshold
- Compactness
- Angular resolution better than 0.5 cm
- Energy resolution better than 1%
- Kinematical identification of outgoing particle

Perfectly suited for nuclear astrophysical studies!!

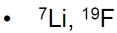
G. L. Guardo et al. EPJ Web of Conf. 165, 01026 (2017)

Extreme Light Infrastructure Silicon Strip Array

ELISSA

- 12 Micron X3 PSD
- 1000 µm thick
- 96 channels of electronics
- 0.3% energy resolution
- 0.3 mm position resolution
- 35∘ to 60∘ (lab frame) angular coverage
- Analog and digital
- Mesytec mvme and DELILA

- 3 to 15 MeV


Photo-diode

- 32° with respect to beam direction
- normalization
- target degradation

Target

- thin Au, C, CH₂
- 90 with respect to beam direction.

Asfin Data Acquisition

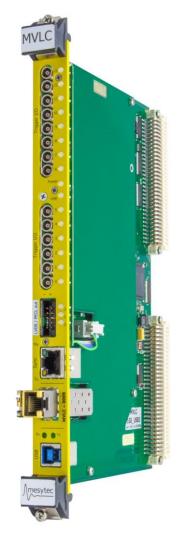
The ASFIN DAQ is based on a **commercial solution** provided by MESITEC. It involves a single VME controller (MVLC) and provides an easy-to-setup, easy-to-use, cross-platform data acquisition system with basic data visualization and analysis capabilities.

- High-rate, low-latency VME module readout
- With the MVLC VME Controller:
 - 127 MB/s sustained transfer rate via USB3
 - Full utilisation of GBit Ethernet bandwidth allowing up to 105 MB/s
- Multiple event triggers are possible (NIM, IRQ, periodic readout)
- Multiple modules can be read out per trigger: ADC, QDC, TDC, digitizers
- Flexible VME module setup using configuration scripts
- Live histogramming of readout data (1D and 2D)
- Graphical analysis UI
- Replays of recorded listfile data
- Rate Monitoring

The characteristics of the DAQ are:

- Compactness
- High portability
- High rate
- Possibility to manage a large number of electronics channels

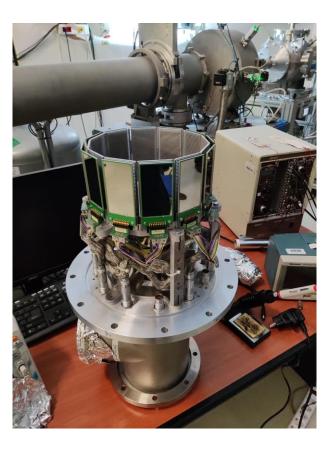
Asfin Data Acquisition

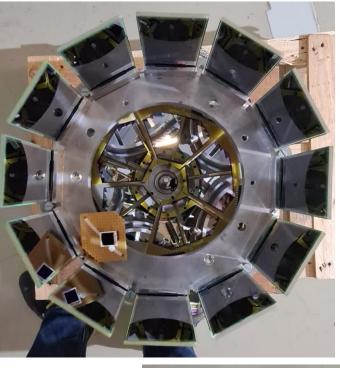


The electronics is based on charge preamplifiers (MPR32) and 32-channel digitizers MDPP-32) which are fast high resolution time an amplitude digitizers. It is internally realized as a 32-channel adjustable low noise **amplifier** and a variable **differentiation stage**, followed by filters and 80 MHz sampling **ADCs**.

The logic of the acquisition, the trigger and the dead time with can be managed with the MVLC controller.

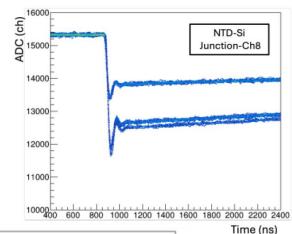
This make the DAQ system very **compact** and **highly portable** since a very small numner of electronics modules is needed.

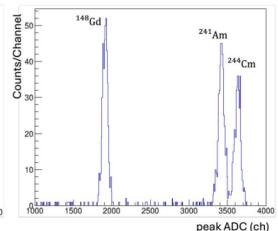


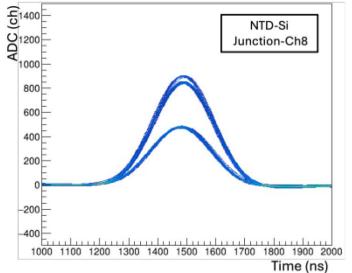

Direct Experimentswith ELISSA&LHASA

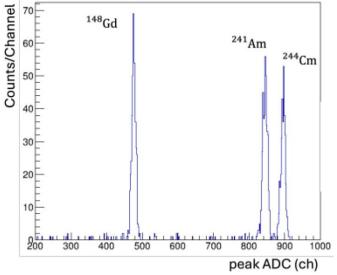


The ¹⁹F(p,α) reaction

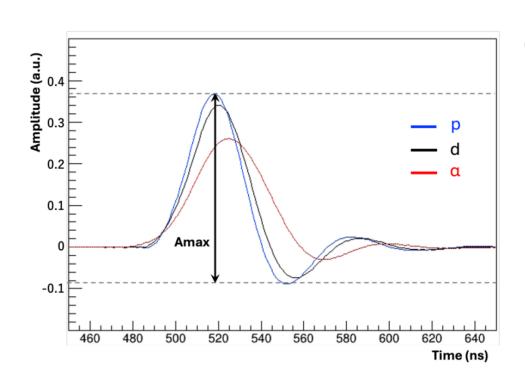




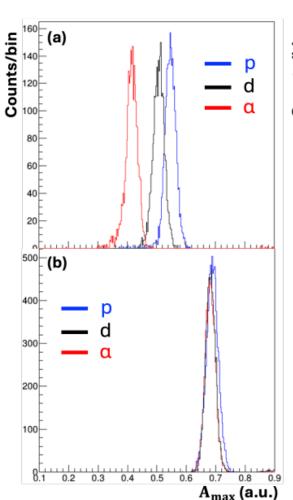

Particle Identification with Pulse Shape Analysis

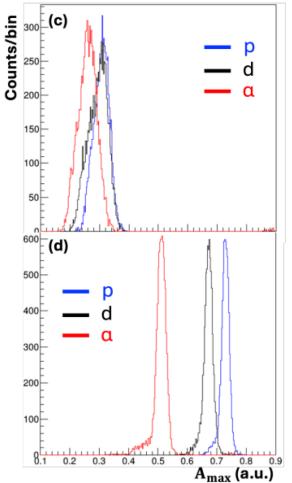


	Incident side	Si type	Preamplifier
(a)	Rear	NTD-Si	A1442B
(b)	Front	NTD-Si	A1442B
(c)	Rear	Normal-Si	A1442B
(d)	Rear	NTD-Si	MPR-16

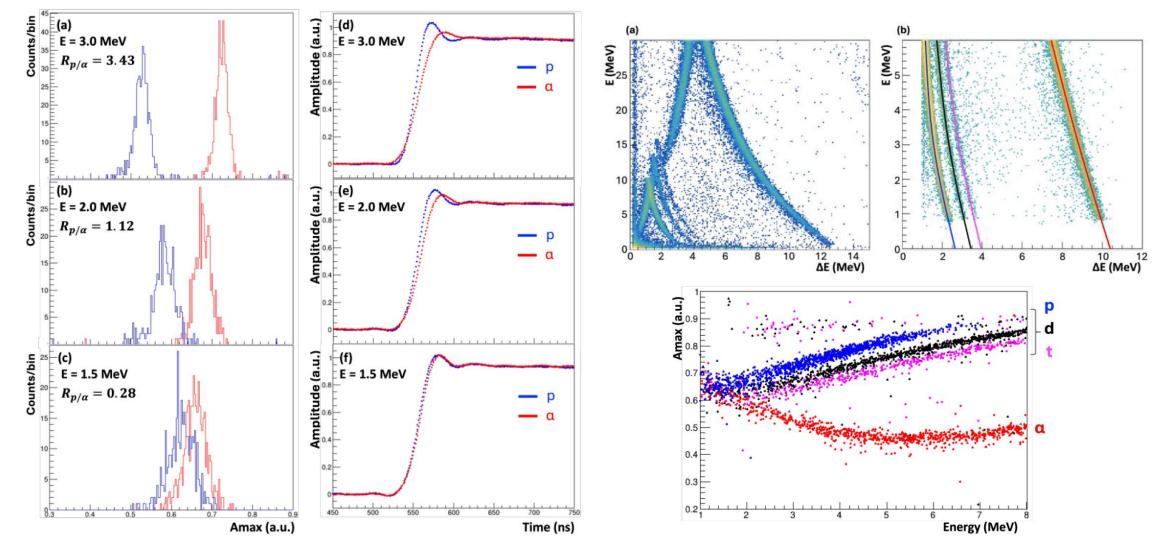

$$y_i = \frac{\left(\sum_{k=0}^{L-1} x_{i+k}\right) - \left(\sum_{k=-L}^{-1} x_{i+k}\right)}{L}$$

K. Sakanashi




Particle Identification with Pulse Shape Analysis

K. Sakanashi



Particle Identification with Pulse Shape Analysis

Conclusions

- ❖ The availability of radioactive ion beams at facilities like FRIB is a unique opportunity for nuclear astrophysics, as a number of reaction of primary astrophysical importance can be measured for the first time
- **❖** To catch these experimental opportunities, the Asfin group is developing new arrays with peculiar characteristics: high-resolution, low-threshould, high-efficiency, compactness...
- ❖ Preliminary results on methods and arrays make us confident for the new perspectives and open the way for new experimental campaigns

Thank you for your aftention

Collaborations

Cyclotron Institute, Texas A&M, US: R. Tribble, V. Goldber Texas A&M

Commerce US: C. Bertulani

Florida State University US: I. Wiedenhofer

Notre Dame University US: M. Wiescher, M. Couder

C.N.S. Riken, Wako, Japan: S. Kubono, H. Yamaguchi, S. Hayaka University of

Taskent: B. Irgaziev, R. Yarmukhanmedov

CIAE, Beijing, China: S. Zhou, C. Li, Q. Wen

Nuclear Physics Institute, ASCR, Rez, Czech Rep.: V. Kroha, V. Burjan, J. Mrazek

Nipne IFIN Bucharest: L. Trache

ELI-NP Bucharest: C. Matei, D. Balabanski Atomki,

Debrecen, Hungary: G. Kiss

CSNSM, Orsay, France: A. Coc, F. Hammache, N. De Sereville

University of Catalunya: J. Jose

Rudjer Boskovic Institute Zagreb Croatia: N. Soic, M. Milin

GIST, Gwangju, South Korea: W. Bang

@Catania: A. Bonasera, S. Cherubini, G. D'Agata, A. Di Pietro, P. Figuera, S. Gammino, G.L. Guardo, M. Gulino, M. La Cognata, L. Lamia, D. Lattuada, A.A. Oliva, R.G. Pizzone, G.G. Rapisarda, S. Romano, D. Santonocito, M.L. Sergi, R. Spartà, C. Spitaleri, A. Tumino

@Napoli M. La Commara

@Padova M. Mazzocco, S.

Pigliapoco, A. Togni

@Perugia S. Palmerini, M. Limongi, A.

Chieffi, M.C. Nucci