MANTRA - BES III

Chandrasekhar Akondi P.I.Dr.Garzia

University of Ferrara, Ferrara, IT

Università degli Studi di Ferrara

Outline

- 1 Previous meeting : University of Torino
- **(2)** \bar{n} particle gun MC simulation
- (3) γ particle gun MC simulation
- 4 $J\psi \rightarrow p\bar{n}\pi^-$ MC simulation
- 5 Future work

Previous meeting : University of Torino

- Use an \bar{n} gun to study the response of the EM calorimeter and TOF response for different momenta: 0.5, 0.75, 1.0 GeV/c.
- Check all available variable information such as shower energy, shape, position, center, time, lateral momenta for EMC and TOF.
- Compare these for MC with real data.
- Perform the same analysis using γ gun and compare the results with \bar{n} simulation.
- \bar{n} are slower than γ delays in TOF/EMC might be helpful in distinguishing.
- Finally, compare MC and real data for J/psi events that decay into $p\bar{n}\pi^-$, and evaluate how the MC matches the actual real data.

\bar{n} particle gun MC simulation

Simulated 3000 \bar{n} s at momenta of 0.25, 0.5, 1.0, 1.5, and 2.0 GeV/c.

Above plots are for \bar{n} at the momentum 0.5 GeV/c.

\bar{n} particle gun MC simulation (cont)

Above plots are for \bar{n} at the momentum 0.5 GeV/c.

 \bar{n} particle gun MC simulation (cont)

 E_{shower} comparison for p values of 0.25, 0.5, 1.0, 1.5, and 2.0 GeV/c.

p = 2.0 GeV/c. cluster energy is flat and for lower p values energies are centered around a value (too early to say).

γ particle gun MC simulation

 γ particle gun MC simulation (cont)

 E_{shower} comparison for p values of 0.25, 0.5, 1.0, 1.5, and 2.0 GeV/c.

A clear distinction is there in the shower energies.

$J/\psi \rightarrow p \bar{n} \pi^-$ MC simulation

• Future Work:

- Look available variables for MC and Real data for momentum and with a spread.
- Compare the variables for different incident *p* and different particles.
- Look the same variables distribution in J/ψ decay into $p\bar{n}\pi^-$.
- Estimated time frame : Some where by the end of Feb 2025 or March first Week

Acknowledges the support of several funding agencies and computing facilities: