

$VBF \xrightarrow{\mathbf{F}} c\overline{c} \text{ search at Run3}$

CMS Bari meeting

Angela Zaza

20/12/2024

Search for $H \rightarrow c\overline{c}$ at CMS

128 129 130 M_H [GeV]

- Couplings to weak bosons and third generation fermions measured with 10-20% precision → compatible with the SM
- Couplings to second generation quarks (Hcc) extremely challenging: small rate and overwhelming QCD background

VH mechanism investigated at CMS with Run-2 data upper limit: $\frac{\sigma(VH) \cdot B(H \to c\bar{c})}{\sigma(VH)_{SM} \cdot B(H \to c\bar{c})_{SM}} < 14$

Higgs decay modes

 $B(H \rightarrow c\bar{c}) \sim 3\%$

20 121 122 123 124 125 126 127 128 129 1

Ratio

Branching I

 10^{-2}

10

bb

Search for $H \rightarrow c\overline{c}$ at CMS

PhD Program:

- Investigate VBF production mode for the first time
 - Higher cross section (~7% of the total XS)
 - Overwhelming QCD background
 - q' and q'" jets produced forward and backward, approaching the beam-pipe
- Perform the search using Run-3 2023 data
 - Develop a trigger specific for VBF $H \rightarrow c\bar{c}$
 - Explore Neural Network approaches for signal to background discrimination
 - Estimate upper limit on the signal strength

Analysis strategy

HLT path for VBF $H \rightarrow c\bar{c}$

HLT QuadPFJet100 88 70 30 PNetTag1CvsAll0p5 VBF3Tight

Trigger acceptance: 1.9%

Offline pre-selection

- Trigger HLT_QuadPFJet100_88_70_30_PNet1CvsAll0p5_VBF3Tight_v
- Electron/Muon veto
- MET pT < 170 GeV
- 4 leading p_T jets with pt>105, 90, 75, 35 GeV and $\eta < 4.7$ matching with HLT objects
- 2 jets with highest CvsL score and η < 2.4: c-jets
- Other 2 jets: VBF-jets
- Jet c1: CvsAll > 0.51, CvsL > 0.16, CvsB > 0.304
- Jet c2: CvsL > 0.054, CvsB > 0.182
- VBF jets: Mass > 500 GeV, $\Delta \eta$ > 3.8

Gen weights, PU reweigthing, trigger SFs, JECs, jet veto maps applied

2023 C

K=1.8 applied to QCD

2023 C

K=1.8 applied to QCD

K=1.8 applied to QCD

BDT model for $H \rightarrow c\bar{c}$ vs QCD discriminator

BDTG (Gradient Boosted Decision Tree) → Signal/QCD background discrimination

- Signal: VBF $H \rightarrow c\bar{c}$ ~60k events
- QCD background: data in sidebands (H_{mass}<80 GeV and H_{mass} >200 GeV)

BDT features

Deta_qq

- m_{qq}: invaroant mass of the two VBF jets.
- |Δη_{qq}|: absolute pseudorapidity difference of the two VBF jets.
- Δφ_{aa}: absolute azimuthal angle difference of the two VBF jets.

- α_{qq} : Min(α_{q1}, α_{q2}), where $\alpha_{q1/q2}$ is the angle between lead/sublead VBF-jet and the boosted system of the VBF jet pair.
- QvsG ParticleNet score
- c-tagging: CvsL and CvsB Particle Net scores of the two c-jets.
- p^{q1}_z + p^{q2}_z + p^{c1}_z + p^{c2}_z: total longitudinal momentum of the selected four jets.
- $\sum \vec{p}_T^i / \sum p_T^i$, where i=q1, q2, c1, c2: Normalized sum of the transverse momentum.
- Angular distance: ΔR between the Higgs boson candidate and the leading and subleading VBF jets.
- Δ(φ_{qq} − φ_{cc}): difference of the azimuthal angle of the VBF jet pair system and the c-jet pair system (H candidate).
- The jet multiplicity in the region of |η|<2.4 above 20 GeV.
- Sum of the energy and the transverse momentum of all the jets above $p_T > 30$ GeV and $|\eta| < 2.4$ excluding the selected four jets.

$H \rightarrow c \overline{c} vs QCD discriminator$

CAT2

0.95 - 1

A. Zaza

13

Continuum background modelling

>The continuum background shape is extracted from an exponential fit of the mass spectrum in the sideband: [80,104] – [146,200] GeV

 \triangleright Z boson peak visible

QCD yield: 3119.7

Era C+D

14

MC shapes (Hcc, Hbb, Zqq, Wqq)

			preliminary
No on	threshold the BDT s	s applied core	
Yi	ields in ead (histo in	ch catego tegrals)	ry
process	CAT0	CAT1	CAT2
VBFHcc	2.63	2.13	2.01
ggHcc	0.14	0.09	0.06
VBFHbb	1.39	0.98	0.51
ggHbb	0.06	0	0
Zjets	92.02	45.80	24.71
Wjets	241.06	52.89	24.21

JES and JER uncertainties impacts on the parameters of the fit \rightarrow treated as shape uncertainties

Systematic uncertainties for combine

17

- BR H→cc
- Lumi
- Trigger SFs
- JES and JER
- QCD scale ggH
- QCD scale qqH
- Pdf ggH
- Pdf qqH
- VBF dipole recoil
- α_s ggH
- *α_s* qqH
- QCD Fit Bias —
- c-tag SF (10%)

Simplistic approach implemented up to now:

- Fit the QCD background with an alternative function: exp*pol1 fit (instead of exp*pol0)
 → limit changes within 10%
- conservative 20% uncertainties assumed on the signal (spurious signal method)

bias_SingleC0_2023	param	0	0.2			
bias_SingleC1_2023	param	0	0.2			
bias_SingleC2_2023	param	0	0.2			
bias_SingleC0_2023	rateParam	Singl	.eC0_2023	ggH_hcc_bias	0[-1,1]
bias_SingleC1_2023	rateParam	Singl	.eC1_2023	ggH_hcc_bias	0[-1,1]
bias_SingleC2_2023	rateParam	Singl	.eC2_2023	ggH_hcc_bias	0[-1,1]
bias_SingleC0_2023	rateParam	Singl	.eC0_2023	qqH_hcc_bias	0[-1,1]
bias_SingleC1_2023	rateParam	Singl	.eC1_2023	qqH_hcc_bias	0[-1,1]
bias_SingleC2_2023	rateParam	Singl	.eC2_2023	qqH_hcc_bias	0[-1,1]

• To be fine tuned by generating toys with nominal function and fit with alternative function

Expected upper limit

- UL extracted using parametric shape of signal and background
- QCD yield extracted from data in sidebands with a simultaneous fit with W and Z peaks
- Shape tamplate of samples VBFHcc/bb, ggHcc/bb, Zjets and Wjets estimated before categorization, than the model is applied to each category

combine -M AsymptoticLimits --run blind Datacards_VBFHCC.root

$$\mu = \frac{XS(VBF) \cdot BR(H \to c\bar{c})}{XS(VBF)^{SM} \cdot BR(H \to c\bar{c})^{SM}} \leq 30.87 \quad @95\% \, CL$$

Extrapolation to Run-2 Luminosity: UL~14 \rightarrow comparable to Run-2 VH expected limit

Thank you

angela.zaza@cern.ch

angela.zaza@cern.ch

Continuum background modelling

▷The continuum background shape is extracted from an exponential fit of the mass spectrum in the sideband: [80,104] - [146,200] GeV

Z peak: red, W peak: violet

Era C+D

Datasets

Era	Dataset	GT
2023 C 17.79 fb ⁻¹	/JetMET0/Run2023C-PromptReco-v1/MINIAOD /JetMET0/Run2023C-PromptReco-v2/MINIAOD /JetMET0/Run2023C-PromptReco-v3/MINIAOD /JetMET0/Run2023C-PromptReco-v4/MINIAOD /JetMET1/Run2023C-PromptReco-v2/MINIAOD /JetMET1/Run2023C-PromptReco-v3/MINIAOD /JetMET1/Run2023C-PromptReco-v4/MINIAOD	130X_dataRun3_Prompt_v3
2023D 9.5 fb ⁻¹	/ParkingVBF0/Run2023D-PromptReco-v1/MINIAOD /ParkingVBF0/Run2023D-PromptReco-v2/MINIAOD /ParkingVBF1/Run2023D-PromptReco-v2/MINIAOD /ParkingVBF1/Run2023D-PromptReco-v2/MINIAOD /ParkingVBF2/Run2023D-PromptReco-v2/MINIAOD /ParkingVBF3/Run2023D-PromptReco-v2/MINIAOD /ParkingVBF3/Run2023D-PromptReco-v2/MINIAOD /ParkingVBF3/Run2023D-PromptReco-v2/MINIAOD /ParkingVBF3/Run2023D-PromptReco-v2/MINIAOD /ParkingVBF4/Run2023D-PromptReco-v2/MINIAOD /ParkingVBF4/Run2023D-PromptReco-v2/MINIAOD /ParkingVBF5/Run2023D-PromptReco-v2/MINIAOD /ParkingVBF5/Run2023D-PromptReco-v2/MINIAOD /ParkingVBF5/Run2023D-PromptReco-v2/MINIAOD /ParkingVBF6/Run2023D-PromptReco-v2/MINIAOD /ParkingVBF6/Run2023D-PromptReco-v2/MINIAOD /ParkingVBF6/Run2023D-PromptReco-v2/MINIAOD /ParkingVBF6/Run2023D-PromptReco-v2/MINIAOD /ParkingVBF6/Run2023D-PromptReco-v2/MINIAOD	130X_dataRun3_Prompt_v4

MC GT= 130X mcRun3 2023 realistic v14 /VBFHto2C M-125 TuneCP5 13p6TeV powheg-pythia8/Run3Summer23MiniAODv4-130X mcRun3 2023 realistic v14-v3/MINIAODSIM /GluGluHto2C M-125 TuneCP5 13p6TeV powheg-minlo-pythia8/Run3Summer23MiniAODv4-130X mcRun3 2023 realistic v14-v2/MINIAODSIM /VBFHto2B M-125 TuneCP5 13p6TeV powheg-pythia8/Run3Summer23MiniAODy4-130X mcRun3 2023 realistic v14-v3/MINIAODSIM /GluGluHto2B M-125 TuneCP5 13p6TeV powheg-minlo-pythia8/Run3Summer23MiniAODv4-130X mcRun3 2023 realistic v14-v2/MINIAODSIM /QCD-4Jets HT-* TuneCP5 13p6TeV madgraphMLM-pythia8/Run3Summer23MiniAODv4-130X mcRun3 2023 realistic v14-v2/MINIAODSIM /TTto2L2Nu TuneCP5 13p6TeV powheg-pythia8/Run3Summer23MiniAODv4-130X mcRun3 2023 realistic v14-v2/MINIAODSIM /TTto4Q TuneCP5 13p6TeV powheq-pythia8/Run3Summer23MiniAODv4-130X mcRun3 2023 realistic v14-v2/MINIAODSIM /TTtoLNu2Q TuneCP5 13p6TeV powheq-pythia8/Run3Summer23MiniAODv4-130X mcRun3 2023 realistic v14-v2/MINIAODSIM /TbarWplusto4Q TuneCP5 13p6TeV powheq-pythia8/Run3Summer23MiniAODv4-130X mcRun3 2023 realistic v15-v2/MINIAODSIM /TWminusto4Q TuneCP5 13p6TeV powhed-pythia8/Run3Summer23MiniAODy4-130X mcRun3 2023 realistic v14-v2/MINIAODSIM /TbarWplustoLNu2Q TuneCP5 13p6TeV powheq-pythia8/Run3Summer23MiniAODv4-130X mcRun3 2023 realistic v15-v2/MINIAODSIM /TWminustoLNu2Q TuneCP5 13p6TeV powheq-pythia8/Run3Summer23MiniAODy4-130X mcRun3 2023 realistic v14-v2/MINIAODSIM /Zto2Q-2Jets PTQQ-* 2J TuneCP5 13p6TeV amcatnloFXFX-pythia8/Run3Summer23MiniAODv4-130X mcRun3 2023 realistic v14-v3/MINIAODSIM /VBFZto2O TuneCP5 13p6TeV madgraph-pythia8/Run3Summer23MiniAODy4-130X mcRun3 2023 realistic y14-y3/MINIAODSIM /Wto2Q-2Jets PTQQ-100to200 2J TuneCP5 13p6TeV amcatnloFXFX-pythia8/Run3Summer23MiniAODv4-130X mcRun3 2023 realistic v14v3/MINIAODSIM /VBFWto2Q TuneCP5 13p6TeV madgraph-pythia8/Run3Summer23MiniAODv4-130X mcRun3 2023 realistic v14-v3/MINIAODSIM

Summary and next steps

- Started writing the AN (PhD thesis as basis)
- Plan to get approval for Summer25 conferences (e.g. EPS in July)

To do:

- Bias study with combine
- Apply PNet jet energy regression
- Apply c-tagging correction (not available yet)
- BDT discriminant trained with TMVA \rightarrow plan to move to XGBoost

Available on the CMS information server	CMS AN-24-243
CMS Draft Analy	/sis Note
The content of this note is intended for CMS intended	ernal use and distribution only
	2024/12/13 Archive Hash: untracked Archive Date: 2024/12/13
Search for VBF $H \rightarrow c\bar{c}$ with	h Run3 2023 data
A. Zaza, R. Venditti, S. Mukherjee, A. R A. Colaleo, L. Longo, A. Pellecchia, F CERN	aspereza, A. Tumasyan, : Simone, D. Troiano
Abstract	
In this note, a search for the Higgs boson decay in the Vector Boson Fusion production channel is pr on proton-proton collision data 4 \(\sigma = 13\) S TeV period, which correspond to an integrated lumino the signal strength is set at 95% CL.	1 a charm quark-antiquark pair in essented. The study is conducted follceted during the 2023 running sity of 27 fb ⁻¹ . An upper limit on
This box is only visible in draft mode. Please make st PDFAuthor: A. Zaza, R. Venditti, S. Mukherjee,	ure the values below make sense. A. Raspereza, A. Tumasyan
PDFTitle: Search for VBF H rightarrow charc	with Run3 2023 data
PDFSubject: CMS PDFKeywords: CMS, your topics	

A. Zaza

Plans for 2024 analysis

- ► Use the VBF parking triggers no selection applied on the jet flavour → possibility to study simultaneously Hcc/bb
- Explore new approaches:
 - GNN instead of the BDT for event cathegorization
 - new PAIReD jet tagger

New PhD student: Lisa Generoso

Trigger p_T scale factors

The efficiency of each of the first three highest p_{T} thresholds is evaluated with a tag and probe method:

- Trigger: single AK4 jet with $p_T > 60$ (80) GeV
- Events with back-to-back di-jet topology selected
- Tag: leading offline AK4 jet with $p_T > 110$ (130) GeV matched to an HLT object
- Probe: subleading offline AK4 jet
- For each p_{T} threshold (*thr*), efficiency is evaluated as

Efficiency = $\frac{p_T probe, matched to HLT jet with p_T > thr}{p_T > thr}$ p_{T} probe

Efficiency

1.2

0.6

0.2

Data/MC

CMS

Trigger p_T scale factors

- <u>Top panel</u>: Efficiency as a function of the p_T of the probe jet evaluated on Data (blue) and MC QCD (red) in four different intervals of η for the first p_T threshold: 100 GeV
- <u>Bottom panel</u>: ratio between data and MC efficiencies

Analogous plots for the other p_T thresholds can be found in the backup slides

Validation plots for $HLT p_T SFs$

jet 2

iet 4

Before SF

jet 2

p, (GeV)

Events selected with

Control HLT path: equal to the signal path, but does not include VBF and c-tagging sequences A. Zaza

28 JEC applied

Validation plots for $HLT p_T SFs$

After SF

jet 3

After SF

Events selected with

A. Zaza Control HLT path: equal to the signal path, but does not include VBF and c-tagging sequences

JEC applied 29

Trigger c-tagging scale factors

The efficiency on the Pnet CvsAll trigger selection is evaluated by using the control path (no c-tag and VBF sequences)

The following event selection is applied:

- at least 4 offline jets with p_T > 105, 90, 75, 35 GeV
- first three p_{T} leading offline jets matching with a HLT object with p_{T} > 100, 88, 70 GeV
- Among the 4 p_T -leading jets:
 - o 2 jets with highest CvsAll score identified as c-jets
 - other 2 jets identified as VBF jets (qq), with $\Delta \eta$ (qq) > 3.8 Mass(qq) > 500 GeV

Efficiency = PNet CvsAll offline score of the most c-tagged jet, HLT:signal+control PNet CvsAll offline score of the most c-tagged jet, HLT:control

Final SF =
$$SF_{pT} \times SF_{VBF} \times SF_{ctag}$$

Taza

Suboptimal Data/MC

agreement

