The ECHO code for astrophysical relativistic plasmas: GPU acceleration, turbulence, and Pulsar Wind Nebulae

Luca Del Zanna

Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze INAF - Osservatorio Astrofisico di Arcetri INFN - Sezione di Firenze ICSC - Spoke 2: Fundamental Research & Space Economy

luca.delzanna@unifi.it

・ロト ・ 同ト ・ ヨト ・ ヨト

HPC motivation

- Digitalization and HPC encouraged and financed worldwide
- Pre-exascale era of supercomputing, Leonardo (top 10) at CINECA in Italy
- Porting of codes to GPUs necessary
- Turbulence studies require large resources

Astrophysical motivation

- Synchrotron polarization observed in many high-energy astrophysical sources, degree of turbulence can be estimated
- Pulsar Wind Nebulae (PWNe) are the best laboratories for relativistic MHD dynamics, turbulence and non-thermal emission

Relativistic plasmas in High Energy Astrophysics

Relativistic plasmas are ubiquitous in High Energy Astrophysics sources, such as:

- AGN jets
- Accretion tori around black holes
- Pulsars and magnetars
- Pulsar Wind Nebulae

The magnetic field is always a crucial ingredient, often providing an ordered structure to the object, a source of energy and of particle acceleration (reconnection), and leading to characteristic non-thermal emission (synchrotron, often highly linearly polarized).

Relativistic MHD: physical conditions

Astrophysical plasmas are often described by the single-fluid closure of magneto-hydrodynamics (MHD), especially if global large scales are treated.

The use of (general) relativistic MHD is necessary to treat extreme conditions, like:

• Fast bulk flow velocities:

$$\gamma \gg \mathbf{1} \Rightarrow \mathbf{v} \lesssim \mathbf{c}$$

• Fast kinetic velocities:

$$p \gtrsim
ho c^2 \Rightarrow c_s \lesssim c$$

• Strong magnetic fields:

$$B^2\gtrsim
ho c^2\Rightarrow c_a\lesssim c$$

• Strong gravity in the vicinity of compact objets (GRMHD in this case):

$$r\gtrsim 2GM/c^2 \Rightarrow v_{ extsf{e}}\lesssim c$$

The (ideal) relativistic MHD energy-momentum tensor under these assumptions is:

$$T_{\mu
u} = (
ho h + b^2) u_\mu u_
u - b_\mu b_
u + (
ho + b^2/2) g_{\mu
u}$$

where *h* is the specific relativistic enthalpy and b^{μ} the magnetic field in the fluid frame (while $e^{\mu} = 0$). The system of ideal relativistic MHD equations in covariant form is then:

$$abla_{\mu}(
ho u^{\mu})=0, \qquad
abla_{\mu}T^{\mu
u}=0, \qquad
abla_{\mu}(u^{\mu}b^{\nu}-b^{\mu}u^{\nu})=0$$

Relativistic MHD: flat metric equations

Given the extreme conditions, shocks and nonlinearities are often encountered, so a numerical approach is needed, especially in multi-D problems.

Modern GRMHD codes rely on the so-called 3 + 1 split of the metric and quantities: the curvature of metric (i.e. gravity) enters as modified quantities and extra source terms.

In special relativistic MHD gravity is neglected. The equations in flat metric are:

$$\begin{aligned} \partial_t D + \nabla \cdot (\rho \Gamma \mathbf{v}) &= 0, \\ \partial_t \mathbf{S} + \nabla \cdot (\rho h \Gamma^2 \mathbf{v} \mathbf{v} - \mathbf{E}\mathbf{E} - \mathbf{B}\mathbf{B} + (\rho + \frac{1}{2}(\mathbf{E}^2 + \mathbf{B}^2))\mathcal{I}) &= 0, \\ \partial_t U + \nabla \cdot (\rho h \Gamma^2 \mathbf{v} + \mathbf{E} \times \mathbf{B}) &= 0, \\ \partial_t \mathbf{B} + \nabla \times \mathbf{E} &= 0, \end{aligned}$$

where Γ is the flow Lorentz factor, and the conserved quantities are

$$\begin{split} D = &\rho \Gamma, \\ \boldsymbol{S} = &\rho h \Gamma^2 \boldsymbol{v} + \boldsymbol{E} \times \boldsymbol{B}, \\ U = &\rho h \Gamma^2 - \rho + \frac{1}{2} (\boldsymbol{E}^2 + \boldsymbol{B}^2), \end{split}$$

with $\boldsymbol{E} = -\boldsymbol{v} \times \boldsymbol{B}$ (ideal MHD) and the addition of the solenoidal constraint $\boldsymbol{\nabla} \cdot \boldsymbol{B} = 0$.

Relativistic MHD turbulence is often studied in a local parcel of plasma, modeled as a (periodical) numerical box, where the above equations apply.

The ECHO code

The Eulerian Conservative High Order code is a *home-made* shock-capturing code for astrophysical MHD (classic and relativistic, ideal and resistive/dynamo), featuring:

- conservative approach (even in 3 + 1 GRMHD), finite-differences (much easier!)
- High Order reconstruction of point-value primitives, HLL fluxes, HO flux derivatives
- Upwind Constrained Transport for $\nabla \cdot \boldsymbol{B} = 0$ (UCT: Londrillo & Del Zanna 2000, 2004)

ECHO is not public, it is continuously developed and maintained at the University of Florence (Italy) since 2000, the main reference is: Del Zanna et al., A&A 473, 11, 2007.

Examples below are: Pulsar Wind Nebulae (left panel), accretion disks around black holes (central panel), and high-resolution decaying turbulence (right panel):

Discretization and parallelization strategy in ECHO

The MHD and GRMHD equations in ECHO are spatially discretized using point values at different locations, in semi-discrete form the evolution equations are:

$$\begin{aligned} \frac{d}{dt} [\mathcal{U}_i]_c &= -\sum_j \frac{1}{h_j} ([\hat{\mathcal{F}}_i^j]_{S_j^+} - [\hat{\mathcal{F}}_i^j]_{S_j^-}) + [\mathcal{S}_i]_c, \\ \frac{d}{dt} [\mathcal{B}^i]_{S_i^+} &= -\sum_{j,k} [ijk] \frac{1}{h_j} ([\hat{\mathcal{E}}_k]_{L_k^+} - [\hat{\mathcal{E}}_k]_{L_k^-}), \end{aligned}$$

where the first set are standard conservative equations (plus source terms) and the second one is the discretized form of the curl-like induction equation (UCT method).

Best strategy for parallelization and acceleration of ECHO: MPI domain decomposition. Then, for any task and for each time (sub-) iteration, 3D loops are needed for:

- **REC** step: reconstructed primitives and numerical fluxes \mathcal{F}_i^j (and \mathcal{E}_k for UCT)
- DER step: their higher-order corrections (HO, hatted quantities) and derivatives
- primitive variables from conservative ones
- the local and then global timestep
- the update in time according to the above equations (Runge-Kutta methods)

where the above loops must perform just local and atomic computations.

< 回 > < 三 > < 三 >

From CPUs to GPUs

High Performing Computing in the pre-exascale era is drifting from hardware based on (multicore) CPUs towards accelerated devices, GPUs, characterized by:

- lower clock rate, that is lower speed cores (BAD)
- less energy consuming units (GOOD)
- highly parallel cores (a lot of them!), strong multithreading (GOOD)

Problem: how to move data between CPUs and GPUs? How to accelerate loops?

Astrophysicists need to employ IT and software engineers to do that, then use either:

- new languages or extensions (CUDA)
- meta-programming libraries (SYCL, DPC++, KOKKOS)
- directives (OpenACC)

or ... nothing at all: Standard Language Parallelism, just a programmer's dream?

Modern Fortran and Standard Language Parallelism

Technical blogs and papers (e.g. J. Larkin, R. Caplan) suggest that Modern Fortran (DC loops), a few OpenACC directives, and the NVIDIA Unified Memory paradigm are enough for acceleration! It seemed the best option for the porting of ECHO on GPUs...

A first command assigns a single GPU for each MPI task:

!\$acc set device_num(mod(rank,ngpu))

Fortran do concurrent (DC) constructs must be used for the main 3D loops, e.g.:

do concurrent (iz=iz1:iz2,iy=iy1:iy2,ix=ix0:ix2) local(g,s)

where locality must be explicitly declared for any array (s) or structure (g) used inside.

Internal routines and functions run concurrently only if declared **pure** (no side effects):

```
pure function holib_rec(s) result(rec)
```

followed by the directive !\$acc routine to offload them on the accelerated device.

Finally, the NVIDIA Fortran compiler is invoked simply with

```
nvfortran -stdpar=gpu
```

or via the corresponding MPI command for parallel runs.

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ - 三 - の へ ()

Speed-up and strong scaling

NVIDIA-CINECA hackathon in June 2022, speed-up on a single node (Marconi100):

32 tasks on CPUs (×4 hyper-threading) vs 1 – 4 Volta V100 GPUs: ×16 speed-up

Strong scaling tests on the top-10 cluster Leonardo (Ampere A100, 4 GPUs per node):

Scaling improves by minimizing communications (MPI sendrecv directives), or if the number of cells per node is increased. Full details in:

Del Zanna et al., Fluids 9, 26, 2024

Efficiency and weak scaling

We measured efficiency and weak scaling using 200³ per CPU core vs 400³ per GPU (one GPU is equivalent to 8 cores) on Leonardo, up to 128 nodes and 3200³ cells:

Speed up of GPUs over CPU cores ranges from \times 15 for low resolution runs (REC 2nd order, RK2, no UCT) up to \times 38 for high resolution runs (REC 5th order, RK3, UCT).

All efficiency and scaling tests refer to a relativistic Alfvén wave propagating along the diagonal of a cubic periodic domain, evolving 9 variables.

Results are equivalent, if not better, than AthenaK (Kokkos) or Pluto (OpenACC).

Pulsar Wind Nebulae: overview

The Crab Nebula is powered by the pulsar spin-down luminosity (Pacini 1967!)

$$L_0 = -I\Omega \dot{\Omega} \approx 5 \times 10^{38} \ \text{erg/s}$$

in the form of a magnetized relativistic wind. Interaction with the slowly expanding SN ejecta creates the hot plasma bubble (Rees & Gunn 1974; Kennel & Coroniti 1984).

The Crab Nebula is young (1000 years), it is a PWN in free expansion in the cold SNR ejecta, before the reverberation phase.

Chandra X-rays data (2000): can we model the jet-torus structure and fine details?!?

Torus, jets, rings, wisps, knots, ...

Simulated synchrotron maps from 2D axisymmetric relativistic MHD computations (here from our ECHO code, celebrating 20 years): success!

Recipes, including boosting and polarization, in (Del Zanna et al. 2004, 2006; Volpi 2008). Motion of wisps also reproduced (Camus et al. 2009, Olmi et al. 2015).

New data: X-ray synchrotron polarization with IXPE

Further information on the nebular magnetic field comes from soft X-ray synchrotron polarization mesures, made possible by IXPE (Bucciantini et al. 2023).

The Crab Nebula clearly shows a toroidal field, confirming RMHD models.

The patchy distribution of the Polarized Degree (PD, $\sim 45 - 50\%$ max) may indicate different levels of turbulence (PD = 70% is the theoretical maximum for a uniform field).

We need to investigate synchrotron emission by a turbulent magnetic field.

2D simulations: first test

First test of the GPU version of ECHO: 2D 4096² decaying turbulence in the \perp plane

$$\delta \boldsymbol{B} \propto B_0 \sum_{\boldsymbol{k}=-4}^{4} \frac{\boldsymbol{k}}{k} \cos(\boldsymbol{k} \cdot \boldsymbol{x} + \varphi) \times \boldsymbol{e}_z,$$

here $\mathbf{k} \equiv \mathbf{k}_{\perp}$, with a similar Alfvénic (incompressible) setup for $\delta \mathbf{v}$ in terms of c_a , with

$$\sigma = B_0^2 / \rho = 100, \quad \beta = 2p/B_0^2 = 1, \quad \delta B_{\rm rms}/B_0 = 0.25$$

Clear Kolmogorov spectrum for more than two decades, for velocity fluctuations too; intermittent current sheets and plasmoids ubiquitous (Del Zanna et al. 2024, ideal MHD!).

In full 3D we choose a different setup (with a view to applying to PWNe):

• hot plasma:

$$\rho = 1, \quad h = 1000 \Rightarrow p \gg \rho$$

• 3D magnetic fluctuations and \mathbf{k} , along B_0 too (φ and ϑ random, for each \mathbf{k}):

$$\delta \boldsymbol{B} \propto B_0 \sum_{\boldsymbol{k}=-4}^4 \cos(\boldsymbol{k} \cdot \boldsymbol{x} + \varphi) (\cos \vartheta \boldsymbol{e}_1 + \sin \vartheta \boldsymbol{e}_2)$$

where

$$oldsymbol{e}_1 = rac{oldsymbol{k} imes oldsymbol{e}_z}{|oldsymbol{k} imes oldsymbol{e}_z|}, \qquad oldsymbol{e}_2 = rac{oldsymbol{k} imes oldsymbol{e}_1}{|oldsymbol{k}|},$$

• no initial velocity fluctuations (energy transfer expected)

• 12 runs, from small to substantial mean and *rms* magnetizations (*hot* definition):

$$\sigma_0 = \frac{B_0^2}{\rho h} = 0.001, 0.01, 0.1, 1; \qquad \sigma_1 = \frac{\delta B_{\rm rms}^2}{\rho h} = 0.05, 0.1, 0.2$$

• corresponding to moderate to large initial amplitudes (from \simeq 0.22 to \simeq 14):

$$\delta B_{\rm rms}/B_0 = \sqrt{\sigma_1/\sigma_0}$$

• resolution 512³: 15 minutes to run (8 GPUs), much more to download data!

< 同 > < 回 > < 回 > -

Analysis of 3D turbulence

Time series of *rms* quantities, peak of turbulence and Alfvénic-type equilibrium:

Well behaved turbulence: intermittency at small scales (here B_y across x scales):

L. Del Zanna - UniFi The ECHO code for astrophysical relativistic plasmas

Synchrotron maps from turbulence simulations ($\sigma_0 = 0.1, \sigma_1 = 0.1$)

Integrated synchrotron maps along x, that is with LOS perpendicular to **B**₀:

Integrated synchrotron maps along z, that is with LOS parallel to **B**₀:

The polarized intensity is higher in the first case (center of the torus), as expected.

Polarized fraction and magnetic fluctuations (preliminary!)

In the explored range, the PD seems to follow a simple relation with $\delta B_{\rm rms}/B_0$ (which decreases in time after the turbulence peak):

Agreement with analytical predictions for Gaussian fluctuations (Bandiera & Petruk 2016):

$$\frac{\Pi}{\Pi_{\max}} = \frac{5+s}{8} \frac{{}_{1}F_{1}((3-s)/4, 3, -x)}{{}_{1}F_{1}(-(1+s)/4, 1, -x)} x; \qquad x = \frac{3}{2} \left(\frac{\delta B_{\rm rms}}{B_{0}}\right)^{-2}$$

Each tick is a 4.6 GB 512³ data cube...

Summary

We briefly summarize our presentation and the results obtain:

- We have successfully ported ECHO on GPUs using standard Fortran constructs
- The code is up to 38 times faster and scales well up to 256 GPUs (400³ per GPU)
- Ideal 2D and 3D RMHD turbulence: well behaved turbulence and dissipation
- Kolmogorov spectra for $\delta \mathbf{B}$, intermittency at small scales (plasmoids)
- Synchrotron polarization maps with LOS parallel or perpendicular to B₀
- Gaussian fluctuations at large scales: analytical predictions for PD confirmed
- Different turbulence conditions explain different levels of PD observed in PWNe

However magnetization and initial amplitudes have a role...work is in progress!

Relevant papers:

- Del Zanna et al, A&A 453, 621, 2006 (Synchrotron recipes for RMHD simulations of PWNe)
- Del Zanna et al, A&A 473, 11, 2007 (The ECHO code for GRMHD)
- Bandiera and Petruk, MNRAS 459, 178, 2016 (Polarized emission for turbulent fields in SNRs)
- Bucciantini et al, MNRAS 470, 4066, 2017 (Polarized emission for turbulent fields in PWNe)
- Bucciantini et al, Nature Astr. 7, 602, 2023 (IXPE polarimetry of the Crab pulsar and PWN)
- Del Zanna et al, Fluids 9, 16, 2024 (The ECHO code on GPUs with standard Fortran)
- Del Zanna, Bucciantini, Landi, in prep (Synchrotron from 3D turbulence in hot plasmas)

イロト イポト イヨト イヨト