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We demonstrate that exciton conductance in organic materials can be enhanced by several orders of
magnitude when the molecules are strongly coupled to an electromagnetic mode. Using a 1D model system,
we show how the formation of a collective polaritonic mode allows excitons to bypass the disordered array
of molecules and jump directly from one end of the structure to the other. This finding could have important
implications in the fields of exciton transistors, heat transport, photosynthesis, and biological systems in
which exciton transport plays a key role.

PACS numbers: 71.35.-y, 05.60.Gg, 71.36.+c, 81.05.Fb

The transport of excitons (bound electron-hole pairs) is
a fundamental process that plays a crucial rule both in nat-
ural phenomena such as photosynthesis, where energy has
to be transported to a reaction center [1–3], and in artifi-
cial devices such as excitonic transistors [4, 5] or organic
solar cells, whose power conversion efficiency can be im-
proved significantly when the exciton diffusion length is
increased [6]. Similarly, understanding and manipulating
the role of excitons in heat transport has become an ac-
tive field of research, with possible applications ranging
from thermo-electric effects to heat-voltage converters, to
nanoscale refrigerators, and even thermal logic gates (cf. [7]
and references therein). The exciton transport efficiency
depends on a wide range of factors with such surprising
features as the occurrence of noise-assisted transport [8–
10]. Pioneering works have even suggested that coherent
transport can play an important role in biological systems
[2, 3, 11]. However, most systems composed of organic
molecules are disordered and possess relatively large dis-
sipation and dephasing rates, such that exciton transport
typically becomes diffusive over long distances [12].

An intriguing possibility to modify exciton properties is
by strong coupling to an electromagnetic (EM) mode, form-
ing so-called polaritons (hybrid light-matter states). This is
achieved when the Rabi frequency, i.e., the energy exchange
rate between exciton and EM modes, becomes faster than
the decay and/or decoherence rates of either constituent.
Polaritons combine the properties of their constituents, in
particular, mutual interactions and low effective masses, en-
abling new applications such as polariton condensation in
semiconductors [13] and organic materials [14], the modifi-
cation of molecular chemistry [15] and work functions [16],
or the transfer of excitation between different molecular
species [17]. Due to the large dipole moments and high
densities, organic materials support large Rabi splittings
[18–20], and can also be strongly coupled to surface plas-
mon polaritons [19, 21–24]. The dispersion relation can
then be tuned to achieve a further reduction of the effective
mass [25].

�p �d~di

~Ec(~r)

FIG. 1. Sketch of the model system. A 1D chain of (possibly
disordered) quantum emitters with dipole moments ~di inside a
cavity with cavity mode ~Ec(~r). Excitons are pumped into the
system from the left reservoir with rate �p. The exciton current is
measured by the excitons reaching the sink reservoir on the right,
coupled through incoherent decay of the last emitter with rate �d.

Very recently, an increase of the electrical conductance
of an organic material was shown under strong coupling of
the excitons to a cavity mode [26]. Inspired by this result,
we demonstrate in this Letter that through strong coupling
to an electromagnetic mode, i.e., the creation of polaritonic
states, the exciton transport efficiency can be improved by
many orders of magnitude. The strong coupling allows
the excitons to bypass the disordered organic system, pre-
venting localization and leading to dramatically improved
energy transport properties. We note that while we focus on
organic molecules in the following, the results can readily
be generalized to other systems such as quantum dots and
Rydberg atoms, or even chains of trapped ions, which offer
a high degree of controllability [27, 28].

We focus on a model system that captures the essential
physics: A 1D chain of two-level emitters inside a cavity
(see Fig. 1). The emitter dipole transition is coupled to the
single cavity mode, and additionally induces Coulombic
dipole-dipole interaction between the emitters. The effect
of internal (e.g., rovibrational or phononic) and external
environment modes is taken into account through effective
dephasing and nonradiative decay rates modeled using a
master equation of Lindblad form. The system Hamiltonian
H in the rotating wave approximation (setting ~ = 1 here
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Figure 1 | Cylindrical chiral double-walled nanotubular J-aggregates of an amphiphilic cyanine dye molecule. a, 3,30-bis(2-sulphopropyl)-5,50,6,60-
tetrachloro-1,10-dioctylbenzimidacarbocyanine (C8S3) monomer. b, Schematic of the self-assembled nanotube showing the double-walled structure with the
alkyl chains at the interior of the bilayer. c, Schematic showing the orientation, b, of the transition dipole of the monomer relative to the long axis of the
nanotube. The grey band demonstrates how the monomers wrap around the aggregate in both the inner and outer walls. d, Fluorescence spectra of the
monomer’s solution and the aggregate’s solution showing the narrowed and redshifted transitions typical for J-aggregates. The two main aggregate
fluorescence peaks can be assigned to separate exciton transitions for the inner and outer walls5,19.
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Figure 2 | Immobilization of tubular J-aggregates on a solid substrate. a, Scanning force microscopy image of the tubular aggregates immobilized on a
quartz substrate. Long nanostructures with two distinct heights are clearly visible. The thinner objects are attributed to single tubular aggregates and the
thicker ones to bundles of such aggregates. b, Fluorescence spectra of the aggregates’ ensemble in solution (red) and on the solid substrate (black),
normalized to the maxima. The agreement between the two spectra indicates that the supramolecular structure of the aggregate remains intact upon
deposition onto the solid substrate.
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Figure 1. Photosynthetic apparatus. A, Cartoon of light-harvesting complex in green sulfur bacteria. The bacteria
transform solar photons into chemical energy. Sunlight absorbed by the chlorosome is transferred in the form of an exciton
through the baseplate and Fenna-Matthews-Olson (FMO) complexes subsequently to the reaction center. A snapshot of the
model structure is also shown. B, Atomistic model with corresponding length scales. The atomistic model is composed of a
double wall roll for the chlorosome (Roll A: 1620 (=60⇥27) BChl c sites and Roll B: 2160 (=80⇥27) BChl c sites), baseplate
(64 BChl a sites) and 6 FMO trimer complexes (144 (=24⇥6) BChl a sites).

posed of BChl a pigments held together by a protein
sca↵olding. Energy in the form of molecular excitations
(i.e. exciton) is collected by the chlorosome and fun-
neled through these antenna units to the reaction center
where charge carriers are then generated. The distance
between the pigments in LHCs is su�ciently large such
that the overlap of electronic wave functions can be ne-
glected. In this case the energy transfer is mediated by
the near field interaction between molecular electronic
transitions, the Förster interaction [44–46]. If the in-
teraction between several molecules is su�ciently strong
as compared to the energy di↵erence between their elec-
tronic transitions, the exciton states are delocalized over
the group of pigments [45, 46]. The preferential direc-
tion for energy transport is controlled by the frequencies
of electronic transitions: the excitation goes to molecules
or groups of molecules with lower excited state energy,
while dissipating the energy di↵erence to the environ-
ment.

A. Molecular aggregate model

A single LHC of Chlorobium tepidum contains 200–
250 thousand BChl molecules [2, 19, 47]. Most of these
molecules are found in the chlorosome. The model we
have created is shown in Fig. 1, it is composed of 3988
pigments and represents all the functional units of LHC
in green sulfur bacteria, excluding the reaction center.

In our model (Fig. 1B) a double wall roll aggregate
with diameter of about 16 nm and length of about 21 nm,
represents the chlorosome. Several possible structural ar-
rangements of BChls in the chlorosome have been inves-
tigated theoretically and experimentally [48–54]. Here
we use the structure of Ref. [52], obtained from a triple
mutant bacteria and characterized with nuclear magnetic
resonance and cryo-electron microscopy. This structure
is also supported by 2-dimensional polarization fluores-
cence microscopy experiments [55].

The microscopic structure of the baseplate has not yet
been experimentally verified [42]. We construct a base-
plate lattice as following. The unit cell consists of dimers
of CsmA proteins [56] containing 2 BChl a molecules
sandwiched between the hydrophobic regions and bound
near the histidine. To establish a stable structure of the

Ion Traps: tuning interaction range
localized excitation refocuses are non-trivial even in the simpler case of
nearest-neighbour interactions13.

Flipping several spins at both ends of the chain creates counter-prop-
agating wavefronts, opening the prospect of studying quasiparticle colli-
sions (Fig. 2c). Extended Data Fig. 1 shows close agreement with theory
in all cases. Initializing all N spins in ;j iz :j i realizes a global quench. In
this case, the many-body state is in a superposition containing 0 through
to N excitations, in which interactions between single-excitation quasi-
particle modes can no longer be neglected. In this case, the resulting
distribution of information can be observed through two-point correla-
tion functions9,26, as seen in Fig. 2d and Extended Data Fig. 2.

To reveal the distribution of quantum correlations after a local quench,
we tomographically measure the evolution of the full quantum state of
pairs of spins (see Fig. 3 and Extended Data Fig. 3). Figure 3a exemplifies
the results for an interaction range a<1:75, for which a clear wavefront
is apparent. The results show that magnon wave-packets emerging from
either side of the initial excitation distribute entanglement across the
spin chain (Fig. 3b, c); the wavefront first entangles spins neighbouring
the quench site, then the next-nearest neighbours, and so on until the
boundaries are reached.

Finally, we investigate how the spin–spin interaction range affects the
way in which information is transported around the system. For this, we
measure the magnetization dynamics following a local quench in a chain
of 15 spins, for three values of a roughly equally spaced around a~1. In
the shortest-range case (Fig. 4a, a~1:41), an approximate light cone can
be seen. There is a clear leading wavefront of spin-excitation that moves
away from the quench site at a well defined velocity, and outside which
the signal decays rapidly (Fig. 4a, d). These are the features of a well-
defined speed limit for quantum dynamics that one would expect for
finite-range interactions, and that has previously been observed in sys-
tems of neutral atoms with nearest-neighbour interactions9,10. Indeed,
the information transport observed in our shortest-range experiment
is largely captured by a Lieb–Robinson bound that considers only the
nearest-neighbour interactions in the system (Fig. 4a, d, e).
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Figure 2 | Measured quantum dynamics in a seven-ion system following
local and global quenches. a–c, Time evolution of the magnetization sz
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(colour coded) following a local quench at: a, the central spin (ion), for a < 1.36;
b, the leftmost spin, for a < 1.36; and c, both ends of the chain, for a < 1.75.
Values of 61 correspond to the fully polarized states. The colour scales in b and
c also refer to a. d, Time evolution of the averaged two-spin correlation function
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Figure 3 | Entanglement distribution following a local quench. Shown are
the dynamics for a < 1.75 up to T 5 30 ms (2.99 J21). a, Measured single-spin
magnetization (colour coded). b, Single-spin von Neumann entropy
2Tr(rlog(r))/log(2) (colour coded) derived from measured density matrices.
High-entropy states are due to correlations with other spins. c, Evolution of
entanglement (concurrence, see Methods) between pairs of spins distributed
symmetrically around the central spin, revealing the propagation of entangled
quasiparticles from the centre to the boundaries of the system. Blue, spins 3 and
5; red, spins 2 and 6; black, spins 1 and 7. Dashed lines show theoretical
predictions. Error bars, 1s calculated via Monte Carlo simulation of quantum
projection noise30.
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Figure 1 | Quantum dynamics in a one-dimensional spin chain following a
local quench. a, A steady state is locally perturbed by flipping one spin.
Quasiparticle wave-packets propagate left and right from the quench site and
entangle spin pairs across the system. The underlying spin–spin interaction
defines possible direct hopping paths (examples shown as arrows) and the
quasiparticle dispersion relation. b, Example of a long-range spin–spin
interaction matrix Jij, directly measured in our system for N 5 7 spins (see
Methods), with colours matched to the interactions pictured in a.
c, Quasiparticle dispersion relation (shifted by energy B), derived from
b (circles) and predicted using experimental parameters (crosses). The line
is the fitted dispersion relation for power-law interactions, with best-fit
exponent a 5 1.36. The maximum group velocity vmax

g is inferred from the
curve’s steepest slope (we set the lattice spacing to unity). a.u., arbitrary units.
Error bars (1s) are smaller than symbols used.
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Long-Range Interaction: information spreading

Ion Traps experiment
1d Many Body Hamiltonian:
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Richerme et al., Nature Letter 511,

198 (2014); P. Jurcevic et. al., Nature, 511, 202 (2014).
localized excitation refocuses are non-trivial even in the simpler case of
nearest-neighbour interactions13.

Flipping several spins at both ends of the chain creates counter-prop-
agating wavefronts, opening the prospect of studying quasiparticle colli-
sions (Fig. 2c). Extended Data Fig. 1 shows close agreement with theory
in all cases. Initializing all N spins in ;j iz :j i realizes a global quench. In
this case, the many-body state is in a superposition containing 0 through
to N excitations, in which interactions between single-excitation quasi-
particle modes can no longer be neglected. In this case, the resulting
distribution of information can be observed through two-point correla-
tion functions9,26, as seen in Fig. 2d and Extended Data Fig. 2.

To reveal the distribution of quantum correlations after a local quench,
we tomographically measure the evolution of the full quantum state of
pairs of spins (see Fig. 3 and Extended Data Fig. 3). Figure 3a exemplifies
the results for an interaction range a<1:75, for which a clear wavefront
is apparent. The results show that magnon wave-packets emerging from
either side of the initial excitation distribute entanglement across the
spin chain (Fig. 3b, c); the wavefront first entangles spins neighbouring
the quench site, then the next-nearest neighbours, and so on until the
boundaries are reached.

Finally, we investigate how the spin–spin interaction range affects the
way in which information is transported around the system. For this, we
measure the magnetization dynamics following a local quench in a chain
of 15 spins, for three values of a roughly equally spaced around a~1. In
the shortest-range case (Fig. 4a, a~1:41), an approximate light cone can
be seen. There is a clear leading wavefront of spin-excitation that moves
away from the quench site at a well defined velocity, and outside which
the signal decays rapidly (Fig. 4a, d). These are the features of a well-
defined speed limit for quantum dynamics that one would expect for
finite-range interactions, and that has previously been observed in sys-
tems of neutral atoms with nearest-neighbour interactions9,10. Indeed,
the information transport observed in our shortest-range experiment
is largely captured by a Lieb–Robinson bound that considers only the
nearest-neighbour interactions in the system (Fig. 4a, d, e).
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Figure 2 | Measured quantum dynamics in a seven-ion system following
local and global quenches. a–c, Time evolution of the magnetization sz
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(colour coded) following a local quench at: a, the central spin (ion), for a < 1.36;
b, the leftmost spin, for a < 1.36; and c, both ends of the chain, for a < 1.75.
Values of 61 correspond to the fully polarized states. The colour scales in b and
c also refer to a. d, Time evolution of the averaged two-spin correlation function
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Figure 3 | Entanglement distribution following a local quench. Shown are
the dynamics for a < 1.75 up to T 5 30 ms (2.99 J21). a, Measured single-spin
magnetization (colour coded). b, Single-spin von Neumann entropy
2Tr(rlog(r))/log(2) (colour coded) derived from measured density matrices.
High-entropy states are due to correlations with other spins. c, Evolution of
entanglement (concurrence, see Methods) between pairs of spins distributed
symmetrically around the central spin, revealing the propagation of entangled
quasiparticles from the centre to the boundaries of the system. Blue, spins 3 and
5; red, spins 2 and 6; black, spins 1 and 7. Dashed lines show theoretical
predictions. Error bars, 1s calculated via Monte Carlo simulation of quantum
projection noise30.
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Figure 1 | Quantum dynamics in a one-dimensional spin chain following a
local quench. a, A steady state is locally perturbed by flipping one spin.
Quasiparticle wave-packets propagate left and right from the quench site and
entangle spin pairs across the system. The underlying spin–spin interaction
defines possible direct hopping paths (examples shown as arrows) and the
quasiparticle dispersion relation. b, Example of a long-range spin–spin
interaction matrix Jij, directly measured in our system for N 5 7 spins (see
Methods), with colours matched to the interactions pictured in a.
c, Quasiparticle dispersion relation (shifted by energy B), derived from
b (circles) and predicted using experimental parameters (crosses). The line
is the fitted dispersion relation for power-law interactions, with best-fit
exponent a 5 1.36. The maximum group velocity vmax

g is inferred from the
curve’s steepest slope (we set the lattice spacing to unity). a.u., arbitrary units.
Error bars (1s) are smaller than symbols used.
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Theoretical work:
Suppression of the velocity of

spreading with the increase of the
interaction range ↵.

M. Kastner, New J. Phys. 17, 063021
(2015)

4.3.Dispersion and group velocity
In the limit of large system size the dispersion relation takes the form

( ) ( )k( ) Li e Li e , (21)k ki i⎡⎣ ⎤⎦� = � +� �
�

where Li� is the polylogarithm [39], and this function is plotted infigure 7 (left). For α=3 the dispersion ϵ is a
smooth function of k, while it shows a cusp at k=0 for α=2, and a divergence at k=0 forα= 1. Correspondingly,
the derivative k( )�� as shown infigure 7 (right) is discontinuous at k=0 forα= 2, and diverges at k= 0 forα=1.
More generally we can analyze �� in the vicinity of k=0 by considering the difference quotient between the
zeroth and thefirstmode
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In the large-N limit we approximate the sumby an integral
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This implies that, for 2� < , the derivative ��diverges at k=0 in the limit of infinite system size. Interpreting
(0)�� as a group velocity, we infer thatwe have afinite group velocity only for 2� > , whereas the concept of a

group velocity breaks down for 2� < 7. This finding can help us to understand figure 5: for 2� > afinite group
velocity restricts the propagation to the interior of a cone, whichmakes this cone appear rather sharp. For 2� < ,
although a cone is still visible, larger (and, in fact, arbitrarily large) propagation velocitiesmay occur and are
responsible for the ‘leaking’ of correlations outside the cone.

Figure 6. Left: dominant velocity of propagation, as read off from the inverse slope of the striking cones in figure 5, plotted as a
function of the exponent α. Right: density of states (25) for α=1, 2 and �.

Figure 7.Dispersion relation (21) (left) and its derivative k( )�� (right) for the long-range fermionic hoppingmodel (13)with
exponents α=1, 2, and 3.

7
The same conclusions about dispersion relations and group velocities also hold for long-range interactingXX andXXZ spinmodels when

restricting the dynamics to the singlemagnon sector, as the dispersion relations of thesemodels are essentially identical to (17).

7

New J. Phys. 17 (2015) 063021 D-MStorch et al
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Cooperative Shielding can help to
explain such contradictory features

G.L.Celardo Cooperative effects



A COMMON MECHANISM TO COLLECTIVE 
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Fano Rev Mod Phys: “superconductivity, plasmons, nuclear deformations…cmmon to
 these phenomena is the role of a dense spectrum of states…The seemingly weak 
 interactions among these states often condensates into a single eigenvalue separated 
 from the rest of the spectrum by an enegy gap.”



WHAT ARE COOPERATIVE EFFECTS?

Cooperative effect are based on collective correlated motion.

Collective motion does not imply cooperative effects: example:
normal modes of linearly coupled oscillators.

H = H0 + V

V : coupling to an external environment or intrinsic coupling. V
selects states with large couplng.

A common mechanism of collective phenomena U. Fano,
Rev. Mod. Phys. 64, 313 (1992).

Real and imaginary energy gaps: a comparison between
single excitation Superradiance and Superconductivity and

robustness to disorder, Eur. Phys. J. B (2019) 92: 144.
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Cooperative Shielding in many-body.

Experimentally accessible 1d spin 1/2 Hamiltonian:

H = H0 + V , (1)

H0 = B

LX

n=1

�
z

n

V =
X

n<m

J

|n � m|↵ �
x

n�
x

m.

↵ < 1: long range. ↵ > 1: short range.
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Cooperative Shielding in many-body.

Experimentally accessible spin 1/2 Hamiltonian:

H = H0 + V , (2)

H0 =
L�1X

n=1

Jz�
z

n�
z

n+1,

V =
X

n<m

J

|n � m|↵ �
x

n�
x

m.

↵ < 1: long range. ↵ > 1: short range.

NN+ LONG RANGE
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Spectrum of V
The case ↵ = 0 :

V = J

X

n<m

�
x

n�
x

m =
JM2

x

2
� JL

2
where Mx =

X

n

�
x

n

Vb = J(L/2 � b)2
/2 � JL/2, where b = 0, 1, . . . L/2

∆=J[(L/2-b)-1]/2
b=0

b=1

SPECTRUM OF V

α=0 0<α<1 α>1

b=2
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Light-cones

(a)                 Jz=0 α=3
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(c)                Jz=0 α=0.5
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(d)               Jz=0.5 α=0
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(a)                 Jz=0 α=3
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(b)                 Jz=0 α=0
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(c)                Jz=0 α=0.5
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(d)               Jz=0.5 α=0
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Initial State:
| 0i = | ", ", .., #, .., ", "iX

a) B = 0.5,↵ = 3 light-cone;
b) B = 0.5,↵ = 0 localization without disorder;
c) B = 0.5,↵ = 0.5

G.L.Celardo Cooperative effects



Shielding

(a) J=0.5 α=0
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(d) J=1 α=0
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(f) J=1 α=0.5
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(g) J=2 α=0
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(h) J=2 α=0.3
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(k) J=2 α=0.5
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CONCLUSIONS

• Cooperative Shielding: existence of 
subspaces in long range interacting 
systems where the dynamics can be 
described by emergent short range 
Hamiltonians. 

• Role of cooperativity in many body interacting 
systems can lead to new discoveries! 

                        THANK YOU! 



Cooperative Shielding. Single excitation transport.

1d Anderson model with long range hopping:

H = D+HNN+VLR =
X

i

✏
0
i
|iihi |�⌦

X

hi,ji

(|jihi | + |iihj |) ��

X

i 6=j

|iihj |
r↵
i,j

✏
0
j
: are random energies [�W/2,+W/2]; ri,j = |i � j |; long range

for ↵ < 1. ↵ = 0: all to all.

⌦ > 0, � > 0: the tunnelling transition amplitude.

Ω Ω Ω ΩΩΩ

γ

γ

γγ

γ

γ

G.L.C., R. Kaiser, and F. Borgonovi, PRB 94, 144206 (2016).
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Spectrum and Energy Gap: Does shielding survive
disorder?

H = HNN + VLR + D

H = �⌦
X

i

(|iihi + 1| + h.c.) � �
X

i 6=j

|iihj | +
X

i

✏0
i
|iihi |

|Ψ
N

>

∆

-2Ω

+2Ω

H
NN

γΝ

+ V
LR

+ D
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Cooperative Shielding
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Suppression of Long Range interaction
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The Shielding effect

Let us consider a system:

H = H0 + V , with [H0, V ] = 0

with V highly degenerate V |vk i = v |vk i

| 0i =
Pg

k=1 ck |vk i

V contributes only with global phase

| (t)i = e
iHt | 0i = e

ivt
e

iH0t | 0i

We have shielding from V !!. H0: emerging Hamiltonian.

What if [H0, V ] 6= 0?

What if spectrum of V is not degenerate? What is the
connection with long range? Is this a cooperative effects? What
is the emergent Hamiltonian?
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