Cooperative Shielding in Long Range Systems

università degli studi FIRENZE

Giuseppe L. Celardo Department of Physics and Astronomy, CSDC, INFN, Florence Section, LENS, Florence, Italy

Galileo Galilei Institute. March 19, 2025 INFN Florence Theory Group Day

Experimental Relevance of long range

Long-range interacting systems: $1/r^{\alpha}$ with $\alpha < d$. Gravity, EM. Cold Atomic Clouds:

Robin Kaiser (CNRS, France)

CAVITY PHYSICS

J. Feist and F. J. Garcia-Vidal

FIG. 1. Sketch of the model system. A 1D chain of (possibly disordered) quantum emitters with dipole moments $\vec{d_i}$ inside a cavity with cavity mode $\vec{E_c}(\vec{r})$. Excitons are pumped into the system from the left reservoir with rate γ_p . The exciton current is measured by the excitons reaching the sink reservoir on the right,

Biological Systems.

< □ ▶ < @ ▶ < E ▶ < E ▶

3

500

Ion Traps: tuning interaction range

Long-Range Interaction: information spreading

Ion Traps experiment 1d Many Body Hamiltonian:

with $0 \le \alpha \le 3$. Breaking of Lieb-Robinson bounds in Ion Trap

Richerme et al., Nature Letter 511,

198 (2014); P. Jurcevic et. al., Nature, **511**, 202 (2014).

Theoretical work:

Suppression of the velocity of spreading with the increase of the interaction range α .

M. Kastner, New J. Phys. **17**, 063021

Cooperative Shielding can help to explain such contradictory features

<ロ > < 同 > < 三 > < 三 > < 三 > <

3

JQ (~

A COMMON MECHANISM TO COLLECTIVE PHENOMENA

Correlation Induced Localization

Fano Rev Mod Phys: "superconductivity, plasmons, nuclear deformations...cmmon to these phenomena is the role of a dense spectrum of states...The seemingly weak interactions among these states often condensates into a single eigenvalue separated from the rest of the spectrum by an enegy gap."

WHAT ARE COOPERATIVE EFFECTS?

Cooperative effect are based on collective correlated motion.

 Collective motion does not imply cooperative effects: example: normal modes of linearly coupled oscillators.

• $H = H_0 + V$

- V : coupling to an external environment or intrinsic coupling. V selects states with large couplng.
 - A common mechanism of collective phenomena U. Fano, Rev. Mod. Phys. 64, 313 (1992).

Real and imaginary energy gaps: a comparison between single excitation Superradiance and Superconductivity and robustness to disorder, Eur. Phys. J. B (2019) 92: 144.

토▶ ▲ 토▶ --

王

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Cooperative Shielding in many-body.

Cooperative Shielding in many-body.

Experimentally accessible 1d spin 1/2 Hamiltonian:

$$H = H_0 + V,$$

$$H_0 = B \sum_{n=1}^{L} \sigma_n^z$$

$$V = \sum_{n < m} \frac{J}{|n - m|^{\alpha}} \sigma_n^x \sigma_m^x.$$
(1)

• $\alpha < 1$: long range. $\alpha > 1$: short range.

Experimentally accessible spin 1/2 Hamiltonian:

$$H = H_0 + V,$$

$$H_0 = \sum_{n=1}^{L-1} J_z \sigma_n^z \sigma_{n+1}^z,$$

$$V = \sum_{n < m} \frac{J}{|n-m|^{\alpha}} \sigma_n^x \sigma_m^x.$$
(2)

• $\alpha < 1$: long range. $\alpha > 1$: short range.

NN+ LONG RANGE

G.L.Celardo	Cooperative effects	G.L.Celardo	Cooperative effects
	<□><률><≣><≣><≣><≣><≡><<0<<		◆□▶◆局▶◆目▶◆目▶ 目 ぐんの

Spectrum of V

The case $\alpha = \mathbf{0}$: $V = J \sum \sigma_n^x \sigma_m^x = \frac{JM_x^2}{2} - \frac{JL}{2}$ where $M_x = \sum \sigma_n^x$ n < m $V_b = J(L/2 - b)^2/2 - JL/2$, where b = 0, 1, ..., L/2SPECTRUM OF V $\alpha = 0$ $0 < \alpha < 1$ $\alpha > 1$ b=2b=1 $\Delta = J[(L/2-b)-1]/2$ b=0E

SQ (~

Light-cones

Initial State:

$$|\psi_0\rangle = |\uparrow,\uparrow,..,\downarrow,..,\uparrow,\uparrow\rangle_X$$

a) B = 0.5, $\alpha = 3$ light-cone; b) B = 0.5, $\alpha = 0$ localization without disorder; c) B = 0.5, $\alpha = 0.5$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > <

E.

5900

Shielding

G.L.Celardo

Cooperative effects

CONCLUSIONS

- Cooperative Shielding: existence of subspaces in long range interacting systems where the dynamics can be described by emergent short range Hamiltonians.
- Role of cooperativity in many body interacting systems can lead to new discoveries!

THANK YOU!

Cooperative Shielding. Single excitation transport.

Spectrum and Energy Gap: Does shielding survive disorder?

• 1d Anderson model with long range hopping:

$$H = D + H_{\rm NN} + V_{\rm LR} = \sum_{i} \epsilon_i^0 |i\rangle \langle i| - \Omega \sum_{\langle i,j\rangle} (|j\rangle \langle i| + |i\rangle \langle j|) - \gamma \sum_{i\neq j} \frac{|i\rangle \langle j|}{r_{i,j}^{\alpha}}$$

- ϵ_j^0 : are random energies [-W/2, +W/2]; $r_{i,j} = |i j|$; long range for $\alpha < 1$. $\alpha = 0$: all to all. ۲
- $\Omega > 0, \gamma > 0$: the tunnelling transition amplitude.

G.L.Celardo

G.L.C., R. Kaiser, and F. Borgonovi, PRB 94, 144206 (2016).

 $H = H_{NN} + V_{IB} + D$

G.L.Celardo Cooperative effects

Cooperative effects **Cooperative Shielding**

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

◆ロ▶ ◆舂▶ ◆恵▶ ◆恵▶ → 恵 → のへで

G.L.Celardo Cooperative effects

Suppression of Long Range interaction

G.L.Celardo

Cooperative effects

5900

The Shielding effect

• Let us consider a system:

 $H = H_0 + V$, with $[H_0, V] = 0$

with V highly degenerate $V |v_k\rangle = v |v_k\rangle$

•
$$|\psi_0\rangle = \sum_{k=1}^g c_k |v_k\rangle$$

• V contributes only with global phase

$$|\psi(t)
angle=oldsymbol{e}^{ extsf{i} extsf{H}_{0}t}|\psi_{0}
angle=oldsymbol{e}^{ extsf{i} extsf{v}_{0}t}|\psi_{0}
angle$$

We have shielding from V!!. H_0 : emerging Hamiltonian.

- What if $[H_0, V] \neq 0$?
- What if spectrum of V is not degenerate? What is the connection with long range? Is this a cooperative effects? What is the emergent Hamiltonian?

<ロ> <回> <回> <回> <三> <三> <三> <三</p>

5900