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All is not well with the Standard Model

Despite being successful and complete with the discovery of the ∼ 125 GeV
Higgs boson, the Standard Model is plagued by many problems:

The electroweak hierarchy problem: Mweak/MPlanck ∼ 10−16

The strong CP problem: |θ| ≲ 10−10

Dark matter abundance: Ωdarkh
2 ∼ 0.12

Matter-antimatter asymmetry

Neutrino masses

The cosmological constant problem

. . .
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SM particle content

Spin Field SU(3)c × SU(2)L × U(1)Y

0 (H+ H0) ( 1 , 2 , + 1
2 )

1/2 (uL dL)i ( 3 , 2 , + 1
6 )

u†Ri ( 3 , 1 , − 2
3 )

d†Ri ( 3 , 1 , + 1
3 )

(ν eL)i ( 1 , 2 , − 1
2 )

e†Ri ( 1 , 1 , +1 )

1 g ( 8 , 1 , 0 )

W±,W 0 ( 1 , 3 , 0 )

B0 ( 1 , 1 , 0 )
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BSM particle content?
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Why not 4th generation chiral fermions?

L and R transform differently under SU(2)L × U(1)Y

Non-trivial anomaly cancellation constraint

MSM4 = ySM4v, with very large Yukawas to avoid discovery in the past

Do not decouple from flavor and precision EW (S, T, U) observables

Do not decouple from Higgs production and decay

LHC ruled out most non-decoupling theories, including new chiral fermions
[See, e.g, A. Lenz, Adv. High Energy Phys. 2013, 910275]

Decoupling theories:

Vectorlike fermions

Supersymmetry
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Vectorlike fermions

L and R transform same way

Automatically anomaly-free

Get masses mostly from bare electroweak singlet mass terms

Decouple from flavor and EW precision data like ϵ2/M2

Decouple from Higgs production and decay like ϵ/M

Required by many BSM models that address:

Hierachy problem (SUSY, . . .)

Dark matter (SUSY, Singlet-Doublet fermion model, . . .)

Strong CP problem (KSVZ model, . . .)

Baryogenesis [See, e.g., Fairbairn, Grothaus 1307.8011]

Muon g − 2 anomaly [See, e.g., Dermisek, Raval 1305.3522]

. . .
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Hadron colliders: best discovery reach

Lepton colliders: precision studies and indirect searches

This is plausible for strongly-interacting (pair-produced) vectorlike quarks:

Mt′ ≥ 1.31− 1.60 TeV [ATLAS 1808.02343, 2210.15413]

Mb′ ≥ 1.20− 1.57 TeV [ATLAS 2210.15413, CMS 2008.09835]

Mψ′
0

≳ 1.5− 1.7 TeV [PNB, G. Elor, R. McGehee, A. Pierce 2210.15653, ATLAS 1902.01636]

where t′, b′ are assumed to mix with t, b quarks, and ψ′
0 is a long-lived

EW-singlet.

But may not be the case for weakly-interacting vectorlike leptons:

SU(2)L-doublet: Mτ ′ ≥ 1045 GeV [CMS 2202.08676]

SU(2)L-singlet: Mτ ′ ∈ [101.2, 125] or Mτ ′ ≥ 150 GeV [LEP 0107015, CMS 2202.08676]

assumed to mix with τ .
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Consider SU(2)L-singlet vectorlike τ
′:

τ ′L, τ
′†
R ∼ (1,1,−1) + (1,1,+1)

in contrast with the chiral SM τ

τL, τ
†
R ∼ (1,2,−1/2) + (1,1,+1)
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Assume mass mixing of τ ′ and τ :

M =

(
yτv 0
ϵv M

)
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(Pe+ , Pe−) = (−0.3, 0.8) and (0, 0.8) maximize σ for ILC and CLIC
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Signal components:

e+e− → τ ′+τ ′− → ZZτ+τ−, hhτ+τ−, Zhτ+τ−

ZW±τ∓ +�E, hW±τ∓ +�E,

W±W∓ +�E (largest!)

SM backgrounds: tt, ttZ, tth, Zh, Zhh, ZZh, ZZZ, W+W−h, W+W−Z,
and W+W−νν with νν /∈ Z
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Signal regions: 15 different signal regions targeting various final states with

Nℓ +Nj +Nb = 4

Nτ = 1 or 2

Reconstruct Z from ℓ+ℓ−/jj, h from bb, and also W from jj if Nτ = 1

E.g.,

4ℓ+ 2τ

2j + 2b+ 2τ

4b+ 2τ

4j + 1τ

2j + 2b+ 1τ

3j + 1b+ 2τ (& Z/h/W from jb)
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Event simulation: At LO while accounting for ISR + beamstrahlung:

FeynRules → Whizard → Pythia8 → Delphes

[Model files at � prudhvibhattiprolu/VLL-UFOs being used by ATLAS and CMS]
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FeynRules → Whizard → Pythia8 → Delphes

[Model files at � prudhvibhattiprolu/VLL-UFOs being used by ATLAS and CMS]

Goal: Reconstructing mass peaks for various Mτ ′ in various signal regions
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Peak reconstruction:

Reconstruct Z/h bosons, Bα, and also W bosons, Wβ , if Nτ = 1

Find all the possible (tau, boson) pairings:

τ ′1 ⊃ (τ1, ν1, Bα) and τ
′
2 ⊃

{
(τ2, ν2, Bβ) in SRs with exactly 2τ

(ν2,Wβ) in SRs with exactly 1τ

such that the bosons in τ ′1 and τ ′2 are distinct
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Use collinear approximation for ν1 from τ1 decay:

Eν1 = |pν1 |, pν1 = (r − 1)pτ1 ,

and obtain the four-momentum of the other neutrino using:

Eν2 =�E − Eν1 , pν2 =
Eν2

|�p− pν1 |
(
�p− pν1

)
,

such that both ν1 and ν2 are on-shell.

For each pairing, solve for r from:

p2τ ′
1

= p2τ ′
2

and impose Eν1 ≥ 0 and Eν2 ≥ 0

If multiple pairings survive, pick a pairing that minimizes |p⃗total| and

M reco
τ ′ =

√
p2τ ′

1
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Mass peaks: Consider a 500 GeV e+e− collider with unpolarized beams . . .
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Since BR(τ ′ →Wντ ) is the largest, we have far better statistics in these
SRs

Backgrounds are (non-)negligible (but still clearly under control)

Similar peak reconstructions also possible in all SRs with 2τ
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Branching ratios: If τ ′ indeed discovered, the heights of mass peaks in
various SRs can be used to determine τ ′ branching ratios!
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4ℓ+ 2τ and 2ℓ+ 2j + 2τ SRs provide a pure sample of ZZττ final state
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2ℓ+ 2b+ 2τ and 2j + 2b+ 2τ SRs provide a pure sample of Zhττ final
state
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2j + 2b+ 1τ (4b+ 2τ) SR provides a (relatively) pure sample of hWτν
(hhττ) final state
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Both Higgs and top factories can also act as discovery machines!
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For Mτ ′ < Mh +Mτ , since τ
′ → hτ is not accessible, we also

reconstruct Z from bb
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Conclusions

Considered an example of weak isosinget vectorlike leptons that are
well-motivated

Demonstrated that its mass peaks can be reconstructed in various
signal regions up to close to the kinematic limit

Heights of the mass peaks in various signal regions can in turn give a
handle on the branching ratios

e+e− collider may act as a discovery machine for particles with only
electroweak interactions that have limited reach at a hadron collider!
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Precision electroweak:
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If τ ′ is stable over detector lengths, then it can be inferred that Mτ ′ ≳ 750
GeV based on the −dE/dx and time of flight measurements in searches for
long lived charginos at the LHC
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13 TeV LHC
pp→ τ ′+τ ′− (NLO in QCD)
Stable χ̃±1 (95% CL; ATLAS 2019)
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Partonic pair-production cross-section σ̂(e+e− → τ ′+τ ′−):

σ̂ =
2πα2

3
(ŝ+ 2M2

τ ′)
√
1− 4M2

τ ′/ŝ
[
|aL|2(1− Pe−)(1 + Pe+)

+|aR|2(1 + Pe−)(1− Pe+)
]
,

where the left-handed and right-handed amplitude coefficients are

aL =
1

ŝ
+

1

c2W
(s2W − 1/2)

1

ŝ−M2
Z

,

aR =
1

ŝ
+
s2W
c2W

1

ŝ−M2
Z

.

P = 1 and −1 corresponding to pure right-handed and left-handed
polarizations

Since |aL| < |aR| for
√
ŝ > 93 GeV, we see that the production

cross-section is maximized when Pe− is positive (and, if available, when
Pe+ is negative)
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At
√
s = 1.5 and 3 TeV:

300 450 600 750

MJJτ [GeV]

0

5

10

15

20

25

30

d
σ

d
M

J
J
τ

[a
b

/
G

e
V

]

√
s = 1.5 TeV

M
τ
′
=

3
0
0

G
e
V

4
5
0

6
0
0

7
2
5

4J + 1τ

0

100

200

300

400

500

600

700

800

E
v
e
n
ts/

1
0

G
e
V

( ∫
L
d
t

=
2
.5

a
b
−

1)

750 1000 1250 1500

MJJτ [GeV]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

d
σ

d
M

J
J
τ

[a
b

/
G

e
V

]

√
s = 3 TeV

M
τ
′
=

7
5
0

G
e
V

1
0
0
0

1
2
5
0

1
4
7
5

4J + 1τ

0

100

200

300

400

500

E
v
e
n
ts/

2
5

G
e
V

( ∫
L
d
t

=
5

a
b
−

1)

Since the production cross section falls with
√
s, a lack of adequate

statistics can be an issue in some signal regions

Backgrounds can be more significant, but with a smooth mass
distribution that should be under good theoretical control

21 / 17


	Bottom-up approach to BSM theories
	Vectorlike leptons
	Conclusion
	Backup slides

