Minimally beyond the Standard Model:

Isosinglet vectorlike leptons at e^+e^- colliders

Prudhvi N. Bhattiprolu prudhvi.bhattiprolu@fi.infn.it

INFN Florence

Florence Theory Group Day Galileo Galilei Institute March 19, 2025

Based on arXiv:hep-ph/2308.08386 with Stephen P. Martin (Northern Illinois U.) and Aaron Pierce (U. Michigan)

Despite being successful and complete with the discovery of the $\sim 125~{\rm GeV}$ Higgs boson, the Standard Model is plagued by many problems:

Despite being successful and complete with the discovery of the $\sim 125~{\rm GeV}$ Higgs boson, the Standard Model is plagued by many problems:

• The electroweak hierarchy problem: $M_{\text{weak}}/M_{\text{Planck}} \sim 10^{-16}$

Despite being successful and complete with the discovery of the $\sim 125~{\rm GeV}$ Higgs boson, the Standard Model is plagued by many problems:

- The electroweak hierarchy problem: $M_{\rm weak}/M_{\rm Planck} \sim 10^{-16}$
- The strong CP problem: $|\overline{\theta}| \lesssim 10^{-10}$

Despite being successful and complete with the discovery of the ~ 125 GeV Higgs boson, the Standard Model is plagued by many problems:

- The electroweak hierarchy problem: $M_{\rm weak}/M_{\rm Planck} \sim 10^{-16}$
- The strong CP problem: $|\overline{\theta}| \lesssim 10^{-10}$
- \blacksquare Dark matter abundance: $\Omega_{\rm dark}h^2\sim 0.12$

Despite being successful and complete with the discovery of the $\sim 125~{\rm GeV}$ Higgs boson, the Standard Model is plagued by many problems:

- The electroweak hierarchy problem: $M_{\rm weak}/M_{\rm Planck} \sim 10^{-16}$
- The strong CP problem: $|\overline{\theta}| \lesssim 10^{-10}$
- \blacksquare Dark matter abundance: $\Omega_{\rm dark}h^2\sim 0.12$
- Matter-antimatter asymmetry
- Neutrino masses
- The cosmological constant problem

...

SM particle content

Spin	Field	$SU(3)_c \times SU(2)_L \times U(1)_Y$
0	$(H^+ \ H^0)$	$({f 1} , {f 2} , + {1\over 2})$
1/2	$(u_L \ d_L)_i$	$({f 3},{f 2},+{1\over 6})$
	u_{Ri}^{\dagger}	$(\overline{f 3},{f 1},-{2\over 3})$
	$d_{R_i}^{\dagger}$	$(\overline{f 3},{f 1},+{1\over 3})$
	$(\nu \ e_L)_i$	$({f 1} , {f 2} , - {1\over 2})$
	e_{Ri}^{\dagger}	(1, 1, +1)
1	g	(8, 1, 0)
	W^{\pm}, W^0	(1, 3, 0)
	B^0	(1, 1, 0)

BSM particle content?

Spin	Field	$SU(3)_c \times SU(2)_L \times U(1)_Y$
0	$(H^+ \ H^0)$	$({f 1} , {f 2} , + {1\over 2})$
	?	(?,?,?)
1/2	$(u_L \ d_L)_i$	$({f 3},{f 2},+{1\over 6})$
	u_{Ri}^{\dagger}	$(\overline{f 3},{f 1},-{2\over 3})$
	d_{Ri}^{\dagger}	$(\overline{f 3},{f 1},+{1\over 3})$
	$(\nu \ e_L)_i$	$({f 1} , {f 2} , - {1\over 2})$
	e_{Ri}^{\dagger}	$({f 1} , {f 1} , +1)$
	?	(?,?,?)
1	g	(8, 1, 0)
	W^{\pm}, W^0	$({f 1} , {f 3} , 0)$
	B^0	(1, 1, 0)
	?	(?,?,?)

Why not 4th generation chiral fermions?

- \blacksquare L and R transform differently under $SU(2)_L \times U(1)_Y$
- Non-trivial anomaly cancellation constraint
- $M_{SM_4} = y_{SM_4}v$, with very large Yukawas to avoid discovery in the past
- \blacksquare Do not decouple from flavor and precision EW (S,T,U) observables
- Do not decouple from Higgs production and decay

Why not 4th generation chiral fermions?

- \blacksquare L and R transform differently under $SU(2)_L \times U(1)_Y$
- Non-trivial anomaly cancellation constraint
- $M_{SM_4} = y_{SM_4}v$, with very large Yukawas to avoid discovery in the past
- \blacksquare Do not decouple from flavor and precision EW (S,T,U) observables
- Do not decouple from Higgs production and decay

LHC ruled out most non-decoupling theories, including new chiral fermions ^[See, e.g, A. Lenz, Adv. High Energy Phys. 2013, 910275]

Decoupling theories:

- Vectorlike fermions
- Supersymmetry

Vectorlike fermions

- \blacksquare L and R transform same way
- Automatically anomaly-free
- Get masses mostly from bare electroweak singlet mass terms
- \blacksquare Decouple from flavor and EW precision data like ϵ^2/M^2
- \blacksquare Decouple from Higgs production and decay like ϵ/M

Vectorlike fermions

- \blacksquare L and R transform same way
- Automatically anomaly-free
- Get masses mostly from bare electroweak singlet mass terms
- \blacksquare Decouple from flavor and EW precision data like ϵ^2/M^2
- \blacksquare Decouple from Higgs production and decay like ϵ/M

Required by many BSM models that address:

- Hierachy problem (SUSY, \ldots)
- Dark matter (SUSY, Singlet-Doublet fermion model, ...)
- \blacksquare Strong CP problem (KSVZ model, ...)
- Baryogenesis [See, e.g., Fairbairn, Grothaus 1307.8011]
- Muon g-2 anomaly [See, e.g., Dermisek, Raval 1305.3522]

• • • •

- Hadron colliders: best discovery reach
- Lepton colliders: precision studies and indirect searches

- Hadron colliders: best discovery reach
- Lepton colliders: precision studies and indirect searches

This is plausible for strongly-interacting (pair-produced) vectorlike quarks:

 $M_{t'} \geq 1.31 - 1.60 {
m ~TeV}$ [Atlas 1808.02343, 2210.15413]

 $M_{b'} \geq 1.20 - 1.57 \text{ TeV}$ [Atlas 2210.15413, CMS 2008.09835]

 $M_{\psi_0'}~\gtrsim~1.5-1.7~{
m TeV}$ [PNB, G. Elor, R. McGehee, A. Pierce 2210.15653, ATLAS 1902.01636]

where t', b' are assumed to mix with t, b quarks, and ψ'_0 is a long-lived EW-singlet.

- Hadron colliders: best discovery reach
- Lepton colliders: precision studies and indirect searches

This is plausible for strongly-interacting (pair-produced) vectorlike quarks:

where t', b' are assumed to mix with t, b quarks, and ψ'_0 is a long-lived EW-singlet.

But may not be the case for weakly-interacting vectorlike leptons:

$$\begin{split} SU(2)_L \text{-doublet:} \quad & M_{\tau'} \geq 1045 \text{ GeV }_{\text{[CMS 2202.08676]}} \\ SU(2)_L \text{-singlet:} \quad & M_{\tau'} \in [101.2, 125] \text{ or } M_{\tau'} \geq 150 \text{ GeV }_{\text{[LEP 0107015, CMS 2202.08676]}} \end{split}$$

assumed to mix with τ .

$$\tau'_L, \tau'^{\dagger}_R \sim (\mathbf{1}, \mathbf{1}, -1) + (\mathbf{1}, \mathbf{1}, +1)$$

in contrast with the ${\it chiral} \; {\rm SM} \; \tau$

$$\tau_L, \tau_R^{\dagger} \sim (\mathbf{1}, \mathbf{2}, -1/2) + (\mathbf{1}, \mathbf{1}, +1)$$

$$au'_L, au'^{\dagger}_R \sim (\mathbf{1}, \mathbf{1}, -1) + (\mathbf{1}, \mathbf{1}, +1)$$

in contrast with the ${\it chiral}~{\rm SM}~\tau$

$$\tau_L, \tau_R^{\dagger} \sim (\mathbf{1}, \mathbf{2}, -1/2) + (\mathbf{1}, \mathbf{1}, +1)$$

Assume mass mixing of τ' and τ :

$$\mathcal{M} = \begin{pmatrix} y_{\tau}v & 0\\ \epsilon v & M \end{pmatrix}$$

$$au'_L, au'^{\dagger}_R \sim (\mathbf{1}, \mathbf{1}, -1) + (\mathbf{1}, \mathbf{1}, +1)$$

in contrast with the *chiral* SM τ

$$\tau_L, \tau_R^{\dagger} \sim (\mathbf{1}, \mathbf{2}, -1/2) + (\mathbf{1}, \mathbf{1}, +1)$$

Assume *tiny* mass mixing of τ' and τ :

$$\mathcal{M} = \begin{pmatrix} y_{\tau}v & 0\\ \epsilon v & M \end{pmatrix}$$

with $prompt \; \tau'$ decays

$$au'_L, au'^{\dagger}_R \sim (\mathbf{1}, \mathbf{1}, -1) + (\mathbf{1}, \mathbf{1}, +1)$$

in contrast with the *chiral* SM τ

$$\tau_L, \tau_R^{\dagger} \sim (\mathbf{1}, \mathbf{2}, -1/2) + (\mathbf{1}, \mathbf{1}, +1)$$

Assume *tiny* mass mixing of τ' and τ :

$$\mathcal{M} = \begin{pmatrix} y_{\tau}v & 0\\ \epsilon v & M \end{pmatrix}$$

with *prompt* τ' decays

Limited reach for τ' at the

- LHC [N. Kumar, S. P. Martin 1510.03456]
- Future pp colliders [PNB, S. P. Martin 1905.00498]

due to low cross-section and the unfortunately large BR $(\tau' \to W \nu_{\tau})$

7 / 17

- Pair-production mode: $e^+e^- \rightarrow \gamma^*, Z^* \rightarrow \tau'^+\tau'^-$
- Accounting for the effects of ISR + beamstrahlung

- Pair-production mode: $e^+e^- \rightarrow \gamma^*, Z^* \rightarrow \tau'^+\tau'^-$
- Accounting for the effects of ISR + beamstrahlung
- $(P_{e^+}, P_{e^-}) = (-0.3, 0.8)$ and (0, 0.8) maximize σ for ILC and CLIC

Signal components:

Signal components:

SM backgrounds: $t\bar{t}, t\bar{t}Z, t\bar{t}h, Zh, Zh, ZZL, W^+W^-h, W^+W^-Z$, and $W^+W^-\nu\bar{\nu}$ with $\nu\bar{\nu} \notin Z$

$$N_{\ell} + N_j + N_b = 4$$
$$N_{\tau} = 1 \text{ or } 2$$

Reconstruct Z from $\ell^+\ell^-/jj$, h from bb, and also W from jj if $N_{\tau} = 1$ E.g.,

- $\bullet \ 4\ell + 2\tau$
- $\blacksquare 2j + 2b + 2\tau$
- $\blacksquare \ 4b+2\tau$

- $\blacksquare 4j + 1\tau$
- $\blacksquare 2j + 2b + 1\tau$
- $3j + 1b + 2\tau$ (& Z/h/W from jb)

$$N_{\ell} + N_j + N_b = 4$$
$$N_{\tau} = 1 \text{ or } 2$$

Reconstruct Z from $\ell^+\ell^-/jj$, h from bb, and also W from jj if $N_{\tau} = 1$ E.g.,

- $\bullet 4\ell + 2\tau \to ZZ\tau\tau$
- $\blacksquare 2j + 2b + 2\tau \rightarrow Zh\tau\tau$
- $\bullet 4b + 2\tau \rightarrow hh\tau\tau$

- $\bullet 4j + 1\tau \to ZW\tau\nu_{\tau}$
- $= 2j + 2b + 1\tau \rightarrow hW\tau\nu_{\tau}$
- $\blacksquare \ 3j + 1b + 2\tau \rightarrow ZZ\tau\tau, Zh\tau\tau$

$$N_{\ell} + N_j + N_b = 4$$
$$N_{\tau} = 1 \text{ or } 2$$

Reconstruct Z from $\ell^+\ell^-/jj$, h from bb, and also W from jj if $N_{\tau} = 1$ E.g.,

- $\bullet 4\ell + 2\tau \to ZZ\tau\tau$
- $2j + 2b + 2\tau \rightarrow Zh\tau\tau$
- $\bullet 4b + 2\tau \rightarrow hh\tau\tau$

- $4j + 1\tau \rightarrow ZW\tau\nu_{\tau}$
- $2j + 2b + 1\tau \rightarrow hW\tau\nu_{\tau}$
- $\blacksquare \ 3j + 1b + 2\tau \rightarrow ZZ\tau\tau, Zh\tau\tau$

Event simulation: At LO while accounting for ISR + beamstrahlung:

 $FeynRules \rightarrow Whizard \rightarrow Pythia8 \rightarrow Delphes$

[Model files at **O** prudhvibhattiprolu/VLL-UFOs being used by ATLAS and CMS]

$$N_{\ell} + N_j + N_b = 4$$
$$N_{\tau} = 1 \text{ or } 2$$

Reconstruct Z from $\ell^+\ell^-/jj$, h from bb, and also W from jj if $N_{\tau} = 1$ E.g.,

- $\blacksquare \ 4\ell + 2\tau \to ZZ\tau\tau$
- $\blacksquare 2j + 2b + 2\tau \rightarrow Zh\tau\tau$
- $\bullet 4b + 2\tau \rightarrow hh\tau\tau$

- $4j + 1\tau \rightarrow ZW\tau\nu_{\tau}$
- $2j + 2b + 1\tau \rightarrow hW\tau\nu_{\tau}$
- $\blacksquare \ 3j + 1b + 2\tau \rightarrow ZZ\tau\tau, Zh\tau\tau$

Event simulation: At LO while accounting for ISR + beamstrahlung:

 $FeynRules \rightarrow Whizard \rightarrow Pythia8 \rightarrow Delphes$

[Model files at **O** prudhvibhattiprolu/VLL-UFOs being used by ATLAS and CMS]

Goal: Reconstructing mass peaks for various $M_{\tau'}$ in various signal regions

Peak reconstruction:

• Reconstruct Z/h bosons, B_{α} , and also W bosons, W_{β} , if $N_{\tau} = 1$

Peak reconstruction:

Reconstruct Z/h bosons, B_α, and also W bosons, W_β, if N_τ = 1
Find all the possible (tau, boson) pairings:

$$\tau'_1 \supset (\tau_1, \nu_1, B_\alpha)$$
 and $\tau'_2 \supset \begin{cases} (\tau_2, \nu_2, B_\beta) \text{ in SRs with exactly } 2\tau \\ (\nu_2, W_\beta) \text{ in SRs with exactly } 1\tau \end{cases}$

such that the bosons in τ'_1 and τ'_2 are distinct

• Use collinear approximation for ν_1 from τ_1 decay:

$$E_{\nu_1} = |\vec{p}_{\nu_1}|, \quad \vec{p}_{\nu_1} = (r-1)\vec{p}_{\tau_1},$$

and obtain the four-momentum of the other neutrino using:

such that both ν_1 and ν_2 are on-shell.

• Use collinear approximation for ν_1 from τ_1 decay:

$$E_{\nu_1} = |\vec{p}_{\nu_1}|, \quad \vec{p}_{\nu_1} = (r-1)\vec{p}_{\tau_1},$$

and obtain the four-momentum of the other neutrino using:

such that both ν_1 and ν_2 are on-shell.

• For each pairing, solve for r from:

$$p_{\tau_1'}^2 = p_{\tau_2'}^2$$

and impose $E_{\nu_1} \ge 0$ and $E_{\nu_2} \ge 0$

• Use collinear approximation for ν_1 from τ_1 decay:

$$E_{\nu_1} = |\vec{p}_{\nu_1}|, \quad \vec{p}_{\nu_1} = (r-1)\vec{p}_{\tau_1},$$

and obtain the four-momentum of the other neutrino using:

such that both ν_1 and ν_2 are on-shell.

• For each pairing, solve for r from:

$$p_{\tau_1'}^2 = p_{\tau_2'}^2$$

and impose $E_{\nu_1} \ge 0$ and $E_{\nu_2} \ge 0$

 \blacksquare If multiple pairings survive, pick a pairing that minimizes $|\vec{p}_{\rm total}|$ and

$$M_{\tau'}^{\rm reco} = \sqrt{p_{\tau'_1}^2}$$

Mass peaks: Consider a 500 GeV e^+e^- collider with unpolarized beams ...

- Since $BR(\tau' \to W\nu_{\tau})$ is the largest, we have far better statistics in these SRs
- Backgrounds are (non-)negligible (but still clearly under control)
- \blacksquare Similar peak reconstructions also possible in all SRs with 2τ

Branching ratios: If τ' indeed discovered, the heights of mass peaks in various SRs can be used to determine τ' branching ratios!

Branching ratios: If τ' indeed discovered, the heights of mass peaks in various SRs can be used to determine τ' branching ratios!

• $4\ell + 2\tau$ and $2\ell + 2j + 2\tau$ SRs provide a pure sample of $ZZ\tau\tau$ final state

Similarly,

■ $2\ell + 2b + 2\tau$ and $2j + 2b + 2\tau$ SRs provide a pure sample of $Zh\tau\tau$ final state

Similarly,

■ $2\ell + 2j + 1\tau$ and $2j + 1j + 1b + 1\tau$ SRs provide a pure sample of $ZW\tau\nu$ final state

Similarly,

■ $2j + 2b + 1\tau (4b + 2\tau)$ SR provides a (relatively) pure sample of $hW\tau\nu$ ($hh\tau\tau$) final state

Both Higgs and top factories can also act as discovery machines!

• For $M_{\tau'} < M_h + M_{\tau}$, since $\tau' \to h\tau$ is not accessible, we also reconstruct Z from bb

Conclusions

- Considered an example of weak isosinget vectorlike leptons that are well-motivated
- Demonstrated that its mass peaks can be reconstructed in various signal regions up to close to the kinematic limit
- Heights of the mass peaks in various signal regions can in turn give a handle on the branching ratios

Conclusions

- Considered an example of weak isosinget vectorlike leptons that are well-motivated
- Demonstrated that its mass peaks can be reconstructed in various signal regions up to close to the kinematic limit
- Heights of the mass peaks in various signal regions can in turn give a handle on the branching ratios

 e^+e^- collider may act as a discovery machine for particles with only electroweak interactions that have limited reach at a hadron collider!

Precision electroweak:

If τ' is stable over detector lengths, then it can be inferred that $M_{\tau'} \gtrsim 750$ GeV based on the -dE/dx and time of flight measurements in searches for long lived charginos at the LHC

Partonic pair-production cross-section $\hat{\sigma}(e^+e^- \to \tau'^+\tau'^-)$:

$$\hat{\sigma} = \frac{2\pi\alpha^2}{3} (\hat{s} + 2M_{\tau'}^2) \sqrt{1 - 4M_{\tau'}^2/\hat{s}} \left[|a_L|^2 (1 - P_{e^-})(1 + P_{e^+}) + |a_R|^2 (1 + P_{e^-})(1 - P_{e^+}) \right],$$

where the left-handed and right-handed amplitude coefficients are

$$a_L = \frac{1}{\hat{s}} + \frac{1}{c_W^2} (s_W^2 - 1/2) \frac{1}{\hat{s} - M_Z^2},$$

$$a_R = \frac{1}{\hat{s}} + \frac{s_W^2}{c_W^2} \frac{1}{\hat{s} - M_Z^2}.$$

■ P = 1 and -1 corresponding to pure right-handed and left-handed polarizations

• Since $|a_L| < |a_R|$ for $\sqrt{\hat{s}} > 93$ GeV, we see that the production cross-section is maximized when P_{e^-} is positive (and, if available, when P_{e^+} is negative)

At $\sqrt{s} = 1.5$ and 3 TeV:

- Since the production cross section falls with \sqrt{s} , a lack of adequate statistics can be an issue in some signal regions
- Backgrounds can be more significant, but with a smooth mass distribution that should be under good theoretical control