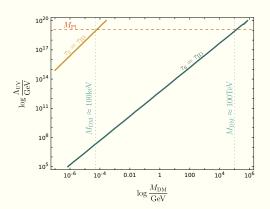
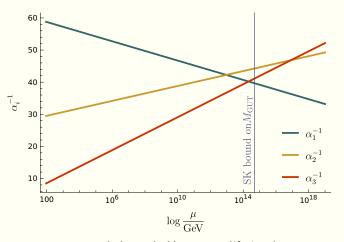
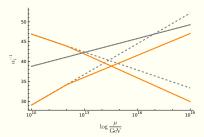
Accidental Composite Dark Matter and Grand Unification

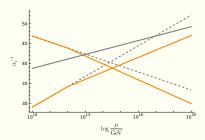

Stefano Palmisano

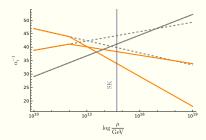
Dark Matter

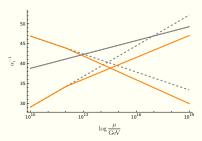

- Must be neutral
 - no electric charge
 - uncolored
 - hypercharge also constrained
- Must be stable:
 - Bound depends on mass and decay products
 - $\tau_{\rm DM} \gtrsim 10^{28} \, {\rm s}$

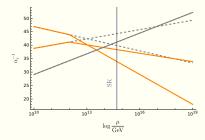
Accidentally Stable Particles


$$au_n \sim rac{8\pi}{m} \left(rac{\Lambda}{m}
ight)^{2n-8}$$


Grand Unification in the SM

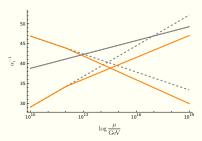

GUT scale bounded by proton lifetime*


No SU(2) charged particles

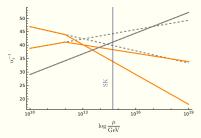

No SU(2) charged particles

No colored particles

No SU(2) charged particles



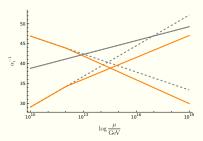
No colored particles


Grand-Unifying New Physics

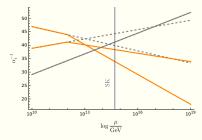
▶ Must be charged under SU(2)_L

^{*10.1007/}jhep09(2016)014

No SU(2) charged particles



No colored particles


Grand-Unifying New Physics

▶ Must be charged under $SU(2)_L$ and colored*.

^{*10.1007/}jhep09(2016)014

No SU(2) charged particles

No colored particles

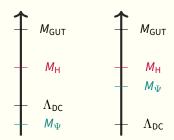
Grand-Unifying New Physics

- ▶ Must be charged under $SU(2)_L$ and colored*.
- How can it be dark matter?

Accidental Composite Dark Matter

 $SU(N_{DC}) \otimes SU(5)_{GUT}$ theories

- Color of dark quarks confined in color-neutral dark hadrons
- Dark baryon number keeps the lightest dark baryon stable, no need of ad-hoc symmetries


^{*10.1007/}JHEP07(2015)039

[†]https://doi.org/10.1007/JHEP10%282017%29210

Accidental Composite Dark Matter

 $SU(N_{DC}) \otimes SU(5)_{GUT}$ theories

- Color of dark quarks confined in color-neutral dark hadrons
- Dark baryon number keeps the lightest dark baryon stable, no need of ad-hoc symmetries
- Strongly-coupled, or QCD-like*
- Weakly-coupled, or "Coulomb-like"[†]

^{*10.1007/}JHEP07(2015)039

[†]https://doi.org/10.1007/JHEP10%282017%29210

Régimes

Strongly coupled

- ightharpoonup Dark baryons with mass $\sim \textit{N}_{
 m DC}\Lambda_{
 m DC}$
- Cross section at unitarity limit $\langle \sigma \, {\it v} \rangle \sim {\pi \over \Lambda_{
 m DC}} \longrightarrow {\it M}_{
 m DM} \sim 100 \, {\rm TeV}$
- Lightest dark hadrons → dark pions (pseudo-Nambu-Goldstone bosons)

Régimes

Strongly coupled

- ightharpoonup Dark baryons with mass $\sim \textit{N}_{ extsf{DC}}\Lambda_{ extsf{DC}}$
- ► Cross section at unitarity limit $\langle \sigma \, v \rangle \sim \frac{\pi}{\Lambda_{\rm DC}} \longrightarrow \textit{M}_{\rm DM} \sim 100 \, {\rm TeV}$
- Lightest dark hadrons → dark pions (pseudo-Nambu-Goldstone bosons)

Weakly coupled

- lacktriangle Dark baryons with mass $\sim \mathit{N}_{\mathsf{DC}} \mathit{M}_{\Psi}$
- Lightest dark hadrons → dark glueballs
- Cosmology more subtle

Lightest Dark Baryon

Strongly-coupled

- $\Delta_{\rm spin} M \sim \Lambda_{\rm DC}$
- $\Delta_{\rm SM} M \sim \alpha_{\rm SM} \Lambda_{\rm DC} \ll \Lambda_{\rm DC}$

Weakly-coupled*

- $\Delta_{\text{SM}} M \sim \alpha_{\text{DC}} \alpha_{\text{SM}} M_{\Psi}$
- $\Delta_{\mathsf{spin}} \mathcal{M} \sim lpha_{\mathsf{DC}}^4 \mathcal{M}_\Psi \ll \Delta_{\mathsf{SM}} \mathcal{M}_\Psi$

Lightest Dark Baryon

 \longrightarrow spin \longrightarrow spin \longrightarrow

— SM rep ————

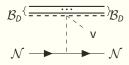
 \longrightarrow spin \longrightarrow

^{*}Davide Barbini - Tesi Magistrale

- Dark quark from SU(5) fragments, e.g.
 - $Q \sim (\mathbf{3},\mathbf{2})_{\frac{1}{6}} \subset \mathbf{10} \quad \text{of } SU(5)$
 - $\widetilde{D}\sim (\mathbf{3},\mathbf{1})_{-\frac{1}{2}}\subset \mathbf{5} \quad \text{of } \mathit{SU}(5)$

- Dark quark from SU(5) fragments, e.g.
 - $\ \ \, \mathbf{Q} \sim (\mathbf{3},\mathbf{2})_{\frac{1}{2}} \subset \mathbf{10} \quad \text{of } \mathit{SU}(5)$
 - $\widetilde{D} \sim (\mathbf{3}, \mathbf{1})_{-\frac{1}{2}} \subset \mathbf{5}$ of SU(5)
- Interactions with Higgs determine accidental symmetries
 - ▶ Q^cHD
 - $\qquad \qquad \bullet \quad \textit{U}(1)_{\textit{Q}} \otimes \textit{U}(1)_{\widetilde{\textit{D}}} \rightarrow \textit{U}(1)_{\mathsf{dark}\,\mathsf{baryon}}$

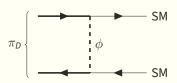
- Dark quark from SU(5) fragments, e.g.
 - ▶ $Q \sim (\mathbf{3}, \mathbf{2})_{\frac{1}{3}} \subset \mathbf{10}$ of SU(5)
 - **▶** $\widetilde{D} \sim (\mathbf{3}, \mathbf{1})_{-\frac{1}{2}} \subset \mathbf{5}$ of SU(5)
- Interactions with Higgs determine accidental symmetries
 - ▶ Q^cHD
 - lacksquare $U(1)_Q \otimes U(1)_{\widetilde{D}} o U(1)_{\mathsf{dark \, baryon}}$
- N.B. Accidental symmetries keeping charged particles stable must be broken explicitly, or the model discarded

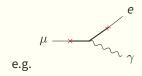

- Dark quark from SU(5) fragments, e.g.
 - $Q \sim ({f 3},{f 2})_{\frac{1}{2}} \subset {f 10}$ of SU(5)
 - $\widetilde{D} \sim (\mathbf{3}, \mathbf{1})_{-\frac{1}{2}} \subset \mathbf{5}$ of SU(5)
- ► Interactions with Higgs determine accidental symmetries
 - ▶ Q^cHD
 - lacksquare $U(1)_Q \otimes U(1)_{\widetilde{D}} o U(1)_{\mathsf{dark \, baryon}}$
- N.B. Accidental symmetries keeping charged particles stable must be broken explicitly, or the model discarded
- $ightharpoonup Q \oplus \widetilde{D}$ essentially only viable model*

Adding a Scalar Dark Quark

- Singlet scalar dark quark* $\phi \sim (\mathbf{1}, \mathbf{1})_0$ allows new interactions
 - $\Psi_D^c \phi \psi_{SM}$
 - Breaks unwanted accidental symmetries
 - Transfer SM baryon and lepton number to dark quarks
 - $|\phi|^2 |H|^2$
 - Portal for hybrid dark hadrons
- Several more models (but all extensions of $Q \oplus \widehat{D}$!)
- Peculiar phenomenology

Phenomenology with Dark Scalar


Direct Detection


Dark leptoquarks

"
$$\bar{\mathsf{Q}}$$
L" $\sim (\mathbf{3}, \mathbf{1} \oplus \mathbf{3})_{-\frac{2}{2}} \sim \mathsf{S}_1 \oplus \mathsf{S}_3$

$D\pi s$ at colliders

Lepton Flavor and CP Violation

GUTzilla

▶ Direct detection bounds* $M_{\rm DM}/(2Y)^2 > 2 \times 10^{10} \, {\rm GeV}$

^{*}arXiv:2410.17036

[†]10.1007/jhep09(2016)014

GUTzilla

- Direct detection bounds* $M_{\rm DM}/(2Y)^2 > 2 \times 10^{10} \, {\rm GeV}$
- Minimal extension of SM for unification[†]

which needs an ultraheavy scenario

^{*}arXiv:2410.17036

[†]10.1007/jhep09(2016)014

GUTzilla

- ▶ Direct detection bounds* $M_{\rm DM}/(2Y)^2 > 2 \times 10^{10} \, {\rm GeV}$
- Minimal extension of SM for unification[†]

$$\mathbf{Q} \sim (\mathbf{3},\mathbf{2})_{rac{1}{6}} \quad \mathrm{with} \; \mathbf{N}_{\mathrm{DC}} = 3 \; \longrightarrow \; \mathbf{\hat{}} \; \mathbf{Q} \mathbf{Q}'' \sim (\mathbf{1},\mathbf{2})_{rac{1}{2}} \, ,$$

which needs an ultraheavy scenario

Symmetry broken at dimension 6

$$\frac{QQQ\ell}{M^2}$$

not enough for accidental stability with masses so large

^{*}arXiv:2410.17036

[†]10.1007/jhep09(2016)014

Raise Number of Dark Colors

N_{DC}	Operator	Dimension	Bound on M _{DM}	Lightest DB
3	QQQℓ	6	$2\cdot 10^5\mathrm{GeV}$	$({f 1},{f 2})_{rac{1}{2}}$

Raise Number of Dark Colors

N_{DC}	Operator	Dimension	Bound on M _{DM}	Lightest DB
3	$QQQ\ell$	6	$2\cdot 10^5\mathrm{GeV}$	$({f 1},{f 2})_{rac{1}{2}}$
6	$Q^6H^\dagger H^\dagger$	11	$3\cdot 10^{14}\mathrm{GeV}$	$\left(1,1 ight)_{1}^{2}$
9	Q^9e^cH	16	$2\cdot 10^{16}\mathrm{GeV}$	$({f 1},{f 2})_{rac{3}{2}}$

Raise Number of Dark Colors

N_{DC}	Operator	Dimension	Bound on M _{DM}	Lightest DB
3	$QQQ\ell$	6	$2\cdot 10^5\mathrm{GeV}$	$egin{array}{c} ({f 1},{f 2})_{rac{1}{2}} \ ({f 1},{f 1})_1 \end{array}$
6	$Q^6H^\dagger H^\dagger$	11	$3\cdot 10^{14}\mathrm{GeV}$	
9	Q^9e^cH	16	$2\cdot 10^{16}\mathrm{GeV}$	$({f 1},{f 2})_{rac{3}{2}}$

Extend Model with other Dark Quarks

Extending with dark quarks from the 10 of SU(5) always yields charged lightest dark baryon

Raise Number of Dark Colors

N _{DC}	Operator	Dimension	Bound on M _{DM}	Lightest DB
3	$QQQ\ell$	6	$2\cdot 10^5\mathrm{GeV}$	$({f 1},{f 2})_{rac{1}{2}}$
6	$Q^6H^\dagger H^\dagger$	11	$3\cdot 10^{14}\mathrm{GeV}$	$({\bf 1},{\bf 1})_1^2$
9	Q^9e^cH	16	$2\cdot 10^{16}\mathrm{GeV}$	$({f 1},{f 2})_{rac{3}{2}}$

Extend Model with other Dark Quarks

- Extending with dark quarks from the 10 of SU(5) always yields charged lightest dark baryon
- Must look at 15 of SU(5) or beyond

Thank you for the attention