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Numerical methods and Holography

Holography often appears in talks’ titles.

Set it aside for now.

A couple of crowd questions about numerical methods:
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Numerical methods and Holography

Crowd question:

Who enjoys doing numerical tasks?
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Numerical methods and Holography

Crowd question:

Who, in the past few months, had

to use numerical methods?
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Numerical methods and Holography

Crowd question:

Who would have preferred not to

do so?
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Numerical methods and Holography

Claim of the talk:

Numerical methods are often necessary, or at least useful.

They can sometimes be as effective1 as analytical ones, and

provide what we want from a proper theoretical result.

(often with a clearer visualization!)

1
Obvious exaggeration.
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Strongly coupled theories

Research area of good use for numerical methods

What: QCD

QCD-like theories are

interesting and immediate

examples of strong coupling

How: HOLOGRAPHY

Duality used as a tool to probe

the strong-coupling regime of

the field theory
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QCD-like theories

SM’s QCD is state-of-the-art for strong interaction, but it is not perfect

Examples:

Confinement

It is phenomenologically known that

quarks and gluons are confined within

hadrons. What is the mechanism that

gives rise to this?

a

a
Courtesy of nLab

Phase diagram

A rich phase structure is expected. Is

there a critical point at finite density?

How does the phase transition

happen?

T

Hadronic Quark Matter

in the cosmological case the metastable phase is supercooled. In this first paper we will take

advantage of the physical picture that emerges from the large body of work devoted to the

cosmological case to give an order-of-magnitude estimate of the frequency and amplitude

of the GW signal in a neutron star merger. A more refined analysis will be presented

elsewhere [14].

In the cosmological case the separation of scales is provided by the fact that the

expansion rate of the Universe, H
�1, with H the Hubble rate, is much longer than the

microscopic time scale given by the inverse of the local temperature, T
�1. As the Universe

expands and cools down it eventually enters the metastable phase. At some point bubbles

of the stable phase begin to nucleate. These bubbles then grow and collide and eventually

leave behind a superposition of long-lived sound waves propagating on the stable phase.

At su�ciently late times turbulence may also develop. Although each of these processes

contributes to the GW spectrum, it is believed that the dominant contribution comes from

collisions of sound waves with one another. As a first approximation, we will assume that

the same may be true in a NS merger. We will first determine the peak frequency of the

GWs and then we will estimate their characteristic strain.

The peak wavelength of the produced GWs is given by the characteristic wavelength

of the sound waves, which in turn is determined by the mean bubble separation, R. To

estimate the latter we recall that, once the system is in the metastable phase, the bubble

nucleation rate per unit volume takes the form

�(t)

V
= µ(t)4 e

�S[µ(t)]
, (2.1)

where S is the action of the critical bubble at the chemical potential µ

. This scale, which is the dominant one in NS, would be replaced by the temperature in

the cosmological case. The phase transition starts when the nucleation rate in the available

volume of metastable phase becomes comparable to the characteristic evolution rate of the

system. NS merger simulations show that the typical size of a HoCS is L ⇠ 1 km. In the

cosmological case this would be the Hubble radius, H
�1. The evolution rate has units of

inverse time and measures the rate at which the physical properties of the system change,

for example
1

⌧
=

1

µ

dµ

dt
. (2.2)

NS simulations show that this is of order ⌧ ⇠ 1 ms. In the cosmological case this would be

the Hubble expansion rate, H
�1. Using these values, together with µ ⇠ 1 GeV, we see that

the phase transition starts when the action of the critical bubble reaches the numerical

value

S ⇠

for the HoCS with a characteristic time scale set by the merger ⌧ ⇠ 1ms. Its relation

to the heating/compression rate is,

Recent NS merger simulations show that a typical size LHoCS ⇠ 1km for the HoCS

with a characteristic time scale set by the merger ⌧ ⇠ 1ms. Its relation to the heat-

ing/compression rate is,
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C

Non-superconducting

Superconducting

in the cosmological case the metastable phase is supercooled. In this first paper we will take

advantage of the physical picture that emerges from the large body of work devoted to the

cosmological case to give an order-of-magnitude estimate of the frequency and amplitude

of the GW signal in a neutron star merger. A more refined analysis will be presented

elsewhere [14].

In the cosmological case the separation of scales is provided by the fact that the

expansion rate of the Universe, H
�1, with H the Hubble rate, is much longer than the

microscopic time scale given by the inverse of the local temperature, T
�1. As the Universe

expands and cools down it eventually enters the metastable phase. At some point bubbles

of the stable phase begin to nucleate. These bubbles then grow and collide and eventually

leave behind a superposition of long-lived sound waves propagating on the stable phase.

At su�ciently late times turbulence may also develop. Although each of these processes

contributes to the GW spectrum, it is believed that the dominant contribution comes from

collisions of sound waves with one another. As a first approximation, we will assume that

the same may be true in a NS merger. We will first determine the peak frequency of the

GWs and then we will estimate their characteristic strain.

The peak wavelength of the produced GWs is given by the characteristic wavelength

of the sound waves, which in turn is determined by the mean bubble separation, R. To

estimate the latter we recall that, once the system is in the metastable phase, the bubble

nucleation rate per unit volume takes the form

�(t)

V
= µ(t)4 e

�S[µ(t)]
, (2.1)

where S is the action of the critical bubble at the chemical potential µ

. This scale, which is the dominant one in NS, would be replaced by the temperature in

the cosmological case. The phase transition starts when the nucleation rate in the available

volume of metastable phase becomes comparable to the characteristic evolution rate of the

system. NS merger simulations show that the typical size of a HoCS is L ⇠ 1 km. In the

cosmological case this would be the Hubble radius, H
�1. The evolution rate has units of

inverse time and measures the rate at which the physical properties of the system change,

for example
1

⌧
=

1

µ

dµ

dt
. (2.2)

NS simulations show that this is of order ⌧ ⇠ 1 ms. In the cosmological case this would be

the Hubble expansion rate, H
�1. Using these values, together with µ ⇠ 1 GeV, we see that

the phase transition starts when the action of the critical bubble reaches the numerical

value

S ⇠

for the HoCS with a characteristic time scale set by the merger ⌧ ⇠ 1ms. Its relation

to the heating/compression rate is,

Recent NS merger simulations show that a typical size LHoCS ⇠ 1km for the HoCS

with a characteristic time scale set by the merger ⌧ ⇠ 1ms. Its relation to the heat-

ing/compression rate is,
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Holography

Conjectured equivalence between strong gauge and weak gravity

Holographic principle: duality between

⇔

As of today, there is no QCD holographic dual, but known theories mimic aspects of

QCD (confinement, phase structure)⇒ useful tool to study strong interaction

nonperturbative QFT

in D dimensions

classical gravity in

D + 1 dimensions
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Numerical methods

What are they good for?

Analysis: numerical integration and differentiation, even via standard techniques (qua-

drature, finite differences) often allow arbitrarily high precision

Optimization: numerical solution of EoM via action minimization, allows for arbitrary

number of boundary conditions to be imposed

Simulation: solving (linearized) EoM on a spacetime grid to study evolution phenome-

na like phase transitions

Modeling: well-built numerical approximations of exact objects (functions, surfaces)

are easily controllable
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Numerical methods

How to use them properly

Error analysis: check convergence of numerical approximation error wrt numerical

parameters

Toy models: test algorithms on problems with a similar structure but known (or com-

putable) solution

Data-aware programming: different languages use memory differently, and some

programs might require a lot of data to be used/stored

Algorithmic efficiency: exploit the available resources, by vectorization, paralleliza-

tion, usage of GPUs
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Numerical methods

How to use them properly (example)
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Confinement and screening

Aim: study confinement and screening in a QCD-like theory

→ study how the Wilson loop VEV (i.e. quark-antiquark potential) scales with quark-

antiquark separation

〈Wl〉 = Tr P exp
(
−i

∮
l

A

)
∼ exp(−T · E(L))

2

2
courtesy of S. Chatterje
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Holographic Wilson loop

Holographically dual to a quiver gauge theory [Cremonesi, Tomasiello 2015] with su-

persymmetry

→ calculate Wilson loop VEV by hanging a fundamental string probe with endpoints

separated in the boundary QFT; string dives into the gravity bulk, minimizing its action

SNG in a nontrivial way [Maldacena 1998]
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Numerical solution

EoM for probe string is highly non-linear, coupled, boundary value problem. Daunting to

tackle analytically.

But hanging string can be modeled numerically (e.g. via splines, i.e. piecewise polyno-

mials on a subdivided interval)!

Interest: L dependancy in E(L), a (good) numerical approximation would suffice

⇒ find solution via numerical optimization (i.e. minimization) of NG action, computed

via simple trapezoidal quadrature

Julia module RobinHood.jl, publicly available on github [M.G., Fatemiabhari, Nunez

2024]
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Numerical solutions
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Fit of E(L)
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P=10, z*=1

E(L) = −a

L
+ γ

1− e−bL

b

For small L conformal-to-confining: E(L → 0) = − a

L
+ γL

For large L screening E(L → ∞) = γ
b
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Bubbles in HQCD

Aim: simulate bubbles in a QCD-like theory

→ study bubble wall velocity (nonequilibrium parameter)
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Holographic setup

Gravity bulk theory: Einstein-Maxwell-Dilaton theory [DeWolfe, Gubser, Rosen 2010]

S =
2

κ2
5

∫
d5x

√
−g

(
1

4
R− 1

2
(∂φ)2 − V(φ)− f(φ)

8
F2
)

on 5D black hole metric

ds2 = e2A(r)(−h(r)dt2 + d~x2) +
e2B(r)

h(r)
dr2

Solutions of gravity theory used to

compute (meta-)stability

25 / 30



Time evolution

Evolving perturbation in metastable states, we observe bubbles

Using Julia module Jecco.jl, simulate time evolution in the bulk of expanding planar

configurations [M.G., Mateos et al. 2024]

Stress tensor on the boundary → relate to thermodynamical quantities of QFT, like

energy density evolution during the phase transition
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Bubble wall velocity

Nonequilibrium parameter
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Conclusions
• In settings like holographic dual of QCD-like theories, using numerical methods can

yield interesting results

1. In a top-down model, we found evidence of a screening mechanism

– Setup: quiver field theory

– Tool: holographic Wilson loop

– Numerics: action minimization on splines

2. In a phenomenological model, we computed bubble wall velocity

– Setup: Einstein-Maxwell-Dilaton

– Tool: bubble nucleation

– Numerics: time-evolution simulation

• Moreover, the numerical tools employed are easily generalizable to other, similar,

problems
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Extra slides
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Numerical methods

Programming languages used:

• MATLAB

→ Standard for numerical modeling and analysis

→ Intuitive vectorization and parallelization

→ Availability of libraries, easiness to write new ones

• julia

→ Compiled-level performance, fastest among high-level languages

→ Optimized for numerical tasks

→ Open-source and free
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Holographic Wilson loop

Probing the bulk to study the boundary

Wilson loop expectation value in QFT ⇔ embedding probe string in gravity dual →
study Nambu-Goto action, will be minimized

SNG = TF1

∫
dσdτ

√
−g

Different submanifold embedding possible:

usual→ x quark separation, r holographical direction

ours→ x, r and z quiver direction

Common choice: x(σ) = σ

⇒ SNG = TF1T

∫
dx
√

F2 + G2r′2 + S2z′2

where F2, G2, S2 depend on r and α(z), only further specification to be made
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Holographic Wilson loop

Open string with endpoints on D-brane at r → ∞

Distance L between endpoints⇔ separation non-dynamical qq̄ in QFT

After regularization (two static strings, rest mass of qq̄) can study E(L)

Specifyα(z): our QFT has flavor, ∀ kink in R(z) there is a flavor group (stack of localized
D-branes). Endpoints on D-brane at z = z∗ ∈ N

→ screening3, creation of dynamical QQ̄ on flavor brane, disrupts the qq̄ string. Even

if qq̄ sits at different z, there is interaction “pulling” the string

qq̄ −→ qQ̄+ Qq̄

3
or something closely related
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Holographic Wilson loop

4

4
courtesy of S. Chakraborty
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Quiver gauge theory

Diagrammatic representation of groups and matter

Circular node Ni = gauge group U(Ni)
Square node Fi = flavor group U(Fi)
Link = matter in bifundamental

In Holography, the dual of quiver theories

have localized D-branes at quiver nodes

along quiver direction [Cremonesi,

Tomasiello 2015]
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Supergravity background: step 1
Construct the dual to the desired QFT

massive IIA

ds210 = . . . ds2AdS7 + . . . dz2 + . . . dΩ2

with NS forms, Ramond field, dilaton

dependent on α(z, P) → specify

geometry solution of mIIA EoM

⇔

|

|

|

|

|

|

|

6D N = (1, 0) quiver SCFT

linear quiver, P− 1 gauge nodes,
anomaly-free, with flavor

described by rank function

R(z, P) ∝ α′′(z, P)

color and flavor group ranks are found

at integer z in R and its derivatives
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Supergravity background: step 2
Construct the dual to the desired QFT

compactification to AdS5

compactify on H2 to preserve SUSY

flow metric, NS forms, Ramond fields,

dilaton (still dependent on α) solve
mIIA EoM and BPS eq

r → ∞ goes to gauge transformation

of the AdS7 background

r → −∞ goes to fixed point dual to

⇔

|

|

|

|

|

|

|

|

|

|

flow to 4D N = 1 SCFT

symmmetry group

SO(2, 4)× U(1)R × SU(N)P−1 with

flavor

still preserves SUSY (good)

still conformal (bad)
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Supergravity background: step 3
Construct the dual to the desired QFT

AdS5 compactified on S1φ

compactify on S1φ with 1-formA ∝ dφ
to preserve SUSY

ds210 = . . . ds25 + . . . dz2 + . . .

ds25 =

r2(−dt2 + d~x2 + f(r)dφ2) + dr2
r2f(r)

f(r) = 1− µ
r4
− 1

r6

metric and fields solve Einstein,

Maxwell, Bianchi EoM

Bianchi indicates sources, D8

⇔

|

|

|

|

|

|

|

|

|

|

|

|

(2+1)D gapped QFT

admits possibility of “screening”

can still preserves SUSY (very good)

good field theory to probe with Wilson

loop
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Phase diagram
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Bubble dynamics

Initial state: metastable homogeneous (superheated/supercooled) with large locali-

zed perturbation

After FOPT: stable state inside the bubble (hot/cold)
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B-splines
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Surface hat function
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α(z)
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Wall velocity on phase diagram
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Quiver pulling string

N1 N2 . . . NPNP−1. . .

FP−1

••
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Full supergravity metric

ds2 = f1(z)ds
2
AdS7

+ f2(z)dz
2 + f3(z)dΩ

2(θ2, φ2),

B2 = f4(z)Vol(S2), F2 = f5(z)Vol(S2), eΨ = f6(z).

f1(z) = 8
√
2π

√
− α

α′′ , f2(z) =
√
2π

√
−α′′

α
,

f3(z) =
√
2π

√
−α′′

α

(
α2

α′2 − 2αα′′

)
,

f4(z) = π

(
−z+

αα′

α′2 − 2αα′′

)
, f5(z) =

(
α′′

162π2
+

πF0αα
′

α′2 − 2αα′′

)
,

f6(z) = 2
5
4π

5
2 34

(−α/α′′)
3
4√

α′2 − 2αα′′
.
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Free energy phase diagram
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