Analysis of low energy Nuclear Recoils' from AmBe neutron source

Luca Zappaterra Master Thesis

LIME: Large Imaging module

50 litres sensitive volume:

$33 \times 33 \sim 1000 \text{ cm}^2 \text{ GEM surface};$

50 cm drift path;

A 50 | Cygno prototype overground characterization

Eur.Phys.J.C 83 (2023) 10, 946

LIME: Large Imaging module

- It is a 50 L TPC with:
 - Gas Mixture: **He:CF₄(60:40)**
 - 3 stacked Gas Electron Multipliers (GEMs) for the amplification stage.
 - 1 **APS** (CMOS) camera to acquire photons produced during the GEM stage.
 - 4 **PMTs** to obtain information about the ionisation electrons time of arrival.

HIGH RESOLUTION 2304 × 2304 5.3 Megapixels

READOUT NOISE 0.7 electrons rms Ultra-quiet Scan

Data taking setup

The detector was shielded in a 10 cm thick copper box in the Gran Sasso underground labs;

> A 50 cm thick polietilene wall was placed to screen the external part of the lab

Data taking setup

Two different periods used:

Alias		Runs range		Date range [mm/dd] Ef	f. Exj	
AmBe_p1		$23820 \div 23984$		$08/02 \div 08/03$	İ	1	
AmBe + Fe		$23988 \div 24022$		$08/03 \div 08/03$:	
$AmBe_p2$		$24023 \div 24328$		$08/03 \div 08/04$		3	
Alias	Alias Runs range		Date range [mm/dd]		Eff.	Exp	
Bkg	Bkg $25735 \div 27844$		$29/09 \div 10/10$			220	

▶ 47.9 h (172440 sec) with AmBe

> 226.9 h (816840 sec) without AmBe

Data taking setup

- Most of neutrons produced in the MeV range
- Detailed MC under development
- We expect **NR with hundreds of keV** energies
- From previous tests we expect NR to produce very "dense" tracks with large losses per unit area (i.e. lot of light per pixel)
- \blacktriangleright We defined a variable δ that indicates the of each reconstructed cluster

Davide Pinci - INFN Roma

• We defined a variable δ that indicates the ratio between the total light and the area

AmBe excess selection δ vs. sc_integral distribution (AmBe) δ vs. sc integral distribution (Bkg) 100 With AmBe No AmBe = Bkg $\delta = e^{nergy} / (\# hit pixels)$ 80 60 [ADU/px] 20 750 1000 1250 1500 1750 2000 250 750 1000 1250 1500 1750 2000 250 500 500 0 0 Energy calibrated on ⁵⁵Fe [keV] Energy calibrated on ⁵⁵Fe [keV]

Disclaimer: because of the "gain saturation", NR scale still to be evaluated

7

AmBe excess selection

Disclaimer: because of the "gain saturation", NR scale still to be evaluated

 10^{-5}

AmBe excess selection (zoom)

Davide Pinci - INFN Roma

Disclaimer: because of the "gain saturation", NR scale still to be evaluated

AmBe excess selection

Because of the saturation, **alpha energies** Most of **NR** selected in this analysis are expected to have an energy of few hundreds of keV appear 6-10 times lower the the real ones

Simulation needed to properly evaluate these values

AmBe excess selection - Some samples

Davide Pinci - INFN Roma

11

Map of AmBe Nuclear Recoils

Directionality evaluation

- Principal Component Analysis (PCA) with 2 parameters on the most intense part of the clusters to extract the clusters' axes.
- Use always the **biggest eigenvector** to compute the **angle with respect to the** \hat{x} **direction**.
- A better algorithm was developed for ER and should be used on NR to take into account possible lateral straggling
- **Impose the head-tail**, since we know this excess comes from the AmBe source.
- Do the same on the Background dataset and compare to see if there are differences.

Directionality evaluation - AmBe vs. Bkg

The presence of AmBe source produces an excess of Nuclear Recoil candidates;

A simple 2nd order polynomial fit shows that **background** is compatible with **flat distribution** while the presence of **AmBe** produces a **peaked distribution**;

14

Monte Carlo validation

To evaluate the expected 1D angle distribution for NR induced by the neutron scattering, a simple kinematic MC was developed

- Model the interaction as a simple elastic scattering.
- **Simulate nuclear recoil** inside the detector frame.
- Project the angle on the GEM plane and **compare with the observed distribution**.
- Add an experimental resolution on the angle reconstruction

Monte Carlo validation

Where $\sin \gamma = \frac{b}{r+R}$ depends on the impact parameter and the sum of the radii;

different nuclei, assuming r = 1 and $R = \sqrt[3]{A}$

The PDF of the θ_W for the different species do not depend on the nucleus radius (while, the cross section and the transferred momentum do)

Davide Pinci - INFN Roma

The scattering angle in the Lab frame is $\theta_W = \arctan \frac{\sin \gamma}{1 + \cos \gamma}$

Camera-like angle (wrt \hat{x})

Monte Carlo validation

With an simulated **resolution on the angle r** distributions below

Davide Pinci - INFN Roma

With an simulated resolution on the angle reconstruction of 30°, 45° and 60° we found the

Monte Carlo validation

With an experimental **resolution on the angle reconstruction of 45°** a reasonable agreement was found

Directionality evaluation - KS test

- Based on the maximum distance between the **cumulative distribution** functions (CDF), it returns a pValue indicating the **probability that the two** samples are extracted from the same **PDF**:

Samples	pValue
AmBe - Bkg	0.010
AmBe - MC(30)	0.001
AmBe - MC(45)	0.964
AmBe - MC(60)	0.138
Bkg - MC(45)	0.003

• To study the compatibility between the two samples, the **Kolmogorov-Smirnov Test** was used;

Conclusions

compared with **384 in a longer data-taking without source**;

- different for the AmBe and bkg neutron, indicating a **clear sensitivity to the NR direction**;
- a direction resolution of about 45°:
- A new longer run is undergoing:
- increase statistics (2 weeks of data taking);
- upgrade the **selection** to go deeper in energy (in the ER see);
- exploit more sensitive algorithms for **original direction reconstruction**;
- perform a **complete MC of the setup** for data comparison;

Davide Pinci - INFN Roma

First RUN with **AmBe** (Aug 2023) lasted about **48 hours**: **1388 NR candidates** were identified, to be

The distribution of their **angles reconstructed** with a **simple PCA** performed on the saved clusters is:

