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We present a new quantum field-theoretic definition of fully unintegrated dihadron fragmentation
functions (DiFFs) as well as a generalized version for n-hadron fragmentation functions. We demon-
strate that this definition allows certain sum rules to be satisfied, making it consistent with a number
density interpretation. Moreover, we show how our corresponding so-called extended DiFFs that
enter existing phenomenological studies are number densities and also derive their evolution equa-
tions. Within this new framework, DiFFs extracted from experimental measurements will have a
clear physical meaning.

Introduction — High-energy collisions of hadrons are
central to understanding their femtoscale structure at
the level of quarks and gluons (partons) within the the-
ory of quantum chromodynamics (QCD). The critical in-
gredients that encode this information are parton dis-
tribution functions (PDFs) and fragmentation functions
(FFs). A crucial property of PDFs and FFs is their inter-
pretation as number densities in a parton model frame-
work [1, 2], which consequently allows one to derive cer-
tain sum rules [1–5]. For example, the unpolarized trans-

verse momentum dependent (TMD) PDF f i/N
1 (x, k⃗2T )

gives the number density in the momentum fraction x
and transverse momentum k⃗T of a parton i = q or g in
a nucleon N [1, 2]. Similarly, the unpolarized TMD FF

Dh/i
1 (z, P⃗ 2

⊥) gives the number density in the momentum

fraction z and transverse momentum P⃗⊥ of a hadron h
fragmenting from a parton i [1, 2]. Since PDFs and FFs
are number densities, one can also use them to calculate
expectation values (see, e.g., Refs. [6–9]). The informa-
tion contained in sum rules and expectation values are
important pieces to understanding hadronic structure as
well as constraining or cross-checking phenomenological
extractions and model calculations of PDFs and FFs.

The most common type of FFs describes the situation
where a single hadron h is detected in the final state,
i → hX (X representing all undetected particles). An-
other intensely studied class of reactions analyzes the
case of two hadrons h1, h2 being detected from the same
parton-initiated jet, i → (h1h2)X , where dihadron FFs
(DiFFs) become relevant [10–50]. The quantum field-
theoretic definition of DiFFs at the fully unintegrated
level (what we will call uDiFFs) was first written down
almost 25 years ago in the pioneering paper of Bianconi,
Boffi, Jakob, and Radici (BBJR) [20]. This work has
been the basis for all subsequent dihadron-related re-
search for observables sensitive to the relative transverse
momentum of the two hadrons [21–25, 27, 31, 32, 35–
39, 41–48]. Unfortunately, the BBJR definition does
not allow the uDiFFs, nor the so-called extended DiFFs
(extDiFFs) that are the focus of existing phenomenolog-

ical analyses, to retain a number density interpretation
in a parton model framework.

The main purpose of this Letter is to disseminate a
new definition of uDiFFs that corrects this issue. We jus-
tify its number density interpretation by explicitly prov-
ing certain sum rules. We also show our correspond-
ing extDiFFs are number densities and derive their evo-
lution equations. Given the existing electron-positron
annihilation dihadron cross section data [51], dihadron
transverse single-spin asymmetries in electron-positron
annihilation [52], semi-inclusive deep-inelastic scatter-
ing [53, 54], and proton-proton collisions [55, 56], and
anticipated measurements of the proton-proton dihadron
cross section and SIDIS dihadron multiplicities, one even-
tually will be able to perform rigorous fits of extD-
iFFs within QCD global analyses. These studies must
be carried out within our new framework for the ex-
tracted extDiFFs to have a clear physical meaning – see
Refs. [57, 58].

New Correlator Definition of DiFFs— We begin by
briefly discussing two different reference frames that will
be relevant for our analysis: the “parton frame” (p), where
the fragmenting parton has no transverse momentum,
and the “dihadron frame” (h), where the dihadron has
no transverse momentum. In both frames the parton
has the same large minus-lightcone momentum compo-
nent k− (V ± ≡ (V 0 ± V 3)/

√
2 for a generic vector

V ). They are connected through the following Lorentz
transformation (see, e.g., Ref. [2] Sec. 12.4.1): V −

p =

V −
h ≡ V −; V +

p = (k⃗T /k−)2 V −/2 + V +
h − k⃗T · V⃗T /k−;

V⃗⊥ = −(k⃗T /k−)V − + V⃗T . We use ⊥ (T ) to denote
transverse components in the parton (dihadron) frame.
The parton frame is more natural for the formulation of
fragmentation correlators (whether single hadron or di-
hadron) as number densities, whereas the dihadron frame
is more practical for proofs of factorization needed for
phenomenological applications.

The quantum field-theoretic correlator for the frag-
mentation of a parton i into two hadrons h1, h2, after
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Important aspects of QCD factorization theorems are the properties of the objects involved that
can be identified as universal. One example is that the definitions of parton densities and frag-
mentation functions for di↵erent types of hadrons di↵er only in the identity of the nonperturbative
states that form the matrix elements, but are otherwise the same. This leads to independence of
perturbative calculations on nonperturbative details of external states. It also lends support to
interpretations of correlation functions as encapsulations of intrinsic nonperturbative properties.
These characteristics have usually been presumed to still hold true in fragmentation functions even
when the observed nonperturbative state is a small-mass cluster of n hadrons rather than simply
a single isolated hadron. However, the multidi↵erential aspect of cross sections that rely on these
latter types of fragmentation functions complicates the treatment of kinematical approximations in
factorization derivations. That has led to recent claims that the operator definitions for fragmenta-
tion functions need to be modified from the single hadron case with nonuniversal prefactors. With
such concerns as our motivation, we retrace the steps for factorizing the unpolarized semi-inclusive
e+e� annihilation cross section and confirm that they do apply without modification to the case
of a small-mass multihadron observed in the final state. In particular, we verify that the standard
operator definition from single hadron fragmentation, with its usual prefactor, remains equally valid
for the small-mass n-hadron case with the same hard parts and evolution kernels, whereas the more
recently proposed definitions with nonuniversal prefactors do not. Our results rea�rm the reliability
of most past phenomenological applications of dihadron fragmentation functions.

I. INTRODUCTION

Factorizable high-energy collisions in QCD are describable in terms of convolution products of a perturbatively
calculable factor with one or more factors that encapsulate the description of nonperturbative hadronic properties.
The nonperturbative factors can take the form of parton distribution functions, which describe the distribution of
partons in a target, or fragmentation functions, which characterize the hadronization of a parton into particular types
of final states. In the simplest cases where processes are very inclusive, the parton distribution and fragmentation
functions depend on only one variable, the momentum fraction of the parent particle involved, in addition to an
auxiliary scale associated with the renormalization group. For such cases, collinear factorization is the relevant
theoretical framework, and the derivations lead to definitions for universal nonperturbative correlation functions like
parton distribution or fragmentation functions. A notable advantage of collinear factorization is that it allows one to
exploit the simplifications arising from inclusive sums over final states.

The fragmentation of a parton into a single hadron can be extended to cases for which a parton fragments into
a small-mass cluster of n hadrons (which we will call an “n-hadron”). By incorporating n-hadron fragmentation
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enter existing phenomenological studies are number densities and also derive their evolution equa-
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central to understanding their femtoscale structure at
the level of quarks and gluons (partons) within the the-
ory of quantum chromodynamics (QCD). The critical in-
gredients that encode this information are parton dis-
tribution functions (PDFs) and fragmentation functions
(FFs). A crucial property of PDFs and FFs is their inter-
pretation as number densities in a parton model frame-
work [1, 2], which consequently allows one to derive cer-
tain sum rules [1–5]. For example, the unpolarized trans-
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gives the number density in the momentum fraction x
and transverse momentum k⃗T of a parton i = q or g in
a nucleon N [1, 2]. Similarly, the unpolarized TMD FF

Dh/i
1 (z, P⃗ 2

⊥) gives the number density in the momentum

fraction z and transverse momentum P⃗⊥ of a hadron h
fragmenting from a parton i [1, 2]. Since PDFs and FFs
are number densities, one can also use them to calculate
expectation values (see, e.g., Refs. [6–9]). The informa-
tion contained in sum rules and expectation values are
important pieces to understanding hadronic structure as
well as constraining or cross-checking phenomenological
extractions and model calculations of PDFs and FFs.

The most common type of FFs describes the situation
where a single hadron h is detected in the final state,
i → hX (X representing all undetected particles). An-
other intensely studied class of reactions analyzes the
case of two hadrons h1, h2 being detected from the same
parton-initiated jet, i → (h1h2)X , where dihadron FFs
(DiFFs) become relevant [10–50]. The quantum field-
theoretic definition of DiFFs at the fully unintegrated
level (what we will call uDiFFs) was first written down
almost 25 years ago in the pioneering paper of Bianconi,
Boffi, Jakob, and Radici (BBJR) [20]. This work has
been the basis for all subsequent dihadron-related re-
search for observables sensitive to the relative transverse
momentum of the two hadrons [21–25, 27, 31, 32, 35–
39, 41–48]. Unfortunately, the BBJR definition does
not allow the uDiFFs, nor the so-called extended DiFFs
(extDiFFs) that are the focus of existing phenomenolog-

ical analyses, to retain a number density interpretation
in a parton model framework.

The main purpose of this Letter is to disseminate a
new definition of uDiFFs that corrects this issue. We jus-
tify its number density interpretation by explicitly prov-
ing certain sum rules. We also show our correspond-
ing extDiFFs are number densities and derive their evo-
lution equations. Given the existing electron-positron
annihilation dihadron cross section data [51], dihadron
transverse single-spin asymmetries in electron-positron
annihilation [52], semi-inclusive deep-inelastic scatter-
ing [53, 54], and proton-proton collisions [55, 56], and
anticipated measurements of the proton-proton dihadron
cross section and SIDIS dihadron multiplicities, one even-
tually will be able to perform rigorous fits of extD-
iFFs within QCD global analyses. These studies must
be carried out within our new framework for the ex-
tracted extDiFFs to have a clear physical meaning – see
Refs. [57, 58].

New Correlator Definition of DiFFs— We begin by
briefly discussing two different reference frames that will
be relevant for our analysis: the “parton frame” (p), where
the fragmenting parton has no transverse momentum,
and the “dihadron frame” (h), where the dihadron has
no transverse momentum. In both frames the parton
has the same large minus-lightcone momentum compo-
nent k− (V ± ≡ (V 0 ± V 3)/

√
2 for a generic vector

V ). They are connected through the following Lorentz
transformation (see, e.g., Ref. [2] Sec. 12.4.1): V −

p =

V −
h ≡ V −; V +

p = (k⃗T /k−)2 V −/2 + V +
h − k⃗T · V⃗T /k−;

V⃗⊥ = −(k⃗T /k−)V − + V⃗T . We use ⊥ (T ) to denote
transverse components in the parton (dihadron) frame.
The parton frame is more natural for the formulation of
fragmentation correlators (whether single hadron or di-
hadron) as number densities, whereas the dihadron frame
is more practical for proofs of factorization needed for
phenomenological applications.

The quantum field-theoretic correlator for the frag-
mentation of a parton i into two hadrons h1, h2, after
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central to understanding their femtoscale structure at
the level of quarks and gluons (partons) within the the-
ory of quantum chromodynamics (QCD). The critical in-
gredients that encode this information are parton dis-
tribution functions (PDFs) and fragmentation functions
(FFs). A crucial property of PDFs and FFs is their inter-
pretation as number densities in a parton model frame-
work [1, 2], which consequently allows one to derive cer-
tain sum rules [1–5]. For example, the unpolarized trans-
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gives the number density in the momentum fraction x
and transverse momentum k⃗T of a parton i = q or g in
a nucleon N [1, 2]. Similarly, the unpolarized TMD FF
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are number densities, one can also use them to calculate
expectation values (see, e.g., Refs. [6–9]). The informa-
tion contained in sum rules and expectation values are
important pieces to understanding hadronic structure as
well as constraining or cross-checking phenomenological
extractions and model calculations of PDFs and FFs.

The most common type of FFs describes the situation
where a single hadron h is detected in the final state,
i → hX (X representing all undetected particles). An-
other intensely studied class of reactions analyzes the
case of two hadrons h1, h2 being detected from the same
parton-initiated jet, i → (h1h2)X , where dihadron FFs
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in a parton model framework.

The main purpose of this Letter is to disseminate a
new definition of uDiFFs that corrects this issue. We jus-
tify its number density interpretation by explicitly prov-
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ing extDiFFs are number densities and derive their evo-
lution equations. Given the existing electron-positron
annihilation dihadron cross section data [51], dihadron
transverse single-spin asymmetries in electron-positron
annihilation [52], semi-inclusive deep-inelastic scatter-
ing [53, 54], and proton-proton collisions [55, 56], and
anticipated measurements of the proton-proton dihadron
cross section and SIDIS dihadron multiplicities, one even-
tually will be able to perform rigorous fits of extD-
iFFs within QCD global analyses. These studies must
be carried out within our new framework for the ex-
tracted extDiFFs to have a clear physical meaning – see
Refs. [57, 58].

New Correlator Definition of DiFFs— We begin by
briefly discussing two different reference frames that will
be relevant for our analysis: the “parton frame” (p), where
the fragmenting parton has no transverse momentum,
and the “dihadron frame” (h), where the dihadron has
no transverse momentum. In both frames the parton
has the same large minus-lightcone momentum compo-
nent k− (V ± ≡ (V 0 ± V 3)/
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2 for a generic vector

V ). They are connected through the following Lorentz
transformation (see, e.g., Ref. [2] Sec. 12.4.1): V −

p =
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h ≡ V −; V +

p = (k⃗T /k−)2 V −/2 + V +
h − k⃗T · V⃗T /k−;

V⃗⊥ = −(k⃗T /k−)V − + V⃗T . We use ⊥ (T ) to denote
transverse components in the parton (dihadron) frame.
The parton frame is more natural for the formulation of
fragmentation correlators (whether single hadron or di-
hadron) as number densities, whereas the dihadron frame
is more practical for proofs of factorization needed for
phenomenological applications.

The quantum field-theoretic correlator for the frag-
mentation of a parton i into two hadrons h1, h2, after

task suggests that a more convenient way to model occur-
rence and properties of ‘‘T odd’’ FF is to look at residual
interactions between two hadrons in the same jet, consider-
ing the remnant of the jet as a spectator and summing over
all its possible configurations. Therefore, in the following the
formalism for two-hadron semi-inclusive production and FF
will be addressed.

III. QUARK-QUARK CORRELATION FUNCTION FOR
TWO-HADRON PRODUCTION

In the field-theoretical description of hard processes the
soft parts connecting quark and gluon lines to hadrons are
defined as certain matrix elements of non-local operators in-
volving the quark and gluon fields themselves !17–19". In
analogy with semi-inclusive hard processes involving one
detected hadron in the final state !2", the simplest matrix
element for the hadronization into two hadrons is the quark-
quark correlation function describing the decay of a quark
with momentum k into two hadrons P1 ,P2 #see Fig. 3$:
namely,

% i j#k;P1 ,P2$!X
X

! d4&

#2'$4

"eik•&(0") i#&$a2
†#P2$a1

†#P1$"X*

"(X"a1#P1$a2#P2$)̄ j#0 $"0*, #9$

where the sum runs over all the possible intermediate states
involving the two final hadrons P1 ,P2. For the Fourier trans-
form only the two space-time points 0 and & matter, i.e., the
positions of quark creation and annihilation, respectively.
Their relative distance & is the conjugate variable to the
quark momentum k.
We choose for convenience the frame where the total pair

momentum Ph!P1#P2 has no transverse component. The
constraint to reproduce on-shell hadrons with fixed mass
(P1

2!M 1
2 ,P2

2!M 2
2) reduces to seven the number of indepen-

dent degrees of freedom. As shown in Appendix A #where
also the light-cone components of a 4-vector are defined$,
they can conveniently be reexpressed in terms of the light-
cone component of the hadron pair momentum, Ph

$ , of the
light-cone fraction of the quark momentum carried by the
hadron pair, zh!Ph

$/k$!z1#z2, of the fraction of hadron

pair momentum carried by each individual hadron, +
!z1 /zh!1$z2 /zh , and of the four independent invariants
that can be formed by means of the momenta k ,P1 ,P2 at
fixed masses M 1 ,M 2, i.e.,

,h!k2, -h!2k•#P1#P2$.2k•Ph ,

-d!2k•#P1$P2$.4k•R , Mh
2!#P1#P2$2.Ph

2 ,
#10$

where we define the vector R!(P1$P2)/2 for later use.
By generalizing the Collins-Soper light-cone formalism

!18" for fragmentation into multiple hadrons !12,11", the
cross section for two-hadron semi-inclusive emission can be
expressed in terms of specific Dirac projections of
%(zh ,+ ,Ph

$ ,,h ,-h ,Mh
2 ,-d) after integrating over the #hard-

scale suppressed$ light-cone component k# and, conse-
quently, taking & as light-like !2", i.e.,

% [/]!
1
4zh

! dk#Tr!%/""&$!0

!
1
4zh

! dk#! dk$0# k$$
Ph

$

zh
$Tr!%/" . #11$

The function % [/] now depends on five variables, apart from
the Lorentz structure of the Dirac matrix / . In order to make
this more explicit and to reexpress the set of variables in a
more convenient way, let us rewrite the integrations in Eq.
#11$ in a covariant way using

2Ph
$!

d-h

dk#
, 2k#!

d,h

dk$
, #12$

and the relation

1

2k#
0# k$$

Ph
$

zh
$ !0# 2k#k$$

2k#Ph
$

zh
$

!0# ,h#k!T
2$

-h

zh
#
Mh
2

zh
2 $ #13$

which leads to the result

% [/]#zh ,+ ,k!T
2 ,Mh

2 ,-d$

!! d-h d,h0# ,h#k!T
2$

-h

zh
#
Mh
2

zh
2 $

"
Tr!%#zh ,+ ,Ph

$ ,,h ,-h ,Mh
2 ,-d$/"

8zhPh
$

, #14$

where the dependence on the transverse quark momentum k!T
2

through -h is made explicit by means of Eqs. #A6a$ and
#A7$.
Using Eq. #A6$ makes it possible to reexpress % [/] as a

function of zh ,+ ,k!T
2 and R! T

2 ,k!T•R! T , where R! T is #half of$ the
transverse momentum between the two hadrons in the con-

FIG. 3. Quark-quark correlation function for the fragmentation
of a quark into a pair of hadrons.

A. BIANCONI, S. BOFFI, R. JAKOB, AND M. RADICI PHYSICAL REVIEW D 62 034008

034008-4

quark-quark correlator

task suggests that a more convenient way to model occur-
rence and properties of ‘‘T odd’’ FF is to look at residual
interactions between two hadrons in the same jet, consider-
ing the remnant of the jet as a spectator and summing over
all its possible configurations. Therefore, in the following the
formalism for two-hadron semi-inclusive production and FF
will be addressed.

III. QUARK-QUARK CORRELATION FUNCTION FOR
TWO-HADRON PRODUCTION

In the field-theoretical description of hard processes the
soft parts connecting quark and gluon lines to hadrons are
defined as certain matrix elements of non-local operators in-
volving the quark and gluon fields themselves !17–19". In
analogy with semi-inclusive hard processes involving one
detected hadron in the final state !2", the simplest matrix
element for the hadronization into two hadrons is the quark-
quark correlation function describing the decay of a quark
with momentum k into two hadrons P1 ,P2 #see Fig. 3$:
namely,

% i j#k;P1 ,P2$!X
X

! d4&

#2'$4

"eik•&(0") i#&$a2
†#P2$a1

†#P1$"X*

"(X"a1#P1$a2#P2$)̄ j#0 $"0*, #9$

where the sum runs over all the possible intermediate states
involving the two final hadrons P1 ,P2. For the Fourier trans-
form only the two space-time points 0 and & matter, i.e., the
positions of quark creation and annihilation, respectively.
Their relative distance & is the conjugate variable to the
quark momentum k.
We choose for convenience the frame where the total pair

momentum Ph!P1#P2 has no transverse component. The
constraint to reproduce on-shell hadrons with fixed mass
(P1

2!M 1
2 ,P2

2!M 2
2) reduces to seven the number of indepen-

dent degrees of freedom. As shown in Appendix A #where
also the light-cone components of a 4-vector are defined$,
they can conveniently be reexpressed in terms of the light-
cone component of the hadron pair momentum, Ph

$ , of the
light-cone fraction of the quark momentum carried by the
hadron pair, zh!Ph

$/k$!z1#z2, of the fraction of hadron

pair momentum carried by each individual hadron, +
!z1 /zh!1$z2 /zh , and of the four independent invariants
that can be formed by means of the momenta k ,P1 ,P2 at
fixed masses M 1 ,M 2, i.e.,

,h!k2, -h!2k•#P1#P2$.2k•Ph ,

-d!2k•#P1$P2$.4k•R , Mh
2!#P1#P2$2.Ph

2 ,
#10$

where we define the vector R!(P1$P2)/2 for later use.
By generalizing the Collins-Soper light-cone formalism

!18" for fragmentation into multiple hadrons !12,11", the
cross section for two-hadron semi-inclusive emission can be
expressed in terms of specific Dirac projections of
%(zh ,+ ,Ph

$ ,,h ,-h ,Mh
2 ,-d) after integrating over the #hard-

scale suppressed$ light-cone component k# and, conse-
quently, taking & as light-like !2", i.e.,

% [/]!
1
4zh

! dk#Tr!%/""&$!0

!
1
4zh

! dk#! dk$0# k$$
Ph

$

zh
$Tr!%/" . #11$

The function % [/] now depends on five variables, apart from
the Lorentz structure of the Dirac matrix / . In order to make
this more explicit and to reexpress the set of variables in a
more convenient way, let us rewrite the integrations in Eq.
#11$ in a covariant way using

2Ph
$!

d-h

dk#
, 2k#!

d,h

dk$
, #12$

and the relation

1

2k#
0# k$$

Ph
$

zh
$ !0# 2k#k$$

2k#Ph
$

zh
$

!0# ,h#k!T
2$

-h

zh
#
Mh
2

zh
2 $ #13$

which leads to the result

% [/]#zh ,+ ,k!T
2 ,Mh

2 ,-d$

!! d-h d,h0# ,h#k!T
2$

-h

zh
#
Mh
2

zh
2 $

"
Tr!%#zh ,+ ,Ph

$ ,,h ,-h ,Mh
2 ,-d$/"

8zhPh
$

, #14$

where the dependence on the transverse quark momentum k!T
2

through -h is made explicit by means of Eqs. #A6a$ and
#A7$.
Using Eq. #A6$ makes it possible to reexpress % [/] as a

function of zh ,+ ,k!T
2 and R! T

2 ,k!T•R! T , where R! T is #half of$ the
transverse momentum between the two hadrons in the con-

FIG. 3. Quark-quark correlation function for the fragmentation
of a quark into a pair of hadrons.

A. BIANCONI, S. BOFFI, R. JAKOB, AND M. RADICI PHYSICAL REVIEW D 62 034008

034008-4

task suggests that a more convenient way to model occur-
rence and properties of ‘‘T odd’’ FF is to look at residual
interactions between two hadrons in the same jet, consider-
ing the remnant of the jet as a spectator and summing over
all its possible configurations. Therefore, in the following the
formalism for two-hadron semi-inclusive production and FF
will be addressed.
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In the field-theoretical description of hard processes the
soft parts connecting quark and gluon lines to hadrons are
defined as certain matrix elements of non-local operators in-
volving the quark and gluon fields themselves !17–19". In
analogy with semi-inclusive hard processes involving one
detected hadron in the final state !2", the simplest matrix
element for the hadronization into two hadrons is the quark-
quark correlation function describing the decay of a quark
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sidered frame. In this manner ! ["] depends on how much of
the fragmenting quark momentum is carried by the hadron
pair (zh), on the way this momentum is shared inside the pair
(#), and on the ‘‘geometry’’ of the pair, namely on the rela-
tive momentum of the two hadrons (R! T

2) and on the relative
orientation between the pair plane and the quark jet axis
(k!T
2 , k!T•R! T , see also Fig. 4$.
IV. ANALYSIS OF INTERFERENCE FRAGMENTATION

FUNCTIONS

If the polarizations of the two final hadrons are not ob-
served, the quark-quark correlation !(k;P1 ,P2) of Eq. %9$
can be generally expanded, according to Hermiticity and par-
ity invariance, as a linear combination of the independent
Dirac structures of the process
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Symmetry constraints are obtained in the form
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the fields it follows that
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and, if constraints from time-reversal invariance can be ap-
plied, that

Bi*!Bi for i!1, . . . ,4, Bi*!#Bi for i!5, . . . ,8,
%18$

which means in that case B5!B6!B7!B8!0, i.e., terms
involving B5 , . . . ,B8 are naive ‘‘T odd.’’
Inserting the ansatz %15$ in Eq. %14$ and reparametrizing

the momenta k ,P1 ,P2 with the indicated new set of vari-
ables, we get the following Dirac projections:
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FIG. 4. Kinematics for a frag-
menting quark jet containing a
pair of leading hadrons.
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sidered frame. In this manner ! ["] depends on how much of
the fragmenting quark momentum is carried by the hadron
pair (zh), on the way this momentum is shared inside the pair
(#), and on the ‘‘geometry’’ of the pair, namely on the rela-
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orientation between the pair plane and the quark jet axis
(k!T
2 , k!T•R! T , see also Fig. 4$.
IV. ANALYSIS OF INTERFERENCE FRAGMENTATION

FUNCTIONS

If the polarizations of the two final hadrons are not ob-
served, the quark-quark correlation !(k;P1 ,P2) of Eq. %9$
can be generally expanded, according to Hermiticity and par-
ity invariance, as a linear combination of the independent
Dirac structures of the process

!%k;P1 ,P2$!B1%M 1"M 2$"B2P” 1"B3P” 2"B4k”

"
B5
M 1

&'(P1'k("
B6
M 2

&'(P2'k(

"
B7

M 1"M 2
&'(P1'P2(

"
B8

M 1M 2
)5*

'(+&)'P1(P2+k& . %15$

Symmetry constraints are obtained in the form

)0!
†%k;P1 ,P2$)0!!%k;P1 ,P2$ from Hermiticity,

%16a$

)0!% k̃; P̃1 , P̃2$)0!!%k;P1 ,P2$

from parity invariance, %16b$

„)5C!% k̃; P̃1 , P̃2$C†)5…*!!%k;P1 ,P2$

from time-reversal invariance,

%16c$
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ables, we get the following Dirac projections:
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FIG. 4. Kinematics for a frag-
menting quark jet containing a
pair of leading hadrons.
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unpolarized DiFF

task suggests that a more convenient way to model occur-
rence and properties of ‘‘T odd’’ FF is to look at residual
interactions between two hadrons in the same jet, consider-
ing the remnant of the jet as a spectator and summing over
all its possible configurations. Therefore, in the following the
formalism for two-hadron semi-inclusive production and FF
will be addressed.

III. QUARK-QUARK CORRELATION FUNCTION FOR
TWO-HADRON PRODUCTION

In the field-theoretical description of hard processes the
soft parts connecting quark and gluon lines to hadrons are
defined as certain matrix elements of non-local operators in-
volving the quark and gluon fields themselves !17–19". In
analogy with semi-inclusive hard processes involving one
detected hadron in the final state !2", the simplest matrix
element for the hadronization into two hadrons is the quark-
quark correlation function describing the decay of a quark
with momentum k into two hadrons P1 ,P2 #see Fig. 3$:
namely,
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"eik•&(0") i#&$a2
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where the sum runs over all the possible intermediate states
involving the two final hadrons P1 ,P2. For the Fourier trans-
form only the two space-time points 0 and & matter, i.e., the
positions of quark creation and annihilation, respectively.
Their relative distance & is the conjugate variable to the
quark momentum k.
We choose for convenience the frame where the total pair

momentum Ph!P1#P2 has no transverse component. The
constraint to reproduce on-shell hadrons with fixed mass
(P1

2!M 1
2 ,P2

2!M 2
2) reduces to seven the number of indepen-

dent degrees of freedom. As shown in Appendix A #where
also the light-cone components of a 4-vector are defined$,
they can conveniently be reexpressed in terms of the light-
cone component of the hadron pair momentum, Ph

$ , of the
light-cone fraction of the quark momentum carried by the
hadron pair, zh!Ph

$/k$!z1#z2, of the fraction of hadron

pair momentum carried by each individual hadron, +
!z1 /zh!1$z2 /zh , and of the four independent invariants
that can be formed by means of the momenta k ,P1 ,P2 at
fixed masses M 1 ,M 2, i.e.,
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where we define the vector R!(P1$P2)/2 for later use.
By generalizing the Collins-Soper light-cone formalism

!18" for fragmentation into multiple hadrons !12,11", the
cross section for two-hadron semi-inclusive emission can be
expressed in terms of specific Dirac projections of
%(zh ,+ ,Ph

$ ,,h ,-h ,Mh
2 ,-d) after integrating over the #hard-

scale suppressed$ light-cone component k# and, conse-
quently, taking & as light-like !2", i.e.,
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The function % [/] now depends on five variables, apart from
the Lorentz structure of the Dirac matrix / . In order to make
this more explicit and to reexpress the set of variables in a
more convenient way, let us rewrite the integrations in Eq.
#11$ in a covariant way using
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and the relation
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where the dependence on the transverse quark momentum k!T
2

through -h is made explicit by means of Eqs. #A6a$ and
#A7$.
Using Eq. #A6$ makes it possible to reexpress % [/] as a

function of zh ,+ ,k!T
2 and R! T

2 ,k!T•R! T , where R! T is #half of$ the
transverse momentum between the two hadrons in the con-

FIG. 3. Quark-quark correlation function for the fragmentation
of a quark into a pair of hadrons.
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new definition

2

integrating over k+, is defined as [20]

∆h1h2/i
αβ (z1, z2, P⃗1⊥, P⃗2⊥) (1)

=
1

Ni

∑

X

∫ ∫

dξ+d2ξ⃗⊥
(2π)3

eik·ξ Oh1h2/i
αβ (ξ)

∣

∣

∣

ξ−=0
,

where z1, z2 are the fractions of the parton’s longitudinal
momentum carried by each hadron, and P⃗1⊥, P⃗2⊥ are the
transverse momenta of the hadrons relative to the parton.
For a quark, Ni is the number of quark colors Nc = 3,
and

Oh1h2/q
αβ (ξ) = ⟨0|W(∞, ξ)ψq,α(ξ

+, 0−, ξ⃗⊥)|P1, P2;X⟩

× ⟨P1, P2;X |ψ̄q,β(0
+, 0−, 0⃗⊥)W(0,∞)|0⟩ , (2)

where ψq is the quark field, α,β are indices for the com-
ponents of the field, and W is a Wilson line in the funda-
mental representation of SU(3) that ensures color gauge
invariance [2, 59]. A sum over color indices in Eq. (2) is
implied. For a gluon, Ni = N2

c − 1, and

Oh1h2/g
αβ (ξ) = ⟨0|Wba(∞, ξ)F a

+α(ξ
+, 0−, ξ⃗⊥)|P1, P2;X⟩

× ⟨P1, P2;X |F c
+β(0

+, 0−, 0⃗⊥)Wcb(0,∞)|0⟩ , (3)

where F a
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µA
c
ν is the field

strength tensor involving the gluon field A, and the Wil-
son lines are now in the adjoint representation of SU(3).

Throughout this Letter we focus on the production of
unpolarized hadrons. For the fragmentation of an unpo-
larized parton, we parameterize the correlator in Eq. (1)
as

1

64π3z1z2
Tr

[

∆h1h2/q(z1, z2, P⃗1⊥, P⃗2⊥)γ
−
]

(4)

= Dh1h2/q
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥ ·P⃗2⊥) ,

z

32π3z1z2P
−
h

δij⊥ ∆h1h2/g,ij(z1, z2, P⃗1⊥, P⃗2⊥) (5)

= Dh1h2/g
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥ ·P⃗2⊥) ,

where z = z1 + z2 is the total momentum fraction of
the dihadron and Ph = P1 + P2. As we will show in
the next section, the prefactor of 1/(64π3z1z2) in Eq. (4)
is crucial to justifying the number density interpretation
of the quark uDiFFs (and similarly for the gluon case
in Eq. (5)). If one instead were to use a prefactor of
1/(4z), to be in full analogy with single-hadron fragmen-
tation [1, 59–61], the quark uDiFFs would not retain a
number density interpretation. Indeed, the fact that the
prefactors on the l.h.s. of Eqs. (4), (5) are needed was
already recognized previously in the context of collinear

DiFFs Dh1h2/i
1 (z1, z2) [28, 29].

Number Density Interpretation — To justify that
Eqs. (4), (5) have the desired number density interpreta-
tion, we will derive sum rules involving our uDiFFs in a

parton model framework. The proofs of the sum rules in
this section are left for Supplemental Material. We focus
first on the number sum rule,
∫

dPSDh1h2/i
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥·P⃗2⊥) = ⟨N (N − 1)⟩ ,

(6)

where
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h2

∫ 1
0 dz2

∫ 1−z2
0 dz1

∫

d2P⃗1⊥

∫

d2P⃗2⊥,
and N is the total number of hadrons produced when the
parton i fragments. Thus, ⟨N (N −1)⟩ is the expectation
value for the total number of hadron pairs produced in
the fragmentation of i. A sum over hadron spins must be
included if either or both hadrons have nonzero spin. We
remark that the labeling of the two hadrons as (h1, h2) or
(h2, h1) is distinguishable and no factor of 1/2 is needed
in the r.h.s. of Eq. (6). We note that the number sum rule
Eq. (6) was first derived in Ref. [29]. A crucial step in
our proof is being able to introduce the number operator,

N̂hj
≡

∫

dP−
j d2P⃗j⊥

(2π)3 2P−
j

â†hj
âhj

=

∫

dzjd2P⃗j⊥

(2π)3 2zj
â†hj

âhj
, (7)

for each hadron (j = 1 or 2). This can only be achieved
by having the specific prefactors on the l.h.s. of Eqs. (4),
(5). Indeed, a derivation is not possible if a prefactor of
1/(4z) = 1/(4(z1 + z2)) is used on the l.h.s. of Eq. (4).

The result in Eq. (6) gives a clear interpretation
for the uDiFFs we defined in Eqs. (4), (5): they are
densities in the momentum fractions z1, z2 and trans-
verse momenta P⃗1⊥, P⃗2⊥ for the number of hadron
pairs (h1h2) fragmenting from a parton i. The uDiFF

Dh1h2/q
1 (z1, z2, P⃗ 2

1⊥, P⃗
2
2⊥, P⃗1⊥·P⃗2⊥) encodes the dihadron

fragmentation process for an unpolarized quark (γ− pro-
jection of the correlator). The number density inter-
pretation also holds for the fragmentation of a longitu-
dinally polarized quark (γ−γ5 projection) and a trans-
versely polarized quark (iσi−γ5 projection). The ex-
plicit parameterization of Eq. (1) in terms of quark and
gluon uDiFFs for all parton polarizations, as functions
of (z1, z2, P⃗ 2

1⊥, P⃗
2
2⊥, P⃗1⊥ · P⃗2⊥), is given in Supplemental

Material.
We can also derive a momentum sum rule involving

uDiFFs and TMD FFs,
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If either or both hadrons have nonzero spin, then a
sum over the spin of h1 must be included on the
l.h.s. of Eq. (8) (and Eq. (9) below). Note that one
can identify the ratio of the uDiFF to the TMD FF,
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conditional number density in the momentum (z1, P⃗1⊥)
for h1 fragmenting from i given h2 has fragmented from
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Tr

[

∆h1h2/q(z1, z2, P⃗1⊥, P⃗2⊥)γ
−
]

(4)

= Dh1h2/q
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥ ·P⃗2⊥) ,

z

32π3z1z2P
−
h

δij⊥ ∆h1h2/g,ij(z1, z2, P⃗1⊥, P⃗2⊥) (5)

= Dh1h2/g
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥ ·P⃗2⊥) ,

where z = z1 + z2 is the total momentum fraction of
the dihadron and Ph = P1 + P2. As we will show in
the next section, the prefactor of 1/(64π3z1z2) in Eq. (4)
is crucial to justifying the number density interpretation
of the quark uDiFFs (and similarly for the gluon case
in Eq. (5)). If one instead were to use a prefactor of
1/(4z), to be in full analogy with single-hadron fragmen-
tation [1, 59–61], the quark uDiFFs would not retain a
number density interpretation. Indeed, the fact that the
prefactors on the l.h.s. of Eqs. (4), (5) are needed was
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DiFFs Dh1h2/i
1 (z1, z2) [28, 29].

Number Density Interpretation — To justify that
Eqs. (4), (5) have the desired number density interpreta-
tion, we will derive sum rules involving our uDiFFs in a

parton model framework. The proofs of the sum rules in
this section are left for Supplemental Material. We focus
first on the number sum rule,
∫

dPSDh1h2/i
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥·P⃗2⊥) = ⟨N (N − 1)⟩ ,

(6)

where
∫

dPS =
∑

h1

∑

h2

∫ 1
0 dz2

∫ 1−z2
0 dz1

∫

d2P⃗1⊥

∫

d2P⃗2⊥,
and N is the total number of hadrons produced when the
parton i fragments. Thus, ⟨N (N −1)⟩ is the expectation
value for the total number of hadron pairs produced in
the fragmentation of i. A sum over hadron spins must be
included if either or both hadrons have nonzero spin. We
remark that the labeling of the two hadrons as (h1, h2) or
(h2, h1) is distinguishable and no factor of 1/2 is needed
in the r.h.s. of Eq. (6). We note that the number sum rule
Eq. (6) was first derived in Ref. [29]. A crucial step in
our proof is being able to introduce the number operator,

N̂hj
≡

∫

dP−
j d2P⃗j⊥

(2π)3 2P−
j

â†hj
âhj

=

∫

dzjd2P⃗j⊥

(2π)3 2zj
â†hj

âhj
, (7)

for each hadron (j = 1 or 2). This can only be achieved
by having the specific prefactors on the l.h.s. of Eqs. (4),
(5). Indeed, a derivation is not possible if a prefactor of
1/(4z) = 1/(4(z1 + z2)) is used on the l.h.s. of Eq. (4).

The result in Eq. (6) gives a clear interpretation
for the uDiFFs we defined in Eqs. (4), (5): they are
densities in the momentum fractions z1, z2 and trans-
verse momenta P⃗1⊥, P⃗2⊥ for the number of hadron
pairs (h1h2) fragmenting from a parton i. The uDiFF

Dh1h2/q
1 (z1, z2, P⃗ 2

1⊥, P⃗
2
2⊥, P⃗1⊥·P⃗2⊥) encodes the dihadron

fragmentation process for an unpolarized quark (γ− pro-
jection of the correlator). The number density inter-
pretation also holds for the fragmentation of a longitu-
dinally polarized quark (γ−γ5 projection) and a trans-
versely polarized quark (iσi−γ5 projection). The ex-
plicit parameterization of Eq. (1) in terms of quark and
gluon uDiFFs for all parton polarizations, as functions
of (z1, z2, P⃗ 2

1⊥, P⃗
2
2⊥, P⃗1⊥ · P⃗2⊥), is given in Supplemental

Material.
We can also derive a momentum sum rule involving

uDiFFs and TMD FFs,

∑

h1

∫ 1−z2

0
dz1

∫

d2P⃗1⊥ z1D
h1h2/i
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥·P⃗2⊥)

= (1 − z2)D
h2/i
1 (z2, P⃗

2
2⊥) . (8)

If either or both hadrons have nonzero spin, then a
sum over the spin of h1 must be included on the
l.h.s. of Eq. (8) (and Eq. (9) below). Note that one
can identify the ratio of the uDiFF to the TMD FF,

Dh1h2/i
1 (z1, z2, P⃗ 2

1⊥, P⃗
2
2⊥, P⃗1⊥· P⃗2⊥)/D

h2/i
1 (z2, P⃗ 2

2⊥), as a

conditional number density in the momentum (z1, P⃗1⊥)
for h1 fragmenting from i given h2 has fragmented from

ζ ζ ζ = (z1 − z2)/zh

x x x
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We present a new quantum field-theoretic definition of fully unintegrated dihadron fragmentation
functions (DiFFs) as well as a generalized version for n-hadron fragmentation functions. We demon-
strate that this definition allows certain sum rules to be satisfied, making it consistent with a number
density interpretation. Moreover, we show how our corresponding so-called extended DiFFs that
enter existing phenomenological studies are number densities and also derive their evolution equa-
tions. Within this new framework, DiFFs extracted from experimental measurements will have a
clear physical meaning.

Introduction — High-energy collisions of hadrons are
central to understanding their femtoscale structure at
the level of quarks and gluons (partons) within the the-
ory of quantum chromodynamics (QCD). The critical in-
gredients that encode this information are parton dis-
tribution functions (PDFs) and fragmentation functions
(FFs). A crucial property of PDFs and FFs is their inter-
pretation as number densities in a parton model frame-
work [1, 2], which consequently allows one to derive cer-
tain sum rules [1–5]. For example, the unpolarized trans-

verse momentum dependent (TMD) PDF f i/N
1 (x, k⃗2T )

gives the number density in the momentum fraction x
and transverse momentum k⃗T of a parton i = q or g in
a nucleon N [1, 2]. Similarly, the unpolarized TMD FF

Dh/i
1 (z, P⃗ 2

⊥) gives the number density in the momentum

fraction z and transverse momentum P⃗⊥ of a hadron h
fragmenting from a parton i [1, 2]. Since PDFs and FFs
are number densities, one can also use them to calculate
expectation values (see, e.g., Refs. [6–9]). The informa-
tion contained in sum rules and expectation values are
important pieces to understanding hadronic structure as
well as constraining or cross-checking phenomenological
extractions and model calculations of PDFs and FFs.

The most common type of FFs describes the situation
where a single hadron h is detected in the final state,
i → hX (X representing all undetected particles). An-
other intensely studied class of reactions analyzes the
case of two hadrons h1, h2 being detected from the same
parton-initiated jet, i → (h1h2)X , where dihadron FFs
(DiFFs) become relevant [10–50]. The quantum field-
theoretic definition of DiFFs at the fully unintegrated
level (what we will call uDiFFs) was first written down
almost 25 years ago in the pioneering paper of Bianconi,
Boffi, Jakob, and Radici (BBJR) [20]. This work has
been the basis for all subsequent dihadron-related re-
search for observables sensitive to the relative transverse
momentum of the two hadrons [21–25, 27, 31, 32, 35–
39, 41–48]. Unfortunately, the BBJR definition does
not allow the uDiFFs, nor the so-called extended DiFFs
(extDiFFs) that are the focus of existing phenomenolog-

ical analyses, to retain a number density interpretation
in a parton model framework.

The main purpose of this Letter is to disseminate a
new definition of uDiFFs that corrects this issue. We jus-
tify its number density interpretation by explicitly prov-
ing certain sum rules. We also show our correspond-
ing extDiFFs are number densities and derive their evo-
lution equations. Given the existing electron-positron
annihilation dihadron cross section data [51], dihadron
transverse single-spin asymmetries in electron-positron
annihilation [52], semi-inclusive deep-inelastic scatter-
ing [53, 54], and proton-proton collisions [55, 56], and
anticipated measurements of the proton-proton dihadron
cross section and SIDIS dihadron multiplicities, one even-
tually will be able to perform rigorous fits of extD-
iFFs within QCD global analyses. These studies must
be carried out within our new framework for the ex-
tracted extDiFFs to have a clear physical meaning – see
Refs. [57, 58].

New Correlator Definition of DiFFs— We begin by
briefly discussing two different reference frames that will
be relevant for our analysis: the “parton frame” (p), where
the fragmenting parton has no transverse momentum,
and the “dihadron frame” (h), where the dihadron has
no transverse momentum. In both frames the parton
has the same large minus-lightcone momentum compo-
nent k− (V ± ≡ (V 0 ± V 3)/

√
2 for a generic vector

V ). They are connected through the following Lorentz
transformation (see, e.g., Ref. [2] Sec. 12.4.1): V −

p =

V −
h ≡ V −; V +

p = (k⃗T /k−)2 V −/2 + V +
h − k⃗T · V⃗T /k−;

V⃗⊥ = −(k⃗T /k−)V − + V⃗T . We use ⊥ (T ) to denote
transverse components in the parton (dihadron) frame.
The parton frame is more natural for the formulation of
fragmentation correlators (whether single hadron or di-
hadron) as number densities, whereas the dihadron frame
is more practical for proofs of factorization needed for
phenomenological applications.

The quantum field-theoretic correlator for the frag-
mentation of a parton i into two hadrons h1, h2, after
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density interpretation. Moreover, we show how our corresponding so-called extended DiFFs that
enter existing phenomenological studies are number densities and also derive their evolution equa-
tions. Within this new framework, DiFFs extracted from experimental measurements will have a
clear physical meaning.

Introduction — High-energy collisions of hadrons are
central to understanding their femtoscale structure at
the level of quarks and gluons (partons) within the the-
ory of quantum chromodynamics (QCD). The critical in-
gredients that encode this information are parton dis-
tribution functions (PDFs) and fragmentation functions
(FFs). A crucial property of PDFs and FFs is their inter-
pretation as number densities in a parton model frame-
work [1, 2], which consequently allows one to derive cer-
tain sum rules [1–5]. For example, the unpolarized trans-

verse momentum dependent (TMD) PDF f i/N
1 (x, k⃗2T )

gives the number density in the momentum fraction x
and transverse momentum k⃗T of a parton i = q or g in
a nucleon N [1, 2]. Similarly, the unpolarized TMD FF

Dh/i
1 (z, P⃗ 2

⊥) gives the number density in the momentum

fraction z and transverse momentum P⃗⊥ of a hadron h
fragmenting from a parton i [1, 2]. Since PDFs and FFs
are number densities, one can also use them to calculate
expectation values (see, e.g., Refs. [6–9]). The informa-
tion contained in sum rules and expectation values are
important pieces to understanding hadronic structure as
well as constraining or cross-checking phenomenological
extractions and model calculations of PDFs and FFs.

The most common type of FFs describes the situation
where a single hadron h is detected in the final state,
i → hX (X representing all undetected particles). An-
other intensely studied class of reactions analyzes the
case of two hadrons h1, h2 being detected from the same
parton-initiated jet, i → (h1h2)X , where dihadron FFs
(DiFFs) become relevant [10–50]. The quantum field-
theoretic definition of DiFFs at the fully unintegrated
level (what we will call uDiFFs) was first written down
almost 25 years ago in the pioneering paper of Bianconi,
Boffi, Jakob, and Radici (BBJR) [20]. This work has
been the basis for all subsequent dihadron-related re-
search for observables sensitive to the relative transverse
momentum of the two hadrons [21–25, 27, 31, 32, 35–
39, 41–48]. Unfortunately, the BBJR definition does
not allow the uDiFFs, nor the so-called extended DiFFs
(extDiFFs) that are the focus of existing phenomenolog-

ical analyses, to retain a number density interpretation
in a parton model framework.

The main purpose of this Letter is to disseminate a
new definition of uDiFFs that corrects this issue. We jus-
tify its number density interpretation by explicitly prov-
ing certain sum rules. We also show our correspond-
ing extDiFFs are number densities and derive their evo-
lution equations. Given the existing electron-positron
annihilation dihadron cross section data [51], dihadron
transverse single-spin asymmetries in electron-positron
annihilation [52], semi-inclusive deep-inelastic scatter-
ing [53, 54], and proton-proton collisions [55, 56], and
anticipated measurements of the proton-proton dihadron
cross section and SIDIS dihadron multiplicities, one even-
tually will be able to perform rigorous fits of extD-
iFFs within QCD global analyses. These studies must
be carried out within our new framework for the ex-
tracted extDiFFs to have a clear physical meaning – see
Refs. [57, 58].

New Correlator Definition of DiFFs— We begin by
briefly discussing two different reference frames that will
be relevant for our analysis: the “parton frame” (p), where
the fragmenting parton has no transverse momentum,
and the “dihadron frame” (h), where the dihadron has
no transverse momentum. In both frames the parton
has the same large minus-lightcone momentum compo-
nent k− (V ± ≡ (V 0 ± V 3)/

√
2 for a generic vector

V ). They are connected through the following Lorentz
transformation (see, e.g., Ref. [2] Sec. 12.4.1): V −

p =

V −
h ≡ V −; V +

p = (k⃗T /k−)2 V −/2 + V +
h − k⃗T · V⃗T /k−;

V⃗⊥ = −(k⃗T /k−)V − + V⃗T . We use ⊥ (T ) to denote
transverse components in the parton (dihadron) frame.
The parton frame is more natural for the formulation of
fragmentation correlators (whether single hadron or di-
hadron) as number densities, whereas the dihadron frame
is more practical for proofs of factorization needed for
phenomenological applications.

The quantum field-theoretic correlator for the frag-
mentation of a parton i into two hadrons h1, h2, after

task suggests that a more convenient way to model occur-
rence and properties of ‘‘T odd’’ FF is to look at residual
interactions between two hadrons in the same jet, consider-
ing the remnant of the jet as a spectator and summing over
all its possible configurations. Therefore, in the following the
formalism for two-hadron semi-inclusive production and FF
will be addressed.

III. QUARK-QUARK CORRELATION FUNCTION FOR
TWO-HADRON PRODUCTION

In the field-theoretical description of hard processes the
soft parts connecting quark and gluon lines to hadrons are
defined as certain matrix elements of non-local operators in-
volving the quark and gluon fields themselves !17–19". In
analogy with semi-inclusive hard processes involving one
detected hadron in the final state !2", the simplest matrix
element for the hadronization into two hadrons is the quark-
quark correlation function describing the decay of a quark
with momentum k into two hadrons P1 ,P2 #see Fig. 3$:
namely,

% i j#k;P1 ,P2$!X
X

! d4&

#2'$4

"eik•&(0") i#&$a2
†#P2$a1

†#P1$"X*

"(X"a1#P1$a2#P2$)̄ j#0 $"0*, #9$

where the sum runs over all the possible intermediate states
involving the two final hadrons P1 ,P2. For the Fourier trans-
form only the two space-time points 0 and & matter, i.e., the
positions of quark creation and annihilation, respectively.
Their relative distance & is the conjugate variable to the
quark momentum k.
We choose for convenience the frame where the total pair

momentum Ph!P1#P2 has no transverse component. The
constraint to reproduce on-shell hadrons with fixed mass
(P1

2!M 1
2 ,P2

2!M 2
2) reduces to seven the number of indepen-

dent degrees of freedom. As shown in Appendix A #where
also the light-cone components of a 4-vector are defined$,
they can conveniently be reexpressed in terms of the light-
cone component of the hadron pair momentum, Ph

$ , of the
light-cone fraction of the quark momentum carried by the
hadron pair, zh!Ph

$/k$!z1#z2, of the fraction of hadron

pair momentum carried by each individual hadron, +
!z1 /zh!1$z2 /zh , and of the four independent invariants
that can be formed by means of the momenta k ,P1 ,P2 at
fixed masses M 1 ,M 2, i.e.,

,h!k2, -h!2k•#P1#P2$.2k•Ph ,

-d!2k•#P1$P2$.4k•R , Mh
2!#P1#P2$2.Ph

2 ,
#10$

where we define the vector R!(P1$P2)/2 for later use.
By generalizing the Collins-Soper light-cone formalism

!18" for fragmentation into multiple hadrons !12,11", the
cross section for two-hadron semi-inclusive emission can be
expressed in terms of specific Dirac projections of
%(zh ,+ ,Ph

$ ,,h ,-h ,Mh
2 ,-d) after integrating over the #hard-

scale suppressed$ light-cone component k# and, conse-
quently, taking & as light-like !2", i.e.,

% [/]!
1
4zh

! dk#Tr!%/""&$!0

!
1
4zh

! dk#! dk$0# k$$
Ph

$

zh
$Tr!%/" . #11$

The function % [/] now depends on five variables, apart from
the Lorentz structure of the Dirac matrix / . In order to make
this more explicit and to reexpress the set of variables in a
more convenient way, let us rewrite the integrations in Eq.
#11$ in a covariant way using

2Ph
$!

d-h

dk#
, 2k#!

d,h

dk$
, #12$

and the relation

1

2k#
0# k$$

Ph
$

zh
$ !0# 2k#k$$

2k#Ph
$

zh
$

!0# ,h#k!T
2$

-h

zh
#
Mh
2

zh
2 $ #13$

which leads to the result

% [/]#zh ,+ ,k!T
2 ,Mh

2 ,-d$

!! d-h d,h0# ,h#k!T
2$

-h

zh
#
Mh
2

zh
2 $

"
Tr!%#zh ,+ ,Ph

$ ,,h ,-h ,Mh
2 ,-d$/"

8zhPh
$

, #14$

where the dependence on the transverse quark momentum k!T
2

through -h is made explicit by means of Eqs. #A6a$ and
#A7$.
Using Eq. #A6$ makes it possible to reexpress % [/] as a

function of zh ,+ ,k!T
2 and R! T

2 ,k!T•R! T , where R! T is #half of$ the
transverse momentum between the two hadrons in the con-

FIG. 3. Quark-quark correlation function for the fragmentation
of a quark into a pair of hadrons.
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task suggests that a more convenient way to model occur-
rence and properties of ‘‘T odd’’ FF is to look at residual
interactions between two hadrons in the same jet, consider-
ing the remnant of the jet as a spectator and summing over
all its possible configurations. Therefore, in the following the
formalism for two-hadron semi-inclusive production and FF
will be addressed.

III. QUARK-QUARK CORRELATION FUNCTION FOR
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In the field-theoretical description of hard processes the
soft parts connecting quark and gluon lines to hadrons are
defined as certain matrix elements of non-local operators in-
volving the quark and gluon fields themselves !17–19". In
analogy with semi-inclusive hard processes involving one
detected hadron in the final state !2", the simplest matrix
element for the hadronization into two hadrons is the quark-
quark correlation function describing the decay of a quark
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namely,
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task suggests that a more convenient way to model occur-
rence and properties of ‘‘T odd’’ FF is to look at residual
interactions between two hadrons in the same jet, consider-
ing the remnant of the jet as a spectator and summing over
all its possible configurations. Therefore, in the following the
formalism for two-hadron semi-inclusive production and FF
will be addressed.
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analogy with semi-inclusive hard processes involving one
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form only the two space-time points 0 and & matter, i.e., the
positions of quark creation and annihilation, respectively.
Their relative distance & is the conjugate variable to the
quark momentum k.
We choose for convenience the frame where the total pair
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task suggests that a more convenient way to model occur-
rence and properties of ‘‘T odd’’ FF is to look at residual
interactions between two hadrons in the same jet, consider-
ing the remnant of the jet as a spectator and summing over
all its possible configurations. Therefore, in the following the
formalism for two-hadron semi-inclusive production and FF
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(P1

2!M 1
2 ,P2

2!M 2
2) reduces to seven the number of indepen-

dent degrees of freedom. As shown in Appendix A #where
also the light-cone components of a 4-vector are defined$,
they can conveniently be reexpressed in terms of the light-
cone component of the hadron pair momentum, Ph

$ , of the
light-cone fraction of the quark momentum carried by the
hadron pair, zh!Ph

$/k$!z1#z2, of the fraction of hadron

pair momentum carried by each individual hadron, +
!z1 /zh!1$z2 /zh , and of the four independent invariants
that can be formed by means of the momenta k ,P1 ,P2 at
fixed masses M 1 ,M 2, i.e.,

,h!k2, -h!2k•#P1#P2$.2k•Ph ,

-d!2k•#P1$P2$.4k•R , Mh
2!#P1#P2$2.Ph

2 ,
#10$
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sidered frame. In this manner ! ["] depends on how much of
the fragmenting quark momentum is carried by the hadron
pair (zh), on the way this momentum is shared inside the pair
(#), and on the ‘‘geometry’’ of the pair, namely on the rela-
tive momentum of the two hadrons (R! T

2) and on the relative
orientation between the pair plane and the quark jet axis
(k!T
2 , k!T•R! T , see also Fig. 4$.
IV. ANALYSIS OF INTERFERENCE FRAGMENTATION

FUNCTIONS

If the polarizations of the two final hadrons are not ob-
served, the quark-quark correlation !(k;P1 ,P2) of Eq. %9$
can be generally expanded, according to Hermiticity and par-
ity invariance, as a linear combination of the independent
Dirac structures of the process
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the fields it follows that

Bi*!Bi for i!1, . . . ,12 %17$

and, if constraints from time-reversal invariance can be ap-
plied, that

Bi*!Bi for i!1, . . . ,4, Bi*!#Bi for i!5, . . . ,8,
%18$

which means in that case B5!B6!B7!B8!0, i.e., terms
involving B5 , . . . ,B8 are naive ‘‘T odd.’’
Inserting the ansatz %15$ in Eq. %14$ and reparametrizing

the momenta k ,P1 ,P2 with the indicated new set of vari-
ables, we get the following Dirac projections:
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sidered frame. In this manner ! ["] depends on how much of
the fragmenting quark momentum is carried by the hadron
pair (zh), on the way this momentum is shared inside the pair
(#), and on the ‘‘geometry’’ of the pair, namely on the rela-
tive momentum of the two hadrons (R! T

2) and on the relative
orientation between the pair plane and the quark jet axis
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task suggests that a more convenient way to model occur-
rence and properties of ‘‘T odd’’ FF is to look at residual
interactions between two hadrons in the same jet, consider-
ing the remnant of the jet as a spectator and summing over
all its possible configurations. Therefore, in the following the
formalism for two-hadron semi-inclusive production and FF
will be addressed.

III. QUARK-QUARK CORRELATION FUNCTION FOR
TWO-HADRON PRODUCTION

In the field-theoretical description of hard processes the
soft parts connecting quark and gluon lines to hadrons are
defined as certain matrix elements of non-local operators in-
volving the quark and gluon fields themselves !17–19". In
analogy with semi-inclusive hard processes involving one
detected hadron in the final state !2", the simplest matrix
element for the hadronization into two hadrons is the quark-
quark correlation function describing the decay of a quark
with momentum k into two hadrons P1 ,P2 #see Fig. 3$:
namely,

% i j#k;P1 ,P2$!X
X

! d4&

#2'$4

"eik•&(0") i#&$a2
†#P2$a1

†#P1$"X*

"(X"a1#P1$a2#P2$)̄ j#0 $"0*, #9$

where the sum runs over all the possible intermediate states
involving the two final hadrons P1 ,P2. For the Fourier trans-
form only the two space-time points 0 and & matter, i.e., the
positions of quark creation and annihilation, respectively.
Their relative distance & is the conjugate variable to the
quark momentum k.
We choose for convenience the frame where the total pair

momentum Ph!P1#P2 has no transverse component. The
constraint to reproduce on-shell hadrons with fixed mass
(P1

2!M 1
2 ,P2

2!M 2
2) reduces to seven the number of indepen-

dent degrees of freedom. As shown in Appendix A #where
also the light-cone components of a 4-vector are defined$,
they can conveniently be reexpressed in terms of the light-
cone component of the hadron pair momentum, Ph

$ , of the
light-cone fraction of the quark momentum carried by the
hadron pair, zh!Ph

$/k$!z1#z2, of the fraction of hadron

pair momentum carried by each individual hadron, +
!z1 /zh!1$z2 /zh , and of the four independent invariants
that can be formed by means of the momenta k ,P1 ,P2 at
fixed masses M 1 ,M 2, i.e.,

,h!k2, -h!2k•#P1#P2$.2k•Ph ,

-d!2k•#P1$P2$.4k•R , Mh
2!#P1#P2$2.Ph

2 ,
#10$

where we define the vector R!(P1$P2)/2 for later use.
By generalizing the Collins-Soper light-cone formalism

!18" for fragmentation into multiple hadrons !12,11", the
cross section for two-hadron semi-inclusive emission can be
expressed in terms of specific Dirac projections of
%(zh ,+ ,Ph

$ ,,h ,-h ,Mh
2 ,-d) after integrating over the #hard-

scale suppressed$ light-cone component k# and, conse-
quently, taking & as light-like !2", i.e.,
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! dk#Tr!%/""&$!0
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1
4zh

! dk#! dk$0# k$$
Ph

$

zh
$Tr!%/" . #11$

The function % [/] now depends on five variables, apart from
the Lorentz structure of the Dirac matrix / . In order to make
this more explicit and to reexpress the set of variables in a
more convenient way, let us rewrite the integrations in Eq.
#11$ in a covariant way using

2Ph
$!

d-h

dk#
, 2k#!

d,h

dk$
, #12$

and the relation

1

2k#
0# k$$

Ph
$

zh
$ !0# 2k#k$$

2k#Ph
$

zh
$

!0# ,h#k!T
2$

-h

zh
#
Mh
2

zh
2 $ #13$

which leads to the result
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!! d-h d,h0# ,h#k!T
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zh
#
Mh
2

zh
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"
Tr!%#zh ,+ ,Ph

$ ,,h ,-h ,Mh
2 ,-d$/"

8zhPh
$

, #14$

where the dependence on the transverse quark momentum k!T
2

through -h is made explicit by means of Eqs. #A6a$ and
#A7$.
Using Eq. #A6$ makes it possible to reexpress % [/] as a

function of zh ,+ ,k!T
2 and R! T

2 ,k!T•R! T , where R! T is #half of$ the
transverse momentum between the two hadrons in the con-

FIG. 3. Quark-quark correlation function for the fragmentation
of a quark into a pair of hadrons.
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new definition

2

integrating over k+, is defined as [20]

∆h1h2/i
αβ (z1, z2, P⃗1⊥, P⃗2⊥) (1)

=
1

Ni

∑

X

∫ ∫

dξ+d2ξ⃗⊥
(2π)3

eik·ξ Oh1h2/i
αβ (ξ)

∣

∣

∣

ξ−=0
,

where z1, z2 are the fractions of the parton’s longitudinal
momentum carried by each hadron, and P⃗1⊥, P⃗2⊥ are the
transverse momenta of the hadrons relative to the parton.
For a quark, Ni is the number of quark colors Nc = 3,
and

Oh1h2/q
αβ (ξ) = ⟨0|W(∞, ξ)ψq,α(ξ

+, 0−, ξ⃗⊥)|P1, P2;X⟩

× ⟨P1, P2;X |ψ̄q,β(0
+, 0−, 0⃗⊥)W(0,∞)|0⟩ , (2)

where ψq is the quark field, α,β are indices for the com-
ponents of the field, and W is a Wilson line in the funda-
mental representation of SU(3) that ensures color gauge
invariance [2, 59]. A sum over color indices in Eq. (2) is
implied. For a gluon, Ni = N2

c − 1, and

Oh1h2/g
αβ (ξ) = ⟨0|Wba(∞, ξ)F a

+α(ξ
+, 0−, ξ⃗⊥)|P1, P2;X⟩

× ⟨P1, P2;X |F c
+β(0

+, 0−, 0⃗⊥)Wcb(0,∞)|0⟩ , (3)

where F a
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µA
c
ν is the field

strength tensor involving the gluon field A, and the Wil-
son lines are now in the adjoint representation of SU(3).

Throughout this Letter we focus on the production of
unpolarized hadrons. For the fragmentation of an unpo-
larized parton, we parameterize the correlator in Eq. (1)
as

1

64π3z1z2
Tr

[

∆h1h2/q(z1, z2, P⃗1⊥, P⃗2⊥)γ
−
]

(4)

= Dh1h2/q
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥ ·P⃗2⊥) ,

z

32π3z1z2P
−
h

δij⊥ ∆h1h2/g,ij(z1, z2, P⃗1⊥, P⃗2⊥) (5)

= Dh1h2/g
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥ ·P⃗2⊥) ,

where z = z1 + z2 is the total momentum fraction of
the dihadron and Ph = P1 + P2. As we will show in
the next section, the prefactor of 1/(64π3z1z2) in Eq. (4)
is crucial to justifying the number density interpretation
of the quark uDiFFs (and similarly for the gluon case
in Eq. (5)). If one instead were to use a prefactor of
1/(4z), to be in full analogy with single-hadron fragmen-
tation [1, 59–61], the quark uDiFFs would not retain a
number density interpretation. Indeed, the fact that the
prefactors on the l.h.s. of Eqs. (4), (5) are needed was
already recognized previously in the context of collinear

DiFFs Dh1h2/i
1 (z1, z2) [28, 29].

Number Density Interpretation — To justify that
Eqs. (4), (5) have the desired number density interpreta-
tion, we will derive sum rules involving our uDiFFs in a

parton model framework. The proofs of the sum rules in
this section are left for Supplemental Material. We focus
first on the number sum rule,
∫

dPSDh1h2/i
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥·P⃗2⊥) = ⟨N (N − 1)⟩ ,

(6)

where
∫

dPS =
∑

h1

∑

h2

∫ 1
0 dz2

∫ 1−z2
0 dz1

∫

d2P⃗1⊥

∫

d2P⃗2⊥,
and N is the total number of hadrons produced when the
parton i fragments. Thus, ⟨N (N −1)⟩ is the expectation
value for the total number of hadron pairs produced in
the fragmentation of i. A sum over hadron spins must be
included if either or both hadrons have nonzero spin. We
remark that the labeling of the two hadrons as (h1, h2) or
(h2, h1) is distinguishable and no factor of 1/2 is needed
in the r.h.s. of Eq. (6). We note that the number sum rule
Eq. (6) was first derived in Ref. [29]. A crucial step in
our proof is being able to introduce the number operator,

N̂hj
≡

∫

dP−
j d2P⃗j⊥

(2π)3 2P−
j

â†hj
âhj

=

∫

dzjd2P⃗j⊥

(2π)3 2zj
â†hj

âhj
, (7)

for each hadron (j = 1 or 2). This can only be achieved
by having the specific prefactors on the l.h.s. of Eqs. (4),
(5). Indeed, a derivation is not possible if a prefactor of
1/(4z) = 1/(4(z1 + z2)) is used on the l.h.s. of Eq. (4).

The result in Eq. (6) gives a clear interpretation
for the uDiFFs we defined in Eqs. (4), (5): they are
densities in the momentum fractions z1, z2 and trans-
verse momenta P⃗1⊥, P⃗2⊥ for the number of hadron
pairs (h1h2) fragmenting from a parton i. The uDiFF

Dh1h2/q
1 (z1, z2, P⃗ 2

1⊥, P⃗
2
2⊥, P⃗1⊥·P⃗2⊥) encodes the dihadron

fragmentation process for an unpolarized quark (γ− pro-
jection of the correlator). The number density inter-
pretation also holds for the fragmentation of a longitu-
dinally polarized quark (γ−γ5 projection) and a trans-
versely polarized quark (iσi−γ5 projection). The ex-
plicit parameterization of Eq. (1) in terms of quark and
gluon uDiFFs for all parton polarizations, as functions
of (z1, z2, P⃗ 2

1⊥, P⃗
2
2⊥, P⃗1⊥ · P⃗2⊥), is given in Supplemental

Material.
We can also derive a momentum sum rule involving

uDiFFs and TMD FFs,

∑

h1

∫ 1−z2

0
dz1

∫

d2P⃗1⊥ z1D
h1h2/i
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥·P⃗2⊥)

= (1 − z2)D
h2/i
1 (z2, P⃗

2
2⊥) . (8)

If either or both hadrons have nonzero spin, then a
sum over the spin of h1 must be included on the
l.h.s. of Eq. (8) (and Eq. (9) below). Note that one
can identify the ratio of the uDiFF to the TMD FF,

Dh1h2/i
1 (z1, z2, P⃗ 2

1⊥, P⃗
2
2⊥, P⃗1⊥· P⃗2⊥)/D

h2/i
1 (z2, P⃗ 2

2⊥), as a

conditional number density in the momentum (z1, P⃗1⊥)
for h1 fragmenting from i given h2 has fragmented from

2
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remark that the labeling of the two hadrons as (h1, h2) or
(h2, h1) is distinguishable and no factor of 1/2 is needed
in the r.h.s. of Eq. (6). We note that the number sum rule
Eq. (6) was first derived in Ref. [29]. A crucial step in
our proof is being able to introduce the number operator,

N̂hj
≡

∫

dP−
j d2P⃗j⊥

(2π)3 2P−
j

â†hj
âhj

=

∫

dzjd2P⃗j⊥

(2π)3 2zj
â†hj

âhj
, (7)

for each hadron (j = 1 or 2). This can only be achieved
by having the specific prefactors on the l.h.s. of Eqs. (4),
(5). Indeed, a derivation is not possible if a prefactor of
1/(4z) = 1/(4(z1 + z2)) is used on the l.h.s. of Eq. (4).

The result in Eq. (6) gives a clear interpretation
for the uDiFFs we defined in Eqs. (4), (5): they are
densities in the momentum fractions z1, z2 and trans-
verse momenta P⃗1⊥, P⃗2⊥ for the number of hadron
pairs (h1h2) fragmenting from a parton i. The uDiFF

Dh1h2/q
1 (z1, z2, P⃗ 2

1⊥, P⃗
2
2⊥, P⃗1⊥·P⃗2⊥) encodes the dihadron

fragmentation process for an unpolarized quark (γ− pro-
jection of the correlator). The number density inter-
pretation also holds for the fragmentation of a longitu-
dinally polarized quark (γ−γ5 projection) and a trans-
versely polarized quark (iσi−γ5 projection). The ex-
plicit parameterization of Eq. (1) in terms of quark and
gluon uDiFFs for all parton polarizations, as functions
of (z1, z2, P⃗ 2

1⊥, P⃗
2
2⊥, P⃗1⊥ · P⃗2⊥), is given in Supplemental

Material.
We can also derive a momentum sum rule involving

uDiFFs and TMD FFs,

∑

h1

∫ 1−z2

0
dz1

∫

d2P⃗1⊥ z1D
h1h2/i
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥·P⃗2⊥)

= (1 − z2)D
h2/i
1 (z2, P⃗

2
2⊥) . (8)

If either or both hadrons have nonzero spin, then a
sum over the spin of h1 must be included on the
l.h.s. of Eq. (8) (and Eq. (9) below). Note that one
can identify the ratio of the uDiFF to the TMD FF,

Dh1h2/i
1 (z1, z2, P⃗ 2

1⊥, P⃗
2
2⊥, P⃗1⊥· P⃗2⊥)/D

h2/i
1 (z2, P⃗ 2

2⊥), as a

conditional number density in the momentum (z1, P⃗1⊥)
for h1 fragmenting from i given h2 has fragmented from

2

integrating over k+, is defined as [20]

∆h1h2/i
αβ (z1, z2, P⃗1⊥, P⃗2⊥) (1)

=
1

Ni

∑

X

∫ ∫

dξ+d2ξ⃗⊥
(2π)3

eik·ξ Oh1h2/i
αβ (ξ)

∣

∣

∣

ξ−=0
,

where z1, z2 are the fractions of the parton’s longitudinal
momentum carried by each hadron, and P⃗1⊥, P⃗2⊥ are the
transverse momenta of the hadrons relative to the parton.
For a quark, Ni is the number of quark colors Nc = 3,
and

Oh1h2/q
αβ (ξ) = ⟨0|W(∞, ξ)ψq,α(ξ

+, 0−, ξ⃗⊥)|P1, P2;X⟩

× ⟨P1, P2;X |ψ̄q,β(0
+, 0−, 0⃗⊥)W(0,∞)|0⟩ , (2)

where ψq is the quark field, α,β are indices for the com-
ponents of the field, and W is a Wilson line in the funda-
mental representation of SU(3) that ensures color gauge
invariance [2, 59]. A sum over color indices in Eq. (2) is
implied. For a gluon, Ni = N2

c − 1, and

Oh1h2/g
αβ (ξ) = ⟨0|Wba(∞, ξ)F a

+α(ξ
+, 0−, ξ⃗⊥)|P1, P2;X⟩

× ⟨P1, P2;X |F c
+β(0

+, 0−, 0⃗⊥)Wcb(0,∞)|0⟩ , (3)

where F a
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µA
c
ν is the field

strength tensor involving the gluon field A, and the Wil-
son lines are now in the adjoint representation of SU(3).

Throughout this Letter we focus on the production of
unpolarized hadrons. For the fragmentation of an unpo-
larized parton, we parameterize the correlator in Eq. (1)
as

1

64π3z1z2
Tr

[

∆h1h2/q(z1, z2, P⃗1⊥, P⃗2⊥)γ
−
]

(4)

= Dh1h2/q
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥ ·P⃗2⊥) ,

z

32π3z1z2P
−
h

δij⊥ ∆h1h2/g,ij(z1, z2, P⃗1⊥, P⃗2⊥) (5)

= Dh1h2/g
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥ ·P⃗2⊥) ,

where z = z1 + z2 is the total momentum fraction of
the dihadron and Ph = P1 + P2. As we will show in
the next section, the prefactor of 1/(64π3z1z2) in Eq. (4)
is crucial to justifying the number density interpretation
of the quark uDiFFs (and similarly for the gluon case
in Eq. (5)). If one instead were to use a prefactor of
1/(4z), to be in full analogy with single-hadron fragmen-
tation [1, 59–61], the quark uDiFFs would not retain a
number density interpretation. Indeed, the fact that the
prefactors on the l.h.s. of Eqs. (4), (5) are needed was
already recognized previously in the context of collinear

DiFFs Dh1h2/i
1 (z1, z2) [28, 29].

Number Density Interpretation — To justify that
Eqs. (4), (5) have the desired number density interpreta-
tion, we will derive sum rules involving our uDiFFs in a

parton model framework. The proofs of the sum rules in
this section are left for Supplemental Material. We focus
first on the number sum rule,
∫

dPSDh1h2/i
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥·P⃗2⊥) = ⟨N (N − 1)⟩ ,

(6)

where
∫

dPS =
∑

h1

∑

h2

∫ 1
0 dz2

∫ 1−z2
0 dz1

∫

d2P⃗1⊥

∫

d2P⃗2⊥,
and N is the total number of hadrons produced when the
parton i fragments. Thus, ⟨N (N −1)⟩ is the expectation
value for the total number of hadron pairs produced in
the fragmentation of i. A sum over hadron spins must be
included if either or both hadrons have nonzero spin. We
remark that the labeling of the two hadrons as (h1, h2) or
(h2, h1) is distinguishable and no factor of 1/2 is needed
in the r.h.s. of Eq. (6). We note that the number sum rule
Eq. (6) was first derived in Ref. [29]. A crucial step in
our proof is being able to introduce the number operator,

N̂hj
≡

∫

dP−
j d2P⃗j⊥

(2π)3 2P−
j

â†hj
âhj

=

∫

dzjd2P⃗j⊥

(2π)3 2zj
â†hj

âhj
, (7)

for each hadron (j = 1 or 2). This can only be achieved
by having the specific prefactors on the l.h.s. of Eqs. (4),
(5). Indeed, a derivation is not possible if a prefactor of
1/(4z) = 1/(4(z1 + z2)) is used on the l.h.s. of Eq. (4).

The result in Eq. (6) gives a clear interpretation
for the uDiFFs we defined in Eqs. (4), (5): they are
densities in the momentum fractions z1, z2 and trans-
verse momenta P⃗1⊥, P⃗2⊥ for the number of hadron
pairs (h1h2) fragmenting from a parton i. The uDiFF
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1 (z1, z2, P⃗ 2

1⊥, P⃗
2
2⊥, P⃗1⊥·P⃗2⊥) encodes the dihadron

fragmentation process for an unpolarized quark (γ− pro-
jection of the correlator). The number density inter-
pretation also holds for the fragmentation of a longitu-
dinally polarized quark (γ−γ5 projection) and a trans-
versely polarized quark (iσi−γ5 projection). The ex-
plicit parameterization of Eq. (1) in terms of quark and
gluon uDiFFs for all parton polarizations, as functions
of (z1, z2, P⃗ 2

1⊥, P⃗
2
2⊥, P⃗1⊥ · P⃗2⊥), is given in Supplemental

Material.
We can also derive a momentum sum rule involving

uDiFFs and TMD FFs,

∑

h1

∫ 1−z2

0
dz1

∫

d2P⃗1⊥ z1D
h1h2/i
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥·P⃗2⊥)

= (1 − z2)D
h2/i
1 (z2, P⃗

2
2⊥) . (8)

If either or both hadrons have nonzero spin, then a
sum over the spin of h1 must be included on the
l.h.s. of Eq. (8) (and Eq. (9) below). Note that one
can identify the ratio of the uDiFF to the TMD FF,

Dh1h2/i
1 (z1, z2, P⃗ 2

1⊥, P⃗
2
2⊥, P⃗1⊥· P⃗2⊥)/D

h2/i
1 (z2, P⃗ 2

2⊥), as a

conditional number density in the momentum (z1, P⃗1⊥)
for h1 fragmenting from i given h2 has fragmented from

2

integrating over k+, is defined as [20]

∆h1h2/i
αβ (z1, z2, P⃗1⊥, P⃗2⊥) (1)

=
1

Ni

∑

X

∫ ∫

dξ+d2ξ⃗⊥
(2π)3

eik·ξ Oh1h2/i
αβ (ξ)

∣

∣

∣

ξ−=0
,

where z1, z2 are the fractions of the parton’s longitudinal
momentum carried by each hadron, and P⃗1⊥, P⃗2⊥ are the
transverse momenta of the hadrons relative to the parton.
For a quark, Ni is the number of quark colors Nc = 3,
and

Oh1h2/q
αβ (ξ) = ⟨0|W(∞, ξ)ψq,α(ξ

+, 0−, ξ⃗⊥)|P1, P2;X⟩

× ⟨P1, P2;X |ψ̄q,β(0
+, 0−, 0⃗⊥)W(0,∞)|0⟩ , (2)

where ψq is the quark field, α,β are indices for the com-
ponents of the field, and W is a Wilson line in the funda-
mental representation of SU(3) that ensures color gauge
invariance [2, 59]. A sum over color indices in Eq. (2) is
implied. For a gluon, Ni = N2

c − 1, and

Oh1h2/g
αβ (ξ) = ⟨0|Wba(∞, ξ)F a

+α(ξ
+, 0−, ξ⃗⊥)|P1, P2;X⟩

× ⟨P1, P2;X |F c
+β(0

+, 0−, 0⃗⊥)Wcb(0,∞)|0⟩ , (3)

where F a
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µA
c
ν is the field

strength tensor involving the gluon field A, and the Wil-
son lines are now in the adjoint representation of SU(3).

Throughout this Letter we focus on the production of
unpolarized hadrons. For the fragmentation of an unpo-
larized parton, we parameterize the correlator in Eq. (1)
as

1

64π3z1z2
Tr

[

∆h1h2/q(z1, z2, P⃗1⊥, P⃗2⊥)γ
−
]

(4)

= Dh1h2/q
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥ ·P⃗2⊥) ,

z

32π3z1z2P
−
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δij⊥ ∆h1h2/g,ij(z1, z2, P⃗1⊥, P⃗2⊥) (5)

= Dh1h2/g
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥ ·P⃗2⊥) ,

where z = z1 + z2 is the total momentum fraction of
the dihadron and Ph = P1 + P2. As we will show in
the next section, the prefactor of 1/(64π3z1z2) in Eq. (4)
is crucial to justifying the number density interpretation
of the quark uDiFFs (and similarly for the gluon case
in Eq. (5)). If one instead were to use a prefactor of
1/(4z), to be in full analogy with single-hadron fragmen-
tation [1, 59–61], the quark uDiFFs would not retain a
number density interpretation. Indeed, the fact that the
prefactors on the l.h.s. of Eqs. (4), (5) are needed was
already recognized previously in the context of collinear

DiFFs Dh1h2/i
1 (z1, z2) [28, 29].

Number Density Interpretation — To justify that
Eqs. (4), (5) have the desired number density interpreta-
tion, we will derive sum rules involving our uDiFFs in a

parton model framework. The proofs of the sum rules in
this section are left for Supplemental Material. We focus
first on the number sum rule,
∫

dPSDh1h2/i
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥·P⃗2⊥) = ⟨N (N − 1)⟩ ,

(6)

where
∫

dPS =
∑

h1

∑

h2

∫ 1
0 dz2

∫ 1−z2
0 dz1

∫

d2P⃗1⊥

∫

d2P⃗2⊥,
and N is the total number of hadrons produced when the
parton i fragments. Thus, ⟨N (N −1)⟩ is the expectation
value for the total number of hadron pairs produced in
the fragmentation of i. A sum over hadron spins must be
included if either or both hadrons have nonzero spin. We
remark that the labeling of the two hadrons as (h1, h2) or
(h2, h1) is distinguishable and no factor of 1/2 is needed
in the r.h.s. of Eq. (6). We note that the number sum rule
Eq. (6) was first derived in Ref. [29]. A crucial step in
our proof is being able to introduce the number operator,

N̂hj
≡

∫

dP−
j d2P⃗j⊥

(2π)3 2P−
j

â†hj
âhj

=

∫

dzjd2P⃗j⊥

(2π)3 2zj
â†hj

âhj
, (7)

for each hadron (j = 1 or 2). This can only be achieved
by having the specific prefactors on the l.h.s. of Eqs. (4),
(5). Indeed, a derivation is not possible if a prefactor of
1/(4z) = 1/(4(z1 + z2)) is used on the l.h.s. of Eq. (4).

The result in Eq. (6) gives a clear interpretation
for the uDiFFs we defined in Eqs. (4), (5): they are
densities in the momentum fractions z1, z2 and trans-
verse momenta P⃗1⊥, P⃗2⊥ for the number of hadron
pairs (h1h2) fragmenting from a parton i. The uDiFF

Dh1h2/q
1 (z1, z2, P⃗ 2

1⊥, P⃗
2
2⊥, P⃗1⊥·P⃗2⊥) encodes the dihadron

fragmentation process for an unpolarized quark (γ− pro-
jection of the correlator). The number density inter-
pretation also holds for the fragmentation of a longitu-
dinally polarized quark (γ−γ5 projection) and a trans-
versely polarized quark (iσi−γ5 projection). The ex-
plicit parameterization of Eq. (1) in terms of quark and
gluon uDiFFs for all parton polarizations, as functions
of (z1, z2, P⃗ 2

1⊥, P⃗
2
2⊥, P⃗1⊥ · P⃗2⊥), is given in Supplemental

Material.
We can also derive a momentum sum rule involving

uDiFFs and TMD FFs,

∑

h1

∫ 1−z2

0
dz1

∫

d2P⃗1⊥ z1D
h1h2/i
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥·P⃗2⊥)

= (1 − z2)D
h2/i
1 (z2, P⃗

2
2⊥) . (8)

If either or both hadrons have nonzero spin, then a
sum over the spin of h1 must be included on the
l.h.s. of Eq. (8) (and Eq. (9) below). Note that one
can identify the ratio of the uDiFF to the TMD FF,

Dh1h2/i
1 (z1, z2, P⃗ 2

1⊥, P⃗
2
2⊥, P⃗1⊥· P⃗2⊥)/D

h2/i
1 (z2, P⃗ 2

2⊥), as a

conditional number density in the momentum (z1, P⃗1⊥)
for h1 fragmenting from i given h2 has fragmented from

total # of hadron pairs
sum rule

recover number density interpretation

generalizable to n-hadron case: 

3

i with momentum (z2, P⃗2⊥). Further integrating Eq. (8)
over P⃗2⊥ yields

∑

h1

∫ 1−z2

0
dz1 z1 D

h1h2/i
1 (z1, z2) = (1− z2)D

h2/i
1 (z2) . (9)

The momentum sum rule Eq. (9) was first put forth in
Refs. [11, 14]. We also mention that the study of DiFFs
has a close connection to double PDFs (DPDFs), where
two partons emerge from a single nucleon. Indeed, an
analogous sum rule to Eq. (9) exists for DPDFs, as was
derived in Refs. [62, 63]. The quantum field-theoretic
derivation of the sum rule Eq. (8) at the unintegrated
(transverse momentum dependent) operator level (from
which Eq. (9) follows immediately) is a new aspect pre-
sented here for the first time.

One can readily generalize to n-hadron (n ≥ 1) frag-
mentation in a way that retains a number density inter-
pretation:

1

4(16π3)n−1z1 · · · zn
Tr

[

∆{hi}n/q({zi}n, {P⃗i⊥}n)γ−
]

= D{hi}n/q
1 ({zi}n, {P⃗ 2

i⊥}n, {P⃗i⊥ · P⃗j⊥}n) , (10)

z

2P−
h (16π3)n−1z1 · · · zn

δij⊥ ∆{hi}n/g,ij({zi}n, {P⃗i⊥}n)

= D{hi}n/g
1 ({zi}n, {P⃗ 2

i⊥}n, {P⃗i⊥ · P⃗j⊥}n) , (11)

where z = z1 + · · · + zn, Ph = P1 + · · · + Pn,
{hi}n ≡ h1 · · ·hn, {zi}n ≡ z1, . . . , zn, {P⃗i⊥}n ≡
P⃗1⊥, . . . , P⃗n⊥, {P⃗ 2

i⊥}n ≡ P⃗ 2
1⊥, . . . , P⃗

2
n⊥, {P⃗i⊥ · P⃗j⊥}n ≡

P⃗1⊥·P⃗2⊥, . . . , P⃗1⊥ ·P⃗n⊥, P⃗2⊥ ·P⃗3⊥, . . . , P⃗2⊥ ·P⃗n⊥, etc. The
correlators ∆{hi}n/i({zi}n, {P⃗i⊥}n) are the natural ex-
tensions of Eqs. (2), (3) to n hadrons, i.e., the final state
is now |P1, . . . , Pn;X⟩. The corresponding number sum
rule reads

∫

dPSn D
{hi}n/i
1 ({· · · }n) =

〈

n−1
∏

k=0

(N − k)

〉

, (12)

where
∫

dPSn denotes the n-hadron version of
∫

dPS, and
we have abbreviated the arguments of the FF. Interest-
ingly, the evolution of collinear n-hadron FFs was already
studied some time ago [12, 13], as well as more recently in
Refs. [49, 50], but no correlator definition was presented.

Connection to Phenomenology — In order to analyze
measurements of dihadron observables, it becomes con-
venient to change to the dihadron frame [20, 23]. In ad-
dition to Ph, we also introduce the relative momentum
R = (P1 − P2)/2. The individual hadrons have masses
M1 and M2, while the invariant mass (squared) of the
dihadron is M2

h = P 2
h . Along with z, we form the vari-

able ζ = (z1 − z2)/z. The hadron momenta P1 and P2

can then be written as P1 =
(

M2
1+R⃗ 2

T

(1+ζ)P−

h

, 1+ζ
2 P−

h , R⃗T

)

and

P2 =
(

M2
2+R⃗ 2

T

(1−ζ)P−

h

, 1−ζ
2 P−

h ,−R⃗T

)

. Note that one readily

finds R⃗ 2
T = 1−ζ2

4 M2
h − 1−ζ

2 M2
1 − 1+ζ

2 M2
2 . Due to this

change of reference frames, one naturally thinks of uD-
iFFs as now depending on (z, ζ, k⃗ 2

T , R⃗
2
T , k⃗T · R⃗T ) rather

than (z1, z2, P⃗ 2
1⊥, P⃗

2
2⊥, P⃗1⊥·P⃗2⊥).

Nevertheless, the form of the number sum rule in
Eq. (6) allows us to generalize the idea of uDiFFs as
number densities to any set of variables we choose. Con-
sider making a change of variables from (z1, z2, P⃗1⊥, P⃗2⊥)
to (w, x, Y⃗ , Z⃗), where we understand w, x to be scalars
and Y⃗ , Z⃗ to be two-dimensional vectors. Then Eq. (6)
implies

Dh1h2/i
1 (w, x, Y⃗ 2, Z⃗2, Y⃗ ·Z⃗)

≡ J ·Dh1h2/i
1 (z1, z2, P⃗

2
1⊥, P⃗

2
2⊥, P⃗1⊥ ·P⃗2⊥) (13)

is a number density in (w, x, Y⃗ , Z⃗), where J =
|∂(z1, z2, P⃗1⊥, P⃗2⊥)/∂(w, x, Y⃗ , Z⃗)| is the Jacobian for the
change of variables from (z1, z2, P⃗1⊥, P⃗2⊥) to (w, x, Y⃗ , Z⃗).
Substituting Eq. (4) or (5) into the r.h.s. of Eq. (13) then

gives an operator definition of Dh1h2/i
1 (w, x, Y⃗ 2, Z⃗2, Y⃗ ·Z⃗).

In addition, integrating over one or more of the variables
(w, x, Y⃗ , Z⃗) will define a DiFF that is a number density
in the remaining variables.

For example, if we change variables from
(z1, z2, P⃗1⊥, P⃗2⊥) to (z, ζ, k⃗T , R⃗T ), as is typically
done when deriving factorization theorems used in
phenomenology, then J = z3/2. Thus,

Dh1h2/q
1 (z, ζ, k⃗ 2

T , R⃗
2
T , k⃗T · R⃗T ) (14)

=
z

32π3(1− ζ2)
Tr

[

∆h1h2/q(z1, z2, P⃗1⊥, P⃗2⊥)γ
−
]

is a number density in (z, ζ, k⃗T , R⃗T ) (where we made use
of z1z2 = z2(1 − ζ2)/4), and similarly for the gluon
case. Note that the arguments of the correlator on
the r.h.s. can be replaced with z1(2) = z(1 ± ζ)/2 and

P⃗1(2)⊥ = −z(1± ζ)k⃗T /2± R⃗T .
We emphasize the distinction between our prefactor of

z/(32π3(1 − ζ2)) in Eq. (14) and the prefactor of 1/(4z)
used by BBJR. The latter does not allow for the uD-
iFFs to retain a number density interpretation. The ex-
plicit parameterization of Eq. (1) in terms of quark and
gluon uDiFFs for all parton polarizations, as functions of
(z, ζ, k⃗T , R⃗T ), is given in Supplemental Material.

The functions of interest in experimental measure-
ments are the extDiFFs, which we define by chang-
ing variables from (z1, z2, P⃗1⊥, P⃗2⊥) to (z, ζ, k⃗T , R⃗T ) (as
above) and integrating over k⃗T . In the quark sector, two
twist-2 Dirac projections survive [16, 20]:

z

32π3(1− ζ2)

∫

d2k⃗T Tr
[

∆h1h2/q(z1, z2, P⃗1⊥, P⃗2⊥)γ
−
]

= Dh1h2/q
1 (z, ζ, R⃗2

T ) , (15)

z

32π3(1− ζ2)

∫

d2k⃗T Tr
[

∆h1h2/q(z1, z2, P⃗1⊥, P⃗2⊥)iσ
i−γ5

]

…..

ζ ζ ζ = (z1 − z2)/zh
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K(kT ; µ) = ��K(g(µ)) �(kT )

d

d ln µ
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FIG. 2: The separation into factors in Eq. (66). The hooks represent the application of the approximations in Eq. (53) and
Eq. (61). The top factorized segment corresponds to the first factor in parentheses in Eq. (66) and the bottom factorized
segment corresponds to the second factor in parentheses.

where we have also multiplied and divided by k̂+

H k̂�
2H = Q2/2 to put the overall factor into a more recognizable form.

The separation into factors in Eq. (66) is shown diagrammatically in Fig. 2.
Up to standard issues related to renormalization and ultraviolet divergences, the last factor in parenthesis is 1 by

unitarity. By very general arguments (see sections 12.5-12.7 of Ref. [22]), the complete sum and integral over final
states in J2(k̃2) is insensitive to infrared contributions. Here this can be demonstrated by calculating its lowest order

massless perturbative approximation. The spin-summed lowest order subgraph is J2(k̃2) = /̃k
2
(2⇡)�+(k̃2

2
), so

Z
dk̃⇤+
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Then,
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+ p.s. . (68)

Here, we have also replaced zn in the expressions for k̃+ and k̂+ by a generic momentum fraction ⇠, which we
then set to ⇠ = zn by inserting a �-function. The lower limit starts from zn because in higher orders q+

H � k+

H in
ẑ = zn/⇠ = k+

H/q+

H .
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FIG. 3: The zeroth order contribution to cWµ⌫

SI (ẑ), the hadronic tensor of Eq. (18) for semi-inclusive production of an on-shell
massless parton.

To identify the final factorized structure, it is necessary to compare Eq. (68) with the zeroth order contribution to

the partonic cWµ⌫
SI

(ẑ) from Eq. (18) and shown graphically in Fig. 3. It is
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Here the power suppressed error term is written out with the typical 1/z dependence shown explicitly to emphasize
the need to avoid the z ! 0 region to maintain factorization. Given the form of Eq. (89), it might be tempting to
drop the error terms and use the definition of the inclusive cross section to write

X

hadron
types

Z
1

0

dz
1

�0

d�

dz
=

X

hadron
types

Z
1

0

dz d(z, ph) = hNi (90)

with hNi being a total hadron multiplicity. The sum over hadron types only includes one term since there is only
one hadron flavor in our treatment. But the error terms in Eq. (89) diverge in the integral over z down to 0. At a
minimum, a lower bound must be imposed on z such that z � ⇤2/Q2.

Thus, to a rough approximation, one might expect to find a relation of the form

X

hadron
types

Z
1

zmin

dz d(z, ph; µ) ⇡ hNi(zmin, µ) (91)

where zmin is a cuto↵ that is much larger than O
�
⇤2/Q2

�
and we have restored the explicit dependence on a scale µ

in the arguments to emphasize the presence of a scale ambiguity on the right-hand side. Given the discussion in the
previous section, the fragmentation function is still the hadron density, now di↵erential in dz. But the dependence
of hNi on auxiliary variables µ and zmin highlights the limitations of a completely straightforward and unambiguous
interpretation outside of a parton-model-like approximation.

Another way to obtain the above is by substituting Eq. (72) into Eq. (39) and Eq. (37) which gives
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The zeroth order partonic cross section follows by a direct calculation of the zeroth order Feynman graph in Fig. 3.
One more direct way to arrive at Eq. (92) is to simply calculate Eq. (86) with dY 0

! 1 and integrate over d⌦.

VII. DIHADRON INCLUSIVE PRODUCTION

Next, we review the steps for changing variables to reduce the cross section expression for dihadron production to
other familiar forms. To simplify the discussion we will continue to assume that each hadron in a dihadron pair has
the same mass m. The minimum invariant mass Mh is then 2m.

For n = 2, the dihadron cross section in Eq. (3) becomes

2Eph1
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d(⇠, {ph}) + p.s. , (93)

with the fragmentation function defined as in Eq. (81). For factorization to hold, the kinematics need to be restricted
to M2

h/z ⌧ Q2.
A standard way to characterize the dihadron momentum that is common to many treatments is with the variables

ph ⌘ ph1 + ph2 , R ⌘
ph1 � ph2

2
. (94)

We define
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where zn = zn1 + zn2. We also define partonic momentum fractions analogous to ⇠,
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, (96)
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FIG. 2: The separation into factors in Eq. (66). The hooks represent the application of the approximations in Eq. (53) and
Eq. (61). The top factorized segment corresponds to the first factor in parentheses in Eq. (66) and the bottom factorized
segment corresponds to the second factor in parentheses.

where we have also multiplied and divided by k̂+

H k̂�
2H = Q2/2 to put the overall factor into a more recognizable form.

The separation into factors in Eq. (66) is shown diagrammatically in Fig. 2.
Up to standard issues related to renormalization and ultraviolet divergences, the last factor in parenthesis is 1 by

unitarity. By very general arguments (see sections 12.5-12.7 of Ref. [22]), the complete sum and integral over final
states in J2(k̃2) is insensitive to infrared contributions. Here this can be demonstrated by calculating its lowest order

massless perturbative approximation. The spin-summed lowest order subgraph is J2(k̃2) = /̃k
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Here, we have also replaced zn in the expressions for k̃+ and k̂+ by a generic momentum fraction ⇠, which we
then set to ⇠ = zn by inserting a �-function. The lower limit starts from zn because in higher orders q+

H � k+

H in
ẑ = zn/⇠ = k+

H/q+

H .

3

Wµ⌫
DY =

X

f

|Hf (Q; µ/Q)|µ⌫

⇥

Z
d2k1T d2k2T Ff/P1

(x1,k1T ; µ; ⇣1) Ff/P2
(x2,k2T ; µ; ⇣2) �(2)(k1T + k2T � qT )

+ Y (qT , Q)

+ O

✓✓
⇤

Q

◆a◆

F̃f/P1
(x1,bT ; µ, ⇣1) =

Z
d2kT e�ikT ·bT Ff/P1

(x1,kT ; µ, ⇣F )

K̃(bT ; µ) =

Z
d2kT e�ikT ·bT K(kT ; µ)

�

� ln
p

⇣F
Ff/P1

(x1,kT ; µ, ⇣F ) =

Z
d2qT K(qT ; µ) Ff/P1

(x1,kT � qT ; µ, ⇣F )

d

d ln µ
K(kT ; µ) = ��K(g(µ)) �(kT )

d

d ln µ
Ff/P1

(x1,kT ; µ, ⇣F ) = �F (g(µ); ⇣F /µ2) Ff/P1
(x1,kT ; µ, ⇣F )

k⇤(kT ) ⌘ k̂T

�
k2

min + k2

T

µ⇤(kT ) ⌘ C1k⇤

↵s(µ⇤(kT ))
kT !0

= ↵s(C1kmin)

b⇤(bT) ⌘
bT�

1 + b2

T /b2
max

µ⇤(bT ) = C1/b⇤

↵s(µ⇤(bT ))
bT !�

= ↵s(C1/bmax)

d�

dqT · · ·

P1 P2

k1 ⌘ k k2 ⌘ q � k

q + k (34)
k̂

<latexit sha1_base64="i+bNNvTaz/AtbvwJ3+vdB+BzUIQ=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120y7ZbMLuRCihP8KLB0W8+nu8+W/ctjlo64OBx3szzMwLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3A2q4FIq3UKDk3VRzGgeSd4LobuZ3nrg2IlGPOEm5H9OREqFgFK3U6Y8p5tF0UKm6NXcOskq8glShQHNQ+eoPE5bFXCGT1Jie56bo51SjYJJPy/3M8JSyiI54z1JFY278fH7ulJxbZUjCRNtSSObq74mcxsZM4sB2xhTHZtmbif95vQzDGz8XKs2QK7ZYFGaSYEJmv5Oh0JyhnFhCmRb2VsLGVFOGNqGyDcFbfnmVtOs177JWf7iqNm6LOEpwCmdwAR5cQwPuoQktYBDBM7zCm5M6L86787FoXXOKmRP4A+fzB53Jj8A=</latexit>

k̂2<latexit sha1_base64="jAWAR+l2CEdlJvT6R93FVWKKOI4=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ie0oWy2m3bpbhJ2J0IJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUkS8iQIl7ySaUxVI3g7GtzO//cS1EXH0gJOE+4oOIxEKRtFKj70RxWw87df65Ypbdecgq8TLSQVyNPrlr94gZqniETJJjel6boJ+RjUKJvm01EsNTygb0yHvWhpRxY2fzQ+ekjOrDEgYa1sRkrn6eyKjypiJCmynojgyy95M/M/rphhe+5mIkhR5xBaLwlQSjMnsezIQmjOUE0so08LeStiIasrQZlSyIXjLL6+SVq3qXVRr95eV+k0eRxFO4BTOwYMrqMMdNKAJDBQ8wyu8Odp5cd6dj0VrwclnjuEPnM8fydWQZQ==</latexit>

FIG. 3: The zeroth order contribution to cWµ⌫

SI (ẑ), the hadronic tensor of Eq. (18) for semi-inclusive production of an on-shell
massless parton.

To identify the final factorized structure, it is necessary to compare Eq. (68) with the zeroth order contribution to

the partonic cWµ⌫
SI

(ẑ) from Eq. (18) and shown graphically in Fig. 3. It is
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Here the power suppressed error term is written out with the typical 1/z dependence shown explicitly to emphasize
the need to avoid the z ! 0 region to maintain factorization. Given the form of Eq. (89), it might be tempting to
drop the error terms and use the definition of the inclusive cross section to write

X
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types

Z
1

0

dz
1

�0

d�
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=

X

hadron
types

Z
1

0

dz d(z, ph) = hNi (90)

with hNi being a total hadron multiplicity. The sum over hadron types only includes one term since there is only
one hadron flavor in our treatment. But the error terms in Eq. (89) diverge in the integral over z down to 0. At a
minimum, a lower bound must be imposed on z such that z � ⇤2/Q2.

Thus, to a rough approximation, one might expect to find a relation of the form

X

hadron
types

Z
1

zmin

dz d(z, ph; µ) ⇡ hNi(zmin, µ) (91)

where zmin is a cuto↵ that is much larger than O
�
⇤2/Q2

�
and we have restored the explicit dependence on a scale µ

in the arguments to emphasize the presence of a scale ambiguity on the right-hand side. Given the discussion in the
previous section, the fragmentation function is still the hadron density, now di↵erential in dz. But the dependence
of hNi on auxiliary variables µ and zmin highlights the limitations of a completely straightforward and unambiguous
interpretation outside of a parton-model-like approximation.

Another way to obtain the above is by substituting Eq. (72) into Eq. (39) and Eq. (37) which gives
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The zeroth order partonic cross section follows by a direct calculation of the zeroth order Feynman graph in Fig. 3.
One more direct way to arrive at Eq. (92) is to simply calculate Eq. (86) with dY 0

! 1 and integrate over d⌦.

VII. DIHADRON INCLUSIVE PRODUCTION

Next, we review the steps for changing variables to reduce the cross section expression for dihadron production to
other familiar forms. To simplify the discussion we will continue to assume that each hadron in a dihadron pair has
the same mass m. The minimum invariant mass Mh is then 2m.

For n = 2, the dihadron cross section in Eq. (3) becomes
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with the fragmentation function defined as in Eq. (81). For factorization to hold, the kinematics need to be restricted
to M2

h/z ⌧ Q2.
A standard way to characterize the dihadron momentum that is common to many treatments is with the variables
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2
. (94)
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where zn = zn1 + zn2. We also define partonic momentum fractions analogous to ⇠,
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Appendix B: Operator definitions of fragmentation functions in Refs. [29, 30] as compared with Ref. [13]

To make a more complete comparison between the correlation functions defined in Refs. [29, 30] and those in
Ref. [13], it is helpful to translate the notation of these earlier papers to that of Secs. II–VII of this paper. Momentum
labels in Ref. [13] mostly match those used throughout this paper, with P+

h ! p+

h , and other momenta that are
capitalized in Ref. [13] are lower case here. The variables R, ⇣, and RT are defined in the same way as in this paper.
In Ref. [13], the observed hadron moves along the �z axis, so expressions in Secs. II–VII need to have their plus and
minus components reversed in order to be compared. Reference [13] defines a so-called quark-quark correlator (see
Eq.(5) of Ref. [13]),

�(k, Ph, R) =
XZ

X

Z
d4x

(2⇡)4
eik·x

h0| (x)|Ph, R, XihPh, R, X| ̄(0)|0i , (B1)

which is 1/(2⇡)4 times the momentum space Feynman diagrams of the outgoing quark in Fig. 2. Thus, it is related
to J1(k, {ph}) of Sec. IV by means of

�(k, Ph, R) =
1

(2⇡)4
J1(k, {ph}) . (B2)

By integrating on the light-cone suppressed component k+ and making explicit the dependence from the gauge link
operator, the quark-quark correlator becomes (see Eq. (8) of Ref. [13])

�(z,kT , R) =
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h
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h0|U(1, x) (x)|Ph, R, XihPh, R, X| ̄(0) U(0, x)|0i|x�=0 . (B3)

Equation (B3) is identical to the definition in Eqs.(1) and (2) of Ref. [29], after expressing it in variables Ph, R rather
than P1, P2 and defining z = z1 + z2, ⇣ = (z1 � z2)/z.

Explicit components of k are in the hadron frame, i.e. k+
! k+

H , etc., in the notation of this paper. Reference [13]
restricts the analysis to the zeroth-order parton model level so that the kinematical z can be identified with the
momentum fraction ⇠. Translating slightly into the language and notation of this paper, the more general way of
expressing the operator in Eq. (B3) would be to translate the equation in the following way:

�(⇠,kT , R) =

Z
dk+ �(k, Ph, R)|k�=P�

h
/⇠

=
XZ

X

Z
dx+ d2xT

(2⇡)3
eik·x

h0|U(1, x) (x)|Ph, R, XihPh, R, X| ̄(0) U(0, x)|0i|x�=0 . (B4)

Using the parameterization of momenta listed in Eqs.(2,3) of [13], we can rewrite the dependence of the quark-quark
correlator as �(⇠, ⇣,kT , M2

h ,�R), where M2

h = P 2

h is the dihadron pair invariant mass and �R is the azimuthal angle
of RT with respect to the reaction plane.

The unpolarized fragmentation function D1 can be extracted from the quark-quark correlator through the following
projection (see Eq.(16) of Ref. [13] or, equivalently, Eqs.(11,19) of Ref. [10]):

D1(⇠, ⇣,kT , M2

h) =
1

4⇠

Z
dk+ Tr

⇥
�(k, Ph, R) ��⇤

|k�=P�
h

/⇠

=
1

4⇠

Z
dk+

(2⇡)4
Tr

⇥
J1(k, {ph}) ��⇤

|k�=P�
h

/⇠ . (B5)

The factor of 1/(4⇠) follows from the same factorization-based reasoning as in Sec. IV and Sec. V of this paper. On
the second line, we have applied the notational translation in Eq. (B2), which shows that D1(⇠, ⇣,kT , M2

h) matches
the definition we gave for d(⇠, �⇠kHT, {ph}) earlier in this paper as it appears in Eq. (80). By further integrating
upon the parton transverse momentum, we get

D1(⇠, ⇣, M
2

h) = ⇠2
Z

d2kT D1(⇠, ⇣,kT , M2

h)

=
⇠

4

Z
d2kT

Z
dk+ Tr

⇥
�(k, Ph, R) ��⇤

|k�=P�
h

/⇠

=
⇠

4

Z
dk+ d2kT

(2⇡)4
Tr

⇥
J1(k, {ph}) ��⇤

. (B6)
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The reason for expressing the parton momentum arguments in the variables above is that it simplifies discussions of
fragmentation functions in the parton frame where the parton transverse momentum is fixed to zero and all transverse
momentum is carried by the hadron transverse momentum, phpT = �⇠kHT. The |k1i and |k2i are states created

by the action of lightcone creation and annihilation operators b†
k and bk, which satisfy lightcone anticommutation

relations, acting on the vacuum, and to keep notation compact we have suppressed other quantum numbers5. Since
we are working with non-normalizable quark momentum eigenstates we start with o↵-diagonal states |k1i and |k2i.
The reason for the 2⇠(2⇡)3 on the left-hand side of Eq. (75) will be made clear below.

To generalize Eq. (75) to the n-hadron case, one defines

2⇠(2⇡)3d(⇠, �⇠kHT, {ph})hk1|k2i = hk1|k2i
dN

dY

= hk1|k2i2Eph1
(2⇡)3

d

d3ph1

2Eph2
(2⇡)3

d

d3ph2

⇥ · · · ⇥ 2Ephn
(2⇡)3

d

d3phn

N

=
XZ

X

hk1|ph1 , ph2 , . . . , phn
, Xihph1 , ph2 , . . . , phn

, X|k2i , (77)

or,

d (⇠, �⇠kHT, {ph}) hk1|k2i =
1

2⇠(2⇡)3

XZ

X

hk1|ph1 , ph2 , . . . , phn
, Xihph1 , ph2 , . . . , phn

, X|k2i . (78)

The dY has just been generalized to a multihadron phase space. Using the expressions for b†
k and bk in terms of the

quark field operator  (x) (and retracing the steps in Sec. (6.7.3) of Ref. [22]) puts the definition in the more familiar
form (see Eq. (12.39) of Ref. [22]) with coordinate space field operators, but now with a system of n observed hadrons
in the final state with n not necessarily equal to 1,

d (⇠, �⇠kHT, {ph})

⌘ Tr
1

4⇠

XZ

X

Z
dx� d2xT

(2⇡)3
eix�p+

h,H
/⇠�ixT·kHT

h0|�+ (x/2)|ph1 , ph2 , . . . , phn
, Xihph1 , ph2 , . . . , phn

, X| (�x/2)|0i ,

(79)

with x = (0, x�,xT) and where we have kept only the trace of �+ corresponding to the unpolarized fragmentation
function. Translated into Feynman rules, this TMD fragmentation function is

d(⇠, �⇠kHT, {ph}) =
1

4⇠

Z
dk�

H

(2⇡)4
Tr

2

66664
�+

· · ·<latexit sha1_base64="9pGPaDabNijkWLtd2pluvCo4p5o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJq1b1L6q1+8tK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AK+ljzM=</latexit>

··· <latexit sha1_base64="9pGPaDabNijkWLtd2pluvCo4p5o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJq1b1L6q1+8tK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AK+ljzM=</latexit>

ph
<latexit sha1_base64="Llcci2fUsxeZ5eDp2xEn7VpT8es=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPRH/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AFUKo3T</latexit>

|{z} <latexit sha1_base64="CHGdcHCn/nporqrTDYKhGNxISUc=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkpSBQUvRS8eK9gPaELZbCbt0s0m7G6EGvpLvHhQxKs/xZv/xm2bg7Y+GHi8N8PMvCDlTGnH+bZKa+sbm1vl7crO7t5+1T447KgkkxTaNOGJ7AVEAWcC2pppDr1UAokDDt1gfDvzu48gFUvEg56k4MdkKFjEKNFGGthVLxMhyEASCrl3PR3YNafuzIFXiVuQGirQGthfXpjQLAahKSdK9V0n1X5OpGaUw7TiZQpSQsdkCH1DBYlB+fn88Ck+NUqIo0SaEhrP1d8TOYmVmsSB6YyJHqllbyb+5/UzHV35ORNppkHQxaIo41gneJYCDpkEqvnEEEIlM7diOiImBG2yqpgQ3OWXV0mnUXfP6437i1rzpoijjI7RCTpDLrpETXSHWqiNKMrQM3pFb9aT9WK9Wx+L1pJVzByhP7A+fwD7A5NL</latexit>

k̃
<latexit sha1_base64="W7FRI5UUv/dhjqscny9It2dPnZo=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ie0oWw203bpbhJ2J0IJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFBE0UaCETqKBqUBCOxjfzvz2E2gj4ugBJwn4ig0jMRCcoZUeeyhkCNl42i9X3Ko7B10lXk4qJEejX/7qhTFPFUTIJTOm67kJ+hnTKLiEaamXGkgYH7MhdC2NmALjZ/ODp/TMKiEdxNpWhHSu/p7ImDJmogLbqRiOzLI3E//zuikOrv1MREmKEPHFokEqKcZ09j0NhQaOcmIJ41rYWykfMc042oxKNgRv+eVV0qpVvYtq7f6yUr/J4yiSE3JKzolHrkid3JEGaRJOFHkmr+TN0c6L8+58LFoLTj5zTP7A+fwBMOqQqQ==</latexit>

3

77775

k+
H

=p+
h,H

/⇠

. (80)

The cut final state in green is the usual sum of Feynman diagrams integrated over the final state phase space. The
collinear version is obtained by integrating over the parton transverse momentum in the form of �⇠kHT,

d (⇠, {ph} ; µ) ⌘ ⇠2
Z ⇠µ2

d2kHT d (⇠, �⇠kHT, {ph})

=
⇠

4

Z ⇠µ2

dk�
H d2kHT

(2⇡)4
Tr

2
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5
These operators should not be confused with the equal time creation operators a†p used for the on-shell hadronic asymptotic “out” states

in Eq. (11).
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FIG. 2: The separation into factors in Eq. (66). The hooks represent the application of the approximations in Eq. (53) and
Eq. (61). The top factorized segment corresponds to the first factor in parentheses in Eq. (66) and the bottom factorized
segment corresponds to the second factor in parentheses.

where we have also multiplied and divided by k̂+

H k̂�
2H = Q2/2 to put the overall factor into a more recognizable form.

The separation into factors in Eq. (66) is shown diagrammatically in Fig. 2.
Up to standard issues related to renormalization and ultraviolet divergences, the last factor in parenthesis is 1 by

unitarity. By very general arguments (see sections 12.5-12.7 of Ref. [22]), the complete sum and integral over final
states in J2(k̃2) is insensitive to infrared contributions. Here this can be demonstrated by calculating its lowest order

massless perturbative approximation. The spin-summed lowest order subgraph is J2(k̃2) = /̃k
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Then,
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Here, we have also replaced zn in the expressions for k̃+ and k̂+ by a generic momentum fraction ⇠, which we
then set to ⇠ = zn by inserting a �-function. The lower limit starts from zn because in higher orders q+
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FIG. 3: The zeroth order contribution to cWµ⌫

SI (ẑ), the hadronic tensor of Eq. (18) for semi-inclusive production of an on-shell
massless parton.

To identify the final factorized structure, it is necessary to compare Eq. (68) with the zeroth order contribution to

the partonic cWµ⌫
SI

(ẑ) from Eq. (18) and shown graphically in Fig. 3. It is

cWµ⌫
SI
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Here the power suppressed error term is written out with the typical 1/z dependence shown explicitly to emphasize
the need to avoid the z ! 0 region to maintain factorization. Given the form of Eq. (89), it might be tempting to
drop the error terms and use the definition of the inclusive cross section to write

X

hadron
types

Z
1

0

dz
1

�0

d�

dz
=

X

hadron
types

Z
1

0

dz d(z, ph) = hNi (90)

with hNi being a total hadron multiplicity. The sum over hadron types only includes one term since there is only
one hadron flavor in our treatment. But the error terms in Eq. (89) diverge in the integral over z down to 0. At a
minimum, a lower bound must be imposed on z such that z � ⇤2/Q2.

Thus, to a rough approximation, one might expect to find a relation of the form

X

hadron
types

Z
1

zmin

dz d(z, ph; µ) ⇡ hNi(zmin, µ) (91)

where zmin is a cuto↵ that is much larger than O
�
⇤2/Q2

�
and we have restored the explicit dependence on a scale µ

in the arguments to emphasize the presence of a scale ambiguity on the right-hand side. Given the discussion in the
previous section, the fragmentation function is still the hadron density, now di↵erential in dz. But the dependence
of hNi on auxiliary variables µ and zmin highlights the limitations of a completely straightforward and unambiguous
interpretation outside of a parton-model-like approximation.

Another way to obtain the above is by substituting Eq. (72) into Eq. (39) and Eq. (37) which gives
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The zeroth order partonic cross section follows by a direct calculation of the zeroth order Feynman graph in Fig. 3.
One more direct way to arrive at Eq. (92) is to simply calculate Eq. (86) with dY 0

! 1 and integrate over d⌦.

VII. DIHADRON INCLUSIVE PRODUCTION

Next, we review the steps for changing variables to reduce the cross section expression for dihadron production to
other familiar forms. To simplify the discussion we will continue to assume that each hadron in a dihadron pair has
the same mass m. The minimum invariant mass Mh is then 2m.

For n = 2, the dihadron cross section in Eq. (3) becomes

2Eph1
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with the fragmentation function defined as in Eq. (81). For factorization to hold, the kinematics need to be restricted
to M2

h/z ⌧ Q2.
A standard way to characterize the dihadron momentum that is common to many treatments is with the variables

ph ⌘ ph1 + ph2 , R ⌘
ph1 � ph2

2
. (94)

We define
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where zn = zn1 + zn2. We also define partonic momentum fractions analogous to ⇠,
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Appendix B: Operator definitions of fragmentation functions in Refs. [29, 30] as compared with Ref. [13]

To make a more complete comparison between the correlation functions defined in Refs. [29, 30] and those in
Ref. [13], it is helpful to translate the notation of these earlier papers to that of Secs. II–VII of this paper. Momentum
labels in Ref. [13] mostly match those used throughout this paper, with P+

h ! p+

h , and other momenta that are
capitalized in Ref. [13] are lower case here. The variables R, ⇣, and RT are defined in the same way as in this paper.
In Ref. [13], the observed hadron moves along the �z axis, so expressions in Secs. II–VII need to have their plus and
minus components reversed in order to be compared. Reference [13] defines a so-called quark-quark correlator (see
Eq.(5) of Ref. [13]),

�(k, Ph, R) =
XZ

X

Z
d4x

(2⇡)4
eik·x

h0| (x)|Ph, R, XihPh, R, X| ̄(0)|0i , (B1)

which is 1/(2⇡)4 times the momentum space Feynman diagrams of the outgoing quark in Fig. 2. Thus, it is related
to J1(k, {ph}) of Sec. IV by means of

�(k, Ph, R) =
1

(2⇡)4
J1(k, {ph}) . (B2)

By integrating on the light-cone suppressed component k+ and making explicit the dependence from the gauge link
operator, the quark-quark correlator becomes (see Eq. (8) of Ref. [13])

�(z,kT , R) =

Z
dk+ �(k, Ph, R)|k�=P�

h
/z

=
XZ

X

Z
dx+ d2xT

(2⇡)3
eik·x

h0|U(1, x) (x)|Ph, R, XihPh, R, X| ̄(0) U(0, x)|0i|x�=0 . (B3)

Equation (B3) is identical to the definition in Eqs.(1) and (2) of Ref. [29], after expressing it in variables Ph, R rather
than P1, P2 and defining z = z1 + z2, ⇣ = (z1 � z2)/z.

Explicit components of k are in the hadron frame, i.e. k+
! k+

H , etc., in the notation of this paper. Reference [13]
restricts the analysis to the zeroth-order parton model level so that the kinematical z can be identified with the
momentum fraction ⇠. Translating slightly into the language and notation of this paper, the more general way of
expressing the operator in Eq. (B3) would be to translate the equation in the following way:

�(⇠,kT , R) =
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Using the parameterization of momenta listed in Eqs.(2,3) of [13], we can rewrite the dependence of the quark-quark
correlator as �(⇠, ⇣,kT , M2

h ,�R), where M2

h = P 2

h is the dihadron pair invariant mass and �R is the azimuthal angle
of RT with respect to the reaction plane.

The unpolarized fragmentation function D1 can be extracted from the quark-quark correlator through the following
projection (see Eq.(16) of Ref. [13] or, equivalently, Eqs.(11,19) of Ref. [10]):
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The factor of 1/(4⇠) follows from the same factorization-based reasoning as in Sec. IV and Sec. V of this paper. On
the second line, we have applied the notational translation in Eq. (B2), which shows that D1(⇠, ⇣,kT , M2

h) matches
the definition we gave for d(⇠, �⇠kHT, {ph}) earlier in this paper as it appears in Eq. (80). By further integrating
upon the parton transverse momentum, we get
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The reason for expressing the parton momentum arguments in the variables above is that it simplifies discussions of
fragmentation functions in the parton frame where the parton transverse momentum is fixed to zero and all transverse
momentum is carried by the hadron transverse momentum, phpT = �⇠kHT. The |k1i and |k2i are states created

by the action of lightcone creation and annihilation operators b†
k and bk, which satisfy lightcone anticommutation

relations, acting on the vacuum, and to keep notation compact we have suppressed other quantum numbers5. Since
we are working with non-normalizable quark momentum eigenstates we start with o↵-diagonal states |k1i and |k2i.
The reason for the 2⇠(2⇡)3 on the left-hand side of Eq. (75) will be made clear below.

To generalize Eq. (75) to the n-hadron case, one defines

2⇠(2⇡)3d(⇠, �⇠kHT, {ph})hk1|k2i = hk1|k2i
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⇥ · · · ⇥ 2Ephn
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, Xihph1 , ph2 , . . . , phn

, X|k2i , (77)

or,

d (⇠, �⇠kHT, {ph}) hk1|k2i =
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2⇠(2⇡)3
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X

hk1|ph1 , ph2 , . . . , phn
, Xihph1 , ph2 , . . . , phn

, X|k2i . (78)

The dY has just been generalized to a multihadron phase space. Using the expressions for b†
k and bk in terms of the

quark field operator  (x) (and retracing the steps in Sec. (6.7.3) of Ref. [22]) puts the definition in the more familiar
form (see Eq. (12.39) of Ref. [22]) with coordinate space field operators, but now with a system of n observed hadrons
in the final state with n not necessarily equal to 1,

d (⇠, �⇠kHT, {ph})
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(79)

with x = (0, x�,xT) and where we have kept only the trace of �+ corresponding to the unpolarized fragmentation
function. Translated into Feynman rules, this TMD fragmentation function is
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The cut final state in green is the usual sum of Feynman diagrams integrated over the final state phase space. The
collinear version is obtained by integrating over the parton transverse momentum in the form of �⇠kHT,

d (⇠, {ph} ; µ) ⌘ ⇠2
Z ⇠µ2

d2kHT d (⇠, �⇠kHT, {ph})
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⇠

4

Z ⇠µ2

dk�
H d2kHT

(2⇡)4
Tr
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5
These operators should not be confused with the equal time creation operators a†p used for the on-shell hadronic asymptotic “out” states

in Eq. (11).

same factor as in single-hadron 
fragmentation: factorization works the 
same irrespective of the kind of final 
hadronic state (1,2,..n hadrons) provided 
that  and z is fixedM2

h ≪ Q2

−ζmax ≤ ζ = 1 −
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+ mh2
)2

M2
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z
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2. if we use JAM definition of correlator with parton momentum fractions
1

64π3ξ1ξ2
Tr[…]

then the general formula for factorized e+e- cross section becomes 
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Here the power suppressed error term is written out with the typical 1/z dependence shown explicitly to emphasize
the need to avoid the z ! 0 region to maintain factorization. Given the form of Eq. (89), it might be tempting to
drop the error terms and use the definition of the inclusive cross section to write

X

hadron
types

Z
1

0

dz
1

�0

d�

dz
=

X

hadron
types

Z
1

0

dz d(z, ph) = hNi (90)

with hNi being a total hadron multiplicity. The sum over hadron types only includes one term since there is only
one hadron flavor in our treatment. But the error terms in Eq. (89) diverge in the integral over z down to 0. At a
minimum, a lower bound must be imposed on z such that z � ⇤2/Q2.

Thus, to a rough approximation, one might expect to find a relation of the form

X

hadron
types

Z
1

zmin

dz d(z, ph; µ) ⇡ hNi(zmin, µ) (91)

where zmin is a cuto↵ that is much larger than O
�
⇤2/Q2

�
and we have restored the explicit dependence on a scale µ

in the arguments to emphasize the presence of a scale ambiguity on the right-hand side. Given the discussion in the
previous section, the fragmentation function is still the hadron density, now di↵erential in dz. But the dependence
of hNi on auxiliary variables µ and zmin highlights the limitations of a completely straightforward and unambiguous
interpretation outside of a parton-model-like approximation.

Another way to obtain the above is by substituting Eq. (72) into Eq. (39) and Eq. (37) which gives
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= z

Z
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Z
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d⇠
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ẑ dẑ d⌦
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Z
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⇠2

✓
d�̂

ẑ dẑ

◆
d(⇠, ph) + p.s.

= z

Z
1

z

d⇠

⇠2

✓
z↵2⇡

Q2

4

3
� (⇠ � z)

◆
d(⇠, ph) + p.s. + O (↵s) =

4⇡↵2

3Q2
d(z, ph) + p.s. + O (↵s) . (92)

The zeroth order partonic cross section follows by a direct calculation of the zeroth order Feynman graph in Fig. 3.
One more direct way to arrive at Eq. (92) is to simply calculate Eq. (86) with dY 0

! 1 and integrate over d⌦.

VII. DIHADRON INCLUSIVE PRODUCTION

Next, we review the steps for changing variables to reduce the cross section expression for dihadron production to
other familiar forms. To simplify the discussion we will continue to assume that each hadron in a dihadron pair has
the same mass m. The minimum invariant mass Mh is then 2m.

For n = 2, the dihadron cross section in Eq. (3) becomes

2Eph1
(2⇡)32Eph2

(2⇡)3
d�

d3ph1 d3ph2

=

Z
1

z

d⇠

⇠2

✓
2Ek̂(2⇡)3

d�̂

d3k̂

◆
d(⇠, {ph}) + p.s. , (93)

with the fragmentation function defined as in Eq. (81). For factorization to hold, the kinematics need to be restricted
to M2

h/z ⌧ Q2.
A standard way to characterize the dihadron momentum that is common to many treatments is with the variables

ph ⌘ ph1 + ph2 , R ⌘
ph1 � ph2

2
. (94)

We define
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H
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Q2
, z2 ⌘

2ph2 · q

Q2
, (95)

where zn = zn1 + zn2. We also define partonic momentum fractions analogous to ⇠,
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h,H

, (96)
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FIG. 5: Figure 4 with the large kHT parts shown factored from collinear fragmentation functions. The purpose of the graphs is
to emphasize that the factorized hard contributions from the large kHT regions are independent of whether the observed state
is a hadron or a small-mass multihadron.

We acknowledge that Ref. [29] contains an assertion that Eq. (110) from this paper and Eq. (9) from Ref. [4] are
derivable, along with the standard evolution equations, starting from the definition given in Eq. (132), but we are
unable to retrace the steps based on the information provided there. If we use Eq. (132), then we instead find that at
least one extra factor of ⇠ needs to be absorbed into the hard part to compensate for the extra 1/⇠ in the modified
fragmentation function (along with whatever less interesting constant factors like (2⇡)3 might appear). In that case,
Eq. (93) becomes
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dmod(⇠, {ph}) + p.s. , (137)

where dmod(⇠, {ph}) is a dihadron fragmentation function modified by an extra 1/⇠ prefactor. In the limit of the
zeroth order parton model approximation this becomes
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so there is at least an extra overall factor of z on the right-hand side relative to the normal expression in Eq. (114).
To our knowledge, such a formula has not been used in phenomenological applications.

From Eq. (137), retracing the steps from Eqs. (103)–(110) gives the analog of Eq. (109):
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Using Eqs. (35)–(36) and following the same steps as in Eq. (92) then gives
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again with an extra overall factor of z on the right-hand side relative to the normal expression. We could recover the
standard expression on the last line by absorbing the z into a redefinition of dmod,red,1(z, Mh), but this just converts
the definition back into the original one (for ⇠ = z). For a more detailed comparison with standard definition and the
definition from Ref. [29], see again Appendix B.

IX. COMMENTS AND DISCUSSION

The purpose of this paper is to rea�rm and clarify the validity of prior phenomenological applications of dihadron
(or multihadron) fragmentation functions that used a standard operator definition, but extended to include small-
mass multihadrons as the observed final state. To this end, we have considered the semi-inclusive production of
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2. if we use JAM definition of correlator with parton momentum fractions
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then the general formula for factorized e+e- cross section becomes 
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Here the power suppressed error term is written out with the typical 1/z dependence shown explicitly to emphasize
the need to avoid the z ! 0 region to maintain factorization. Given the form of Eq. (89), it might be tempting to
drop the error terms and use the definition of the inclusive cross section to write
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with hNi being a total hadron multiplicity. The sum over hadron types only includes one term since there is only
one hadron flavor in our treatment. But the error terms in Eq. (89) diverge in the integral over z down to 0. At a
minimum, a lower bound must be imposed on z such that z � ⇤2/Q2.

Thus, to a rough approximation, one might expect to find a relation of the form
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dz d(z, ph; µ) ⇡ hNi(zmin, µ) (91)

where zmin is a cuto↵ that is much larger than O
�
⇤2/Q2

�
and we have restored the explicit dependence on a scale µ

in the arguments to emphasize the presence of a scale ambiguity on the right-hand side. Given the discussion in the
previous section, the fragmentation function is still the hadron density, now di↵erential in dz. But the dependence
of hNi on auxiliary variables µ and zmin highlights the limitations of a completely straightforward and unambiguous
interpretation outside of a parton-model-like approximation.

Another way to obtain the above is by substituting Eq. (72) into Eq. (39) and Eq. (37) which gives
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ẑ dẑ d⌦

◆
d(⇠, ph) + p.s. = z

Z
1

z

d⇠

⇠2

✓
d�̂
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The zeroth order partonic cross section follows by a direct calculation of the zeroth order Feynman graph in Fig. 3.
One more direct way to arrive at Eq. (92) is to simply calculate Eq. (86) with dY 0

! 1 and integrate over d⌦.

VII. DIHADRON INCLUSIVE PRODUCTION

Next, we review the steps for changing variables to reduce the cross section expression for dihadron production to
other familiar forms. To simplify the discussion we will continue to assume that each hadron in a dihadron pair has
the same mass m. The minimum invariant mass Mh is then 2m.

For n = 2, the dihadron cross section in Eq. (3) becomes
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with the fragmentation function defined as in Eq. (81). For factorization to hold, the kinematics need to be restricted
to M2

h/z ⌧ Q2.
A standard way to characterize the dihadron momentum that is common to many treatments is with the variables
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2
. (94)
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where zn = zn1 + zn2. We also define partonic momentum fractions analogous to ⇠,
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p+

h,H

, (96)
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k
<latexit sha1_base64="S3l8nnBLDerjgmOsR9KRP3N3+lk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f09OM8w==</latexit>

ph
<latexit sha1_base64="Llcci2fUsxeZ5eDp2xEn7VpT8es=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPRH/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AFUKo3T</latexit>

(a)
<latexit sha1_base64="V6JQGUXei0SGzzD7wMiP1xkbke8=">AAAB8nicbVA9SwNBEN2LXzF+RS1tFoMQm3AXBS2DNhYWEcwHXI6wt9lLluztHrtzQjjyM2wsFLH119j5b9wkV2jig4HHezPMzAsTwQ247rdTWFvf2Nwqbpd2dvf2D8qHR22jUk1ZiyqhdDckhgkuWQs4CNZNNCNxKFgnHN/O/M4T04Yr+QiThAUxGUoecUrASn7vnughy6rkfNovV9yaOwdeJV5OKihHs1/+6g0UTWMmgQpijO+5CQQZ0cCpYNNSLzUsIXRMhsy3VJKYmSCbnzzFZ1YZ4EhpWxLwXP09kZHYmEkc2s6YwMgsezPxP89PIboOMi6TFJiki0VRKjAoPPsfD7hmFMTEEkI1t7diOiKaULAplWwI3vLLq6Rdr3kXtfrDZaVxk8dRRCfoFFWRh65QA92hJmohihR6Rq/ozQHnxXl3PhatBSefOUZ/4Hz+ALCykN0=</latexit>

k
<latexit sha1_base64="S3l8nnBLDerjgmOsR9KRP3N3+lk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f09OM8w==</latexit>

ph
<latexit sha1_base64="Llcci2fUsxeZ5eDp2xEn7VpT8es=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPRH/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AFUKo3T</latexit>

(a)
<latexit sha1_base64="V6JQGUXei0SGzzD7wMiP1xkbke8=">AAAB8nicbVA9SwNBEN2LXzF+RS1tFoMQm3AXBS2DNhYWEcwHXI6wt9lLluztHrtzQjjyM2wsFLH119j5b9wkV2jig4HHezPMzAsTwQ247rdTWFvf2Nwqbpd2dvf2D8qHR22jUk1ZiyqhdDckhgkuWQs4CNZNNCNxKFgnHN/O/M4T04Yr+QiThAUxGUoecUrASn7vnughy6rkfNovV9yaOwdeJV5OKihHs1/+6g0UTWMmgQpijO+5CQQZ0cCpYNNSLzUsIXRMhsy3VJKYmSCbnzzFZ1YZ4EhpWxLwXP09kZHYmEkc2s6YwMgsezPxP89PIboOMi6TFJiki0VRKjAoPPsfD7hmFMTEEkI1t7diOiKaULAplWwI3vLLq6Rdr3kXtfrDZaVxk8dRRCfoFFWRh65QA92hJmohihR6Rq/ozQHnxXl3PhatBSefOUZ/4Hz+ALCykN0=</latexit>

k
<latexit sha1_base64="S3l8nnBLDerjgmOsR9KRP3N3+lk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f09OM8w==</latexit>

ph
<latexit sha1_base64="Llcci2fUsxeZ5eDp2xEn7VpT8es=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPRH/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AFUKo3T</latexit>

p1
<latexit sha1_base64="dlkuLvRLPKTpeNEp4w3DSOdaGBU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPS9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAAzo2c</latexit>

p2
<latexit sha1_base64="zVqSm7nkuXHALgIZSph8/BQiwIg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6Rf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AECUo2d</latexit>

(b)
<latexit sha1_base64="5LMKpNBIdcDY/QR/zxRQ2OUbQ3E=">AAAB8nicbVA9SwNBEN2LXzF+RS1tFoMQm3AXBS2DNhYWEcwHXI6wt9lLluztHrtzQjjyM2wsFLH119j5b9wkV2jig4HHezPMzAsTwQ247rdTWFvf2Nwqbpd2dvf2D8qHR22jUk1ZiyqhdDckhgkuWQs4CNZNNCNxKFgnHN/O/M4T04Yr+QiThAUxGUoecUrASn7vnughy6rh+bRfrrg1dw68SrycVFCOZr/81RsomsZMAhXEGN9zEwgyooFTwaalXmpYQuiYDJlvqSQxM0E2P3mKz6wywJHStiTgufp7IiOxMZM4tJ0xgZFZ9mbif56fQnQdZFwmKTBJF4uiVGBQePY/HnDNKIiJJYRqbm/FdEQ0oWBTKtkQvOWXV0m7XvMuavWHy0rjJo+jiE7QKaoiD12hBrpDTdRCFCn0jF7RmwPOi/PufCxaC04+c4z+wPn8AbI4kN4=</latexit>

k
<latexit sha1_base64="S3l8nnBLDerjgmOsR9KRP3N3+lk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f09OM8w==</latexit>

ph
<latexit sha1_base64="Llcci2fUsxeZ5eDp2xEn7VpT8es=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPRH/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AFUKo3T</latexit>

p1
<latexit sha1_base64="dlkuLvRLPKTpeNEp4w3DSOdaGBU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPS9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAAzo2c</latexit>

p2
<latexit sha1_base64="zVqSm7nkuXHALgIZSph8/BQiwIg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6Rf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AECUo2d</latexit>

(b)
<latexit sha1_base64="5LMKpNBIdcDY/QR/zxRQ2OUbQ3E=">AAAB8nicbVA9SwNBEN2LXzF+RS1tFoMQm3AXBS2DNhYWEcwHXI6wt9lLluztHrtzQjjyM2wsFLH119j5b9wkV2jig4HHezPMzAsTwQ247rdTWFvf2Nwqbpd2dvf2D8qHR22jUk1ZiyqhdDckhgkuWQs4CNZNNCNxKFgnHN/O/M4T04Yr+QiThAUxGUoecUrASn7vnughy6rh+bRfrrg1dw68SrycVFCOZr/81RsomsZMAhXEGN9zEwgyooFTwaalXmpYQuiYDJlvqSQxM0E2P3mKz6wywJHStiTgufp7IiOxMZM4tJ0xgZFZ9mbif56fQnQdZFwmKTBJF4uiVGBQePY/HnDNKIiJJYRqbm/FdEQ0oWBTKtkQvOWXV0m7XvMuavWHy0rjJo+jiE7QKaoiD12hBrpDTdRCFCn0jF7RmwPOi/PufCxaC04+c4z+wPn8AbI4kN4=</latexit>

H�/q
<latexit sha1_base64="sMkNAZKjKjGLngv9PLtB9A1IHrI=">AAACBXicbVC7TsMwFHXKq5RXgBEGiwqJqSQFCcYKlg4MRaIPqYkix3Vaq44TbAepirKw8CssDCDEyj+w8Tc4bQZoOdKVjs65V/fe48eMSmVZ30ZpaXllda28XtnY3NreMXf3OjJKBCZtHLFI9HwkCaOctBVVjPRiQVDoM9L1x9e5330gQtKI36lJTNwQDTkNKEZKS5556NwgMSSpEyI1woilzcxLnXhET++zzDOrVs2aAi4SuyBVUKDlmV/OIMJJSLjCDEnZt61YuSkSimJGsoqTSBIjPEZD0teUo5BIN51+kcFjrQxgEAldXMGp+nsiRaGUk9DXnfmxct7Lxf+8fqKCSzelPE4U4Xi2KEgYVBHMI4EDKghWbKIJwoLqWyEeIYGw0sFVdAj2/MuLpFOv2We1+u15tXFVxFEGB+AInAAbXIAGaIIWaAMMHsEzeAVvxpPxYrwbH7PWklHM7IM/MD5/AEPPmRA=</latexit>

�
�

�
<latexit sha1_base64="oTW0Z1tEVTkZl0FncX05xWDWJhg=">AAACF3icbVA9SwNBEN2L3/ErammzGASr4y4KWoo2FhYK5gNyIext5pIle3vH7pwQjvsXNv4VGwtFbLXz37iJKTTxMQOP92bYnRemUhj0vC+ntLC4tLyyulZe39jc2q7s7DZMkmkOdZ7IRLdCZkAKBXUUKKGVamBxKKEZDi/HfvMetBGJusNRCp2Y9ZWIBGdopW7FDa6Z7kMeSIgwyGlwnw6YwiTOg0gznl8UtgoaaNEfoFt0K1XP9Sag88SfkiqZ4qZb+Qx6Cc9iUMglM6bteyl2cqZRcAlFOcgMpIwPWR/alioWg+nkk7sKemiVHo0SbVshnai/N3IWGzOKQzsZMxyYWW8s/ue1M4zOOrlQaYag+M9DUSYpJnQcEu0JDRzlyBLGtbB/pXzAbB5ooyzbEPzZk+dJo+b6x27t9qR6fjGNY5XskwNyRHxySs7JFbkhdcLJA3kiL+TVeXSenTfn/We05Ex39sgfOB/fYNugrQ==</latexit>

H�/q
<latexit sha1_base64="sMkNAZKjKjGLngv9PLtB9A1IHrI=">AAACBXicbVC7TsMwFHXKq5RXgBEGiwqJqSQFCcYKlg4MRaIPqYkix3Vaq44TbAepirKw8CssDCDEyj+w8Tc4bQZoOdKVjs65V/fe48eMSmVZ30ZpaXllda28XtnY3NreMXf3OjJKBCZtHLFI9HwkCaOctBVVjPRiQVDoM9L1x9e5330gQtKI36lJTNwQDTkNKEZKS5556NwgMSSpEyI1woilzcxLnXhET++zzDOrVs2aAi4SuyBVUKDlmV/OIMJJSLjCDEnZt61YuSkSimJGsoqTSBIjPEZD0teUo5BIN51+kcFjrQxgEAldXMGp+nsiRaGUk9DXnfmxct7Lxf+8fqKCSzelPE4U4Xi2KEgYVBHMI4EDKghWbKIJwoLqWyEeIYGw0sFVdAj2/MuLpFOv2We1+u15tXFVxFEGB+AInAAbXIAGaIIWaAMMHsEzeAVvxpPxYrwbH7PWklHM7IM/MD5/AEPPmRA=</latexit>

�
�

�
<latexit sha1_base64="oTW0Z1tEVTkZl0FncX05xWDWJhg=">AAACF3icbVA9SwNBEN2L3/ErammzGASr4y4KWoo2FhYK5gNyIext5pIle3vH7pwQjvsXNv4VGwtFbLXz37iJKTTxMQOP92bYnRemUhj0vC+ntLC4tLyyulZe39jc2q7s7DZMkmkOdZ7IRLdCZkAKBXUUKKGVamBxKKEZDi/HfvMetBGJusNRCp2Y9ZWIBGdopW7FDa6Z7kMeSIgwyGlwnw6YwiTOg0gznl8UtgoaaNEfoFt0K1XP9Sag88SfkiqZ4qZb+Qx6Cc9iUMglM6bteyl2cqZRcAlFOcgMpIwPWR/alioWg+nkk7sKemiVHo0SbVshnai/N3IWGzOKQzsZMxyYWW8s/ue1M4zOOrlQaYag+M9DUSYpJnQcEu0JDRzlyBLGtbB/pXzAbB5ooyzbEPzZk+dJo+b6x27t9qR6fjGNY5XskwNyRHxySs7JFbkhdcLJA3kiL+TVeXSenTfn/We05Ex39sgfOB/fYNugrQ==</latexit>

d(0),�/�
<latexit sha1_base64="lvlu4ieSSMIvl7lg2HDcgFu+el0=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahgtSkCrosunFZwT6gDWEymbZDJw9mJkqJ/RQ3LhRx65e482+ctFlo64F7OZxzL3PneDFnUlnWt1FYWV1b3yhulra2d3b3zPJ+W0aJILRFIh6Jrocl5SykLcUUp91YUBx4nHa88U3mdx6okCwK79Ukpk6AhyEbMIKVllyz7Ltp1To57ccjdpa1qWtWrJo1A1omdk4qkKPpml99PyJJQENFOJayZ1uxclIsFCOcTkv9RNIYkzEe0p6mIQ6odNLZ6VN0rBUfDSKhK1Ropv7eSHEg5STw9GSA1Uguepn4n9dL1ODKSVkYJ4qGZP7QIOFIRSjLAflMUKL4RBNMBNO3IjLCAhOl0yrpEOzFLy+Tdr1mn9fqdxeVxnUeRxEO4QiqYMMlNOAWmtACAo/wDK/wZjwZL8a78TEfLRj5zgH8gfH5A/Vvkyo=</latexit>

d(0),��/�
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FIG. 5: Figure 4 with the large kHT parts shown factored from collinear fragmentation functions. The purpose of the graphs is
to emphasize that the factorized hard contributions from the large kHT regions are independent of whether the observed state
is a hadron or a small-mass multihadron.

We acknowledge that Ref. [29] contains an assertion that Eq. (110) from this paper and Eq. (9) from Ref. [4] are
derivable, along with the standard evolution equations, starting from the definition given in Eq. (132), but we are
unable to retrace the steps based on the information provided there. If we use Eq. (132), then we instead find that at
least one extra factor of ⇠ needs to be absorbed into the hard part to compensate for the extra 1/⇠ in the modified
fragmentation function (along with whatever less interesting constant factors like (2⇡)3 might appear). In that case,
Eq. (93) becomes
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dmod(⇠, {ph}) + p.s. , (137)

where dmod(⇠, {ph}) is a dihadron fragmentation function modified by an extra 1/⇠ prefactor. In the limit of the
zeroth order parton model approximation this becomes
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so there is at least an extra overall factor of z on the right-hand side relative to the normal expression in Eq. (114).
To our knowledge, such a formula has not been used in phenomenological applications.

From Eq. (137), retracing the steps from Eqs. (103)–(110) gives the analog of Eq. (109):

2Eh(2⇡)3
d�

d3ph dMh
=

Z
1

z

d⇠

⇠2

✓
2Ek̂⇠(2⇡)3

d�̂

d3k̂

◆
dmod,red,1(⇠, Mh) + p.s. . (139)

Using Eqs. (35)–(36) and following the same steps as in Eq. (92) then gives

d�

dz dMh
= z

Z
d⌦

Z
1

z

d⇠

⇠2
⇠

d�̂
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again with an extra overall factor of z on the right-hand side relative to the normal expression. We could recover the
standard expression on the last line by absorbing the z into a redefinition of dmod,red,1(z, Mh), but this just converts
the definition back into the original one (for ⇠ = z). For a more detailed comparison with standard definition and the
definition from Ref. [29], see again Appendix B.

IX. COMMENTS AND DISCUSSION

The purpose of this paper is to rea�rm and clarify the validity of prior phenomenological applications of dihadron
(or multihadron) fragmentation functions that used a standard operator definition, but extended to include small-
mass multihadrons as the observed final state. To this end, we have considered the semi-inclusive production of

- hard part not independent on details of nonperturbative final state
- changes evolution kernel
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FIG. 5: Figure 4 with the large kHT parts shown factored from collinear fragmentation functions. The purpose of the graphs is
to emphasize that the factorized hard contributions from the large kHT regions are independent of whether the observed state
is a hadron or a small-mass multihadron.

We acknowledge that Ref. [29] contains an assertion that Eq. (110) from this paper and Eq. (9) from Ref. [4] are
derivable, along with the standard evolution equations, starting from the definition given in Eq. (132), but we are
unable to retrace the steps based on the information provided there. If we use Eq. (132), then we instead find that at
least one extra factor of ⇠ needs to be absorbed into the hard part to compensate for the extra 1/⇠ in the modified
fragmentation function (along with whatever less interesting constant factors like (2⇡)3 might appear). In that case,
Eq. (93) becomes
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dmod(⇠, {ph}) + p.s. , (137)

where dmod(⇠, {ph}) is a dihadron fragmentation function modified by an extra 1/⇠ prefactor. In the limit of the
zeroth order parton model approximation this becomes
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dmod(z, {ph}) + p.s. + O (↵s) , (138)

so there is at least an extra overall factor of z on the right-hand side relative to the normal expression in Eq. (114).
To our knowledge, such a formula has not been used in phenomenological applications.

From Eq. (137), retracing the steps from Eqs. (103)–(110) gives the analog of Eq. (109):

2Eh(2⇡)3
d�

d3ph dMh
=

Z
1

z

d⇠

⇠2

✓
2Ek̂⇠(2⇡)3

d�̂

d3k̂

◆
dmod,red,1(⇠, Mh) + p.s. . (139)

Using Eqs. (35)–(36) and following the same steps as in Eq. (92) then gives
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again with an extra overall factor of z on the right-hand side relative to the normal expression. We could recover the
standard expression on the last line by absorbing the z into a redefinition of dmod,red,1(z, Mh), but this just converts
the definition back into the original one (for ⇠ = z). For a more detailed comparison with standard definition and the
definition from Ref. [29], see again Appendix B.

IX. COMMENTS AND DISCUSSION

The purpose of this paper is to rea�rm and clarify the validity of prior phenomenological applications of dihadron
(or multihadron) fragmentation functions that used a standard operator definition, but extended to include small-
mass multihadrons as the observed final state. To this end, we have considered the semi-inclusive production of

ξn−1

worsen breaking of factorization.. 

4. if we have really to interpret JAM formula as 1
64π3z1z2

Tr[…]

kinematic factors

then operator definition would depend on process because z1, z2 
depend on q => breaking universality 

(and still factorization formula would be broken by a 1/ξ term…)


