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Number density interpretation of dihadron fragmentation functions
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We present a new quantum field-theoretic definition of fully unintegrated dihadron fragmentation
functions (DiFFs) as well as a generalized version for n-hadron fragmentation functions. We demon-
strate that this definition allows certain sum rules to be satisfied, making it consistent with a number
density interpretation. Moreover, we show how our corresponding so-called extended DiFFs that
enter existing phenomenological studies are number densities and also derive their evolution equa-
tions. Within this new framework, DiFFs extracted from experimental measurements will have a
clear physical meaning.
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. almost 25 years ago in the pioneering paper of Bianconi, ical analyses, to retain a number density interpretation
JAM Statement Boffi, Jakob, and Radici (BBJR) [20]. This work has in a parton model framework.

been the basis for all subsequent dihadron-related re-
search for observables sensitive to the relative transverse
momentum of the two hadrons [21-25, 27, 3.1{ 32, 35~ tify its number density interpretation by explicitly prov-
39, 41-43|. Unfortunately, the BBJR definition FlOeS ing certain sum rules. We also show our correspond-
not allow the uDiFFs, nor the so-called extended DiFFs ing extDiFFs are number densities and derive their evo-

(extDiFFs) that are the focus of existing phenomenolog- lution equations. Given the existing electron-positron

The main purpose of this Letter is to disseminate a
new definition of uDiFFs that corrects this issue. We jus-

BBJR: P.R. D62 (2000) 034008, hep-ph/9907475
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BBJR definition of correlator compatible with factorization theorem
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BBJR definition of correlator compatible with factorization theorem
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BBJR definition of correlator compatible with factorization theorem
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same factor as in single-hadron
fragmentation: factorization works the
same irrespective of the kind of final
hadronic state (1,2,..n hadrons) provided
that M; < 0* and z is fixed
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critique 1. z1, z2, are external kinematical variables, not to be confused with

of JAM: parton momentum fractions &1, &:
2py. - q £ p}_lt P}Z 2 Zié
7, = > = — = =
q* only in parton model approx. Lkt Pf{ kt <

&= zand ¢ - g

parton momentum fractions & must be used in definition of correlators
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2. if we use JAM definition of correlator with parton momentum fractions
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- hard part not independent on details of nonperturbative final state
- changes evolution kernel



critique ; 3. generalization to n hadrons : Tr[...]

(continued) 4(1673)-1EE, . &,

n—1

do L de dé
3 3 _ . 3
2Eph1 (271-) 2Eph2 (27T) d3Ph1 d3ph2 — /z £2 (2Ek(27r)/d3i% ) dmod (fa {ph}) + P.s.

worsen breaking of factorization..

4. if we have really to interpret JAM formula as : Tr[...]
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kinematic factors

then operator definition would depend on process because z1, z2
depend on g => breaking universality
(and still factorization formula would be broken by a 1/€ term...)



